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In this paper, we consider the sequence 1', +1'+22 1' +2%+3% _ and prove
some of its congruence properties. Surprisingly, this sequence is uniformly
distributed in the residue classes (mod #1) where m =0 (mod 4). Using these results
and Selberg’s sieve, we obtain an upper bound for the number of primes in the
sequence which are <x. ¢ 1993 Academic Press. Inc

1. INTRODUCTION

In [1], Hampel studied the sequence n” and proved some of its
congruence properties. In this paper, we study the related sequence
14, 11422 1" + 22 4+ 3%, ... with particular reference to the number of primes
in this sequence.

The distribution of primes in some other sparse sequences has been dealt
with in Chapter 7 of [2].

Our main result is

THEOREM. Let a,=1" and a,=a, ,+n" for n=2. Let

A={a,:neN} and max)=) L

pEN
peA

Then, we have
log x

74 < {loglog 1)

Our proof of the theorem is based on an application of Selberg’s upper
bound sieve (see, for example, [3]). For this, it suffices to estimate

Y 1

ne A
nsXx

n=0{mod d)

for square free d.
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Our methods are, in fact, capable of yielding estimates for

Y 1

neA
n<x
n=a{modd)

for all @ and 4.

2. PERIODICITIES OF n" AND A4

The following lemma was proved in a slightly more general form by
Hampel {1].

LEMMA 1. The sequence n" is ultimately periodic (mod m) for all m > 2.
Further if g(m) denotes the fundamental period of the sequence (mod m),
then we have

Lem.{p{(p, —1), .. p¥(p,— 1)}
glm)= if m=pip3 --p¥isodd
lLem.{2, g(m/2)} if m=2(mod4)}.

It is quite easy to see that the phrase “ultimate periodicity of »”
{mod m)” may be replaced by the congruence

I'=(+g(m))**") (modm) forall />m.

We now consider the sequence 4 to the modulus p*, where p is an odd
prime and o € N. We begin with

LEMMA 2. Let p be an odd prime, and o = | be a natural number. Then,
we have

Uypip_ 1y —dpp -1y =p" (p—1) (mod p?).

Proof. The proof proceeds by induction on «. Now,

—_— r
Ap(p-1) " p(p-1)= > r.
plp—L<r<2pip—1)

We write r=q(p—1)+s, where 1<s<(p—1) and p<g<2p—1. Then,
clearly
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Aopp-1y ~ 8pp— 1) = 2, r= Yy (s—q)f

plp—1)<r<2p(p—1) pEg<p—1

l<sgp—1
= 2 o
Osrgp—1 Ilgsgp—1
=0+(p-1)+ ) Yy r

2i<p—1 I<sgp—1

(17~ =1)

=(p-)+ ) ~———r—=(p—1) (modp)

25t€p—1 (t—l)

by Fermat’s little theorem. Hence the lemma is true for the case a =1,
Suppose it is true for the case a =k > 1. Then,
Ayprtip_1y— A1y )= y .
Pl p - <r<2pt p—1)
As before, we write r=gp*(p—1)+s with p*(p— 1)+ 1<s<2p*(p—1)
and 2p—2>¢q>=p— 1. Then, clearly

— k ]
azpk+l(p;l)_apk+](p,1,= Z (qp (p_1)+S)J
pP—lsgs2p—2
Mp-+1<s<2p5(p— 1)
= )3 (s*+s*-gp*(p—1))
p—1<q<2p-2
PMp-1+1<s<2pk(p— 1)

(by the binomial theorem)

s (P+—§—p*(p—1)
Mp—N+1<s<25(p— 1)

5

=p > §

Plp—D+1<sg2pMp—1)

=p(p—1)  (modp**')

by the induction hypothesis.
This completes the proof.

An easy extension of Lemma 2 is

LeMMA 3. Let ! be any natural number. Then

Qv 2prip - 1) T Ut pyip— 1) = 2prp- 1)~ Dps(p 1)

=p*~Yp—1) mod(p%),

where, as before, p is an odd prime and « > 1 is an integer.
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Our next lemma determines the fundamental period of 4 (mod p*).

LEMMA 4. Let p be an odd prime and « = 1 be an integer. Then, for all
{>p*(p—1), we have

Apyprrip - ) =y (mod p*).
Further p**'(p—1) is the fundamental period.
Proof. 1t is easily seen, from Lemma 3, that
Ay pii(p- 1) =Q (mod p*).
Let ¢ be the fundamental period. Since ¢ is a period, clearly,
Qo1 — A0 =04 — a4 (mod p*) forall I>p*(p—1),
and so
(+t+ 1)y =1+ 1)H! (mod p%).

Hence by Lemmal, p*(p—1)]|t¢ (asg(p*)=p*(p—1)). Hence ecither
t=p*(p—1) or t=p**(p~1). However,

al+p“(p41)*015Pa—l(1"‘l) Z0 (mod p*},

where /> p*(p—1), by Lemma 3. Hence, p*'(p—1) is the fundamental
period which proves the result.

It is not hard to see that, if « < p, then the sequence is periodic mod p?,
from the beginning.
From Lemma 4, we deduce

LEMMA 5. Let m be an integer =1, which is not divisible by 4. Then, the
sequence A is ultimately periodic (mod m). Further, if f(m) denotes the
Sfundamental period of A (mod m), then we have

Lem.{p3*'(py—1), .., p2* (p,— 1)}
flm)= if m=pp3---pyisodd
lLem.{4, f(m/2)} if m=2(mod4).
Proof. The case in which m is odd is easily seen by Lemma 4. Further,

as A is periodic (mod 2) with fundamental period 4, we get the result for
m=2 (mod 4).

We note that if a;<p, for all s>i>1, then the sequence is periodic
(mod m) from the beginning.
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3. UNIFORM DISTRIBUTION

In this section we show that the sequence A is uniformly distributed in
the residue classes mod m for all m # 0 (mod 4). More precisely, we show

LEMMA 6. Let m=pPp5.--p% be an odd number. Then among the
nUMbers Qymy+ 15 Agmy+ 25 s Agimy+ s €Xactly f(m)/im numbers belong to
each residue class mod m.

Proof. The lemma is easily verified for the case m=3. Suppose the
lemma is true for all odd numbers ¢ satisfying m> 1> 1. We now show it
for m. Let

aZg(m)+I_ag(m)+lEGZg[m)_ag(m)E uy (mOd m)a

where 1< VU<mand (V,m)=1.

Let 2g(m)=i>=g(m)+ 1 be an integer. Let r run over all integers in the
range 0<r< (m/(m, U))—1.,

Then clearly

a;, rg(m) =a; + rUVE a; + (ma U)(rUV/(ms U)) =aq; + S(m, U) (mOd m)s

where s runs over all integers in the range 0 <s < (m/(m, U)}— 1. (This is
because (U/(m, U), m)=1 and (V, m)=1 and so (UV/(m, U), m)=1.) Let
there be 4, solutions to the congruence a,=b (mod (m, U)) with
g(m)+ 1 < x < 2g(m). Then by the previous remark there are 1, solutions
to each of the congruences a,=b+s(m, U) (mod m), where 0<s<
(m/(m, U))— 1 with g(m)+ 1 < x < g(m)+ mg(m)/(m, U).

Thus if we show that the numbers a,. ., .., Gz are equally
distributed in the residue classes (mod (m, U)), it would follow that the
NUMYETS gy 4 15 s Agim) + metm)yim, ¢y Ar€ €qually distributed in the residue
classes (mod m).

NOW aS @, pg(myjim, vy = d; + mUV/(m, U)=a,; (mod m) for all i>g(m) it
follows that f(m) | mg(m)/(m, U). Also, as

Q4 ey Z a; (mod m) forany O<u<m/(m, U),

it follows that f(m)= mg(m)/(m, U). This together with the earlier remark
shows that (to prove the lemma) it suffices to prove that the numbers
Gy(m)+ 1 - Gog(m) aT€ €qually distributed in the residue classes (mod(m, U)).

As g((m, U)) | g(m), it suffices to show that among the numbers
Qo Uy) + 17 - Bg((m, Uy +g(my €XACtYY g(m)/(m, U) numbers belong to each
residue class mod (m, U). Now as f(m) # g(m) clearly (m, U)# m. Hence
by the induction hypothesis it suffices to show f((m, U)) | g{m).
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Let p? | (m, U), where s>i>1. Then p#*'|g(m). (For, suppose
pil g(m) with 1 <y, < B+ 1. Also, clearly p,— 1 | g(m). Hence

Qagim) — Ag(m) = Aarpiigp;— 1) — Arplitp, - 1)

=rpi~ '(p;—1)(mod p?),  where (r,p)=1

Hence p?X(m, U), which is false.) Hence f({m, U)) | g(m)}, which, as noted
before, yields the result.

We observe that if o, < p, for all s=i=1 then the result is true from the
beginning. We next state

LEMMA 7. Let m=2p{'p5 ---p¥ =2 (mod 4). Then among the numbers
Agimy + 15 Agim) + 25 = gimy + sy €Xactly f(m)/m numbers lie in each residue
class mod m. Further if o, <p, for all s2i>=1, the result is true from the
beginning.

The proof of this runs along the same lines as that of Lemma 6 and is
accordingly omitted.

4. PROOF OF THE MAIN THEOREM

Let a and b be any two positive integers such that 5 #0 (mod 4). Let N
be a natural number. Then thanks to Lemmas 6 and 7, we have

> oo =%+O(‘ﬁ—:—))=%+ Oo(b?).

n<uay
n=a({modb)
In particular this result holds if =0 and b =d is square {ree.
We now state a well-known version of Selberg’s sieve.

LEMMA 8. Let B be a finite set of integers. Let £ be a set of primes and

pl2)=1] p,

p<z

pegw
where z>2 is a real number. Let B,={b:be B and b=0 (mod d)}. Let X
be an approximation to |B|=|B,| and w be a multiplicative function such

that w(p)X/p is an approximation to |B,|. Let

) w(d)
Ro= 18, -2 x
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Suppose 0<w(p)/p<1—1/4, for some constant A, =1, w(p)=0 for
primes p not in @. If

w(p) 2
=7 —£L G(z)= d) g(d),
g(d) 1yt (z) d§<:u( ) g(d)

then we have

S(B, p,z)={b:be B, (b, p(z)) =1}

X

G o + Z |R1Ac.m.(d1.tlz)l'
(L) dy,dr <z

dy| P(z)

dz2| P(z)

<

This is Theorem 9.1 of {3].
By our earlier remark, we can choose o to be all primes <z, w(p)=1
for these primes, and

N
Ry= ¥ 1-2=0(’)
neAd
n<ay
n=0(modd)

Then g(d) = 1/¢(d) for square free d and by standard arguments

1
G ==
=X o5

<z

> log z.

Hence, applying Lemma 8 to our sequence gives

N
ZCS vt APV dg)
iy
dalplz)
N
< +0(z'%)
log z
<log N by choosing z = N '/!!, say.

We note that if

| logx 2log x log log log x]
~ | log log x (log log x)?



PRIMES IN A SPARSE SEQUENCE 227

then a, 2 x and so

log x
< -5
nax)<S7 lay) < (log log )%

which completes the proof of our main theorem.

5. CONCLUDING REMARKS

We have only obtained an upper bound for the number of primes in 4
less than x. We have not been able to show that there exist infinitely many
primes in A. We believe, however, that this is indeed the case. We also
believe that

Clog x

(log log x)? for large x, where C > 0 is a constant.
X

T (x)~

We have been able to derive results similar to Lemma 6, for the modulus
m=0 (mod 4). The details will appear elsewhere.
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