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We consider the problem of determining the minimum number of faulty pro-
cessors, k(n, m), and of faulty links, A(n, m), in an n-dimensional hypercube com-
puter so that every m-dimensional subcube is faulty. Best known lower bounds for
k(n, m) and A(n, m) are proved, several new recursive inequalities and new upper
bounds are established, their asymptotic behavior for fixed m and for fixed n —m
is analyzed, and their exact values are determined for small » and m. Most of the
methods employed show how to construct sets of faults attaining the bounds. An
extensive survey of related work is also included, showing connections to resource
allocation, k-independent sets, and exhaustive testing. ' 1993 Academic Press, Inc.

1. INTRODUCTION

An n-dimensional hypercube computer, or n-cube, is a parallel computer
with 2" processors and network topology that of an n-dimensional binary
cube. Each node of the cube is associated with a processor P while each
edge (P;, P;) of the cube represents the direct communication link between
processors P; and P,. Hypercube computers have been studied since 1962
[35] and have recently become the focus of intense commericial and

research activity [15-19].
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One of the attractive features of the n-cube topology is its behavior in the
presence of faulty processors or links. Depending on the number and loca-
tion of these faults it is possible that the network still contains large sub-
cubes which are fault-free. Since most algorithms for the n-cube specify the
dimension of the network as a parameter, these algorithms can still be used
in the presence of faults, although with some degradation. Assuming some
minimum acceptable level of degradation, it is natural to consider the
following question:

In an n-dimensional hypercube, what is the minimum
number of faulty processors (or faulty links) that cause all
m-dimensional subcubes to be faulty?

This question can also be considered as part of the subcube allocation
problem. In multitasking on an n-cube, the problem of dynamically assign-
ing subcubes of a given dimension to a given task can be thought of as
allocating subcubes in the presence of faults, where the busy processors and
dedicated communication links can be considered “faulty”.

The above question arises from problems in resource distribution [28]
as well. To illustrate, suppose disks are to be attached to some of the
processors of an n-cube in such a way that every m-dimensional subcube
contains a processor with a disk. (We may, for example, be in a multiuser
environment and want to ensure that each user has a disk in their allotted
subcube.) For a given n and m, the minimum number of disks necessary is
the same as the minimum number of faulty processors needed to guarantee
that every m-cube is faulty. A solution to this resource distribution
problem, however, requires not only the number needed, but also a con-
struction of a minimum set of nodes of Q, that has a node in common with
each m-dimensional subcube.

In order to facilitate our discussion we need to introduce some notation.
Let Q, denote a labeled n-dimensional binary cube, where the nodes of O,
are all the »-bit strings and two nodes are adjacent if and only if their
corresponding strings differ in exactly one position. Define & (n, m) as the
collection of all sets of nodes of O, whose removal leaves no Q,,, and let
K(n, m) be the minimum size of a set in &(n, m). Analogously, Z (n, m)
denotes the collection of all sets of edges of @, whose removal from Q,
leaves no Q,, and A(n, m) is the minimum size of a set in J (n, m). When
the context is clear, the informal term “fault set” will be used to mean a set
in #(n,m) or a set in J (n, m). Figure 1 illustrates minimum node and
edge fault sets for n=4 and m=2.

There are many alternative methods of fault tolerance not measured by
the k and 4 functions. Two basic graph-theoretic approaches are to provide
additional edges and/or nodes, or to weaken the notion of a subcube. In
the former, hardware is added so that the system still has a Q, as a sub-
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system after a fault occurs [8, 33, 36]. This approach must be taken at the
time of hardware design, and can tolerate relatively few faults without inor-
dinate expense. In the latter approach, the notion of edge is weakened to
allow paths of length greater than one in order to route around faults. This
implementation is via software, perhaps together with hardware modifica-
tions to permit use of links to and from faulty processors. Generally, many
more faults can be tolerated with this approach and it is frequently possible
to provide a reconfigured subcube of the desired size in the presence of
several faults [14]. This solution suffers a performance penalty, however,
because each communication step in a reconfigured subcube takes longer
than a communication step in the original hypercube. Neither of these
approaches has yet been implemented in any commercial hypercube, and
we will not pursue these methods here.

The fault tolerance approach we analyze assumes no hardware modifica-
tion, incurs no communication penalties, and can be easily utilized on all

8 faulty edges destroying every 2-cube

Fic. 1. Minimum fault sets for n=4, m=2.
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current commerical hypercubes. Further, the x and A functions are of
interest for a variety of reasons beyond simple fault tolerance. This will
be shown below, where ties are exhibited between these functions and
problems in resource allocation, exhaustive testing, and k-independent sets.

1.1. Prior Work

A family F of sets is k-independent if for every pair of disjoint subsets S,
and S, of F such that |S,| + |S,| =k there is at least one element common
to all the sets in .S, but which is in none of the sets in S,. In Section 2 we
show the direct relationship between k-independent sets and «. The earliest
published work relevant to evaluating x and A is apparantly that of
Schonheim [34] and Brace and Daykin [6], who determined the maxi-
mum size of a 2-independent family, and Kleitman and Spencer [26], who
considered the general problem of determining the maximum size of
families of k-independent sets. Kleitman and Spencer used a probabilistic
argument to establish a lower bound for the maximum size of a family of
k-independent subsets of a set, proved an upper bound for this maximum,
and determined the maximum size of 2-independent sets by constructive
means. These results yield the value of x{(n,n—2) and bounds for
k(n, n~ k). Chandra et al. [7] studied the problem of finding the minimum
number of boolean n-vectors such that every k-projection of them yields all
possible k-vectors. In our notation this is k(n, n—k). They determined
k(n, n—2), gave a construction for sets in .¥(n, n — 3) of non-optimal size,
and used essentially the same probabilistic argument as in [26] to obtain
an upper bound for x(n,n—k). Becker and Simon [3], apparently
unaware of the work in [ 7], repeated many of these results for x, and used
the same methods to establish bounds on A. They also gave a construction,
based on the work of Friedman [12], which yields an upper bound for
k(n, n—k) that has the correct growth behavior for fixed n—k. In [27],
Levitin and Karpovsky considered the problem of exhaustive testing of
combinatorial devides with »n inputs, where each output is a boolean
function of at most & binary input variables. They used MDS codes to
construct sets in & (n, m), although the sets were not of optimal size.

Several persons have worked on a problem complementary to determin-
ing k(n, m). Some time ago, Erdds asked for the maximum size of any set
of nodes of Q, for which the induced subgraph contains no 4-cycle.
Johnson and Entringer [24] found this maximum size and characterized
the extremal graphs for this case. Let f(n, m) denote the maximum size of
any set of nodes of @, for which the induced subgraph contains no Q,,,
and g(n, m) denote the corresponding number for edges. Note that
f(n,m)=2"—«(n,m) and g(n, m)=n2"""'~ i(n, m). Thus, the Johnson
and Entringer result determines x(n,2). In [20, 21, 23], Johnson has
considered f(n, m) and obtained bounds for the cases m=3,4, 5, and in
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[22] has evaluated g(5, 2). Responding to a related question of Erdds [9]
(see Section 3.4), F. Chung (personal communication, July 1988} estab-
lished an upper bound for g(n, 2), thus providing a lower bound for A(n, 2).

1.2. Organization

The following sections contain our new results on « and A as well as an
extensive survey of related work. In view of the fault-tolerance applications
on the one hand, and the exhaustive testing and resource distribution
applications on the other, we address both the problem of determining the
values of k¥ and A and the problem of the construction of small fault sets.
In Section 2 we derive several bounds for k. We establish new bounds for
the maximum size of 3-independent families by using the non-constructive
methods of Erd6s er al. [10]. These bounds yield an improved upper
bound for x(n, n—3).

We also give a construction for small sets tn ¥ (n, n— 3) which yields a
new recursive inequality for x(n, n—3), producing the best known upper
bounds for it with #» of any practical size. We make use of the resulits
obtained by Kleitman and Spencer [26] for k-independent subsets to
establish a new lower bound for k(n, m).

Many of the techniques of Section 2 are easily modified to give corre-
sponding results for A. These results are described in Section 3 and include
an improved upper bound for A(n, m) for m small relative to n, a new lower
bound for A(n, m) that is the best known for » large, and a new lower
bound for A(n, m) that is the best when m is small. Here, as in Section 2,
all but one of the bounds are established by constructive methods.

The asymptotic behavior of x(n, m) and A(n, m), discussed in Section 4,
is not well understood for general n and m. However, the new bounds we
establish in Sections 2 and 3 do give new information for the cases when
m is small relative to n and when n—m is small. In Section 5, we use a
combination of the results of earlier sections together with computer
programs to conmstruct optimal or near optimal fault sets, thereby deter-
mining exact values or tight bounds for x(n, m), for 0 <m<n<10, and
A(n,m), for 1<m<n<7 In Section 6 we describe techniques for con-
structing fault sets when n is large. Section 7 contains a discussion of
various related open problems and some generalizations.

Because of the large number of results and techniques in Section 2 and
3, the reader may prefer to initially skim these sections, proceeding to
Sections 4,5, and 6. These latter sections help to put the various
inequalities into perspective. The reader may then return to the initial
sections for a more careful reading.

Throughout, Ig denotes log, and In denotes log,.
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2. THE VALUES OF k

The theorems in this section are organized according to the methods
employed in their proofs. Theorem 1 and 2 are proved by quite elementary
means. A labeling technique is used to prove Theorem 3, whereas
Theorem 4 is proved by the use of level sets, yielding a good upper bound
for x(n, m) for fixed m. The results in Theorem 8 through 11 rely on
the connection between x and independent sets mentioned in Section 1.
A partitioning technique which can be viewed as an extension of the
2-independent set construction yields a recursive inequality for x(n, n— 3).
The final theorem of this section uses a construction somewhat related to
the partitioning method to establish a second recursive upper bound for
k(n, n —3). Whenever we establish a recursive inequality, the proof shows
how to combine minimum fault sets for the larger side to get a fault set for
the smaller side satisfying the inequality.

For a node g in Q,, the weight of ¢ will denote the number of 1’s in its
string. Extending our notation of n-bit strings for nodes, we will denote the
subcubes of Q, by strings from {0, 1, x}”, where the number of *s in the
string is the dimension of the subcube.

2.1. Elementary Bounds

The theorems in this section are proved by quite elementary and
constructive means.

THEOREM 1. Fornz=1,

(i) x(n,n)=1

(i) x(n,n—-1)=2
(iii) x(n,0)=2"
(iv) w(n, 1)=2""1

Proof. Parts (i) and (iii) follow directly from the definition of x(n, m).

For (ii), note that at least one node must be removed from each of two
disjoint copies of Q,_, in Q,. Moreover, if we remove any pair of
antipodal nodes of Q,, the remaining graph contains no Q,_,. Thus (ii)
holds.

For (iv), let Q' and Q" denote two disjoint copies of Q,_, in Q,, and
consider those edges with one node in Q' and the other in Q”. Since at least
one node of each of these edges must be removed in order to remove all
the Q,’s from Q,, we must have x(n, m) >2"~'. On the other hand, if we
remove from Q, all nodes of even weight then no Q, can remain since
every edge contains exactly one node of even weight. Part (iv) now
follows. |
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In the next theorem we give recursive upper and lower bounds for
Kk(n, m).

THEOREM 2. Forn,m2=1,
(i) wx(n,m)<k(n—1,m—1)+x(n—1,m).

(i) xk(n,m)=max{2x(n—1,m), k(n—1,m—1)}.

Proof. Let Q' and Q" be two node-disjoint copies of Q,_, in @Q,.

For (i), let S, = Q’, S, = Q" be sets of size k(n—1,m—1), k(n— 1, m) in
Fn—1,m—1), L(n—1,m). Clearly S,u S, is in &(n, m). For (ii), note
that at least x(n— 1, m) nodes must be removed from each of Q' and Q"
so that no Q,, remains in either (n — 1)-cube. Thus x(n, m) = 2x(n—1, m).
To prove the second of the implied inequalities in (ii), let S be a set in
S(n, m) of size x(n, m) and let S’, S” be the nodes of S in Q’, 0". Denote
by T the set of nodes of Q° that are adjacent to the nodes of S”. If Q' con-
tains an (m— 1)-cube 4’ that is disjoint from S’ u T’, then Q" contains a
corresponding (m — 1)-cube 4" which combines with 4’ to form an m-cube
disjoint from S. Since this contradicts the choice of S, we may conclude
that $'u T’ must contain at least k(n—1, m—1) nodes and, therefore,
k(n,myzemn—1,m—-1). |

Table 1 shows that sometimes the first term on the right side of the
inequality in Theorem 2(ii) is the largest (for example, at n=7 and m = 2)
and sometimes the second term is the largest (for example, at n=6 and
m =4). Part (ii) of Theorem 2 shows that k(n, m) is strictly increasing in n.
Further, given any fault set S in %(n, m), removal of any single node of S
gives a fault set S’ in ¥ (n, m+ 1), since any (m + 1})-cube consists of two
disjoint m-cubes, at least one of which is still faulty in S’. Therefore x(n, m)
is strictly decreasing in m.

The next theorem generalizes part (i) of Theorem 2. Consider the (n—1)-
dimensional subcubes 4 =0% --. % and B=1x--.x of Q,. We may visualize
Q, as a l-cube with "supernodes” 4 and B, where we label 4 with 0 and
B with 1. Let S, be a subset of 4 whose removal from A leaves no m-cubes,
and S, a subset of B whose removal from B leaves no (m — 1}-cubes.
Part (i) of Theorem 2 was proved by observing that S, U S, is in &(n, m).
As a first step in generalizing this idea, visualize Q, as a 2-cube with
supernodes A, Ag;, 410, and 4,,, where 4, = ijx ---* is an (n — 2)-cube of
Q. for i,je {0, 1}. Assign label /, to supernode A, as follows: loy=1,, =0,
lio=1, and /;; =2. Next, for each i, je {0, 1}, choose a minimum set S, of
nodes of 4,, whose removal from A4, leaves no (m —/;)-cube. We see that
Uijeto 1y Sy 1s in #(n, m) and so

kn,m)<2k(n—=2,m)+x(n—-2,m—1)+x(n—2,m-12). (1
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This result is not a consequence of iterating the inequality in part (i) of
Theorem 2, for one iteration yields

k(n,m)<k(n—2,m)+2x(n—2,m—1)+x(n—2,m—2) (2)
which is weaker than inequality (1). Figure 2 illustrates this labeling.

THEOREM 3. Let r be a non-negative integer. Label the nodes of Q, with
integers in the interval [0, r] such that for every jin Q.- .r each j-cube of O,
has a node with label at least as large as j. If (q) is the label of node q in
Q, then

K, m)< Y, Kk(n—r,m—1(q)) (3)
qeQ,
fornzmz=r.

Proof. For each node a=a,a,---a, in Q,, let Q,(a) be the (n—r)-
dimensional subcube of Q, given by a,---a,*---*. Let S(a) be a set of
k(n—r,m—I(a)) nodes of Q,(a) whose removal from Q,(a) leaves no
(m — l(a))-cube. We claim that the removal of the set

S=J S(a)

aeQr

A labeling of a 1-cube Recursive application An optimal labeling
of 1-cube labeling of the 2-cube

A good labeling of the 3-cube

FiG. 2. Labelings of small hypercubes.
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from Q, leaves no m-cube. For suppose T is an m-cube of Q,, say
T=w,---w,, where w;;,=+ for I<i(l)<...<i(m)<n Let
t=max{j| i(j)<r} and consider the :-dimensional subcube 7' of Q, given
by T'=w,---w,. (Conceptually, T can be thought of as a product of a
t-dimensional subcube of @, and an (m — r)-dimensional subcube of Q,,_,.)
By our assumption on the labeling of Q,, there is some node ve T’ whose
label /(v) is at least ¢ Thus, the (n—r)-dimensional cube Q,(r) has no
(m—Il(v))-dimensional subcube after the removal of S(v). Since
TngQ,(v)=v,---0,w,,,--w, has dimension m—¢, which is at least
m — [(v), this subcube must contain at least one element of S. |

In the theorem just proved, if we take r =1 and choose the labels 0 and
1, then inequality (3) reduces to the statement in part (i) of Theorem 2. An
iteration of this inequality corresponds to selecting the labels 0, 1 (from 0)
and 1, 2(from 1) for @, which yields inequality (2). However, with r=2
and labels 0, 1, 1, 2 assigned to the appropiate nodes of Q,, we obtain the
stronger inequality (1). For each value of r, it is clear that there is a
labeling of Q, which gives an inequality for x(n, m) which is stronger than
that supplied by using a labeling obtained by iteration corresponding to a
smaller value of r.

The results expressed in Theorem 3 are most useful in the construction
of near optimum sets in &(n, m) based on good constructions for near
optimum sets in & (n,m—j) for 0<j<r for some r<m. In applying
Theorem 3, the actual choice of r will be determined by what is known
about the optimum or near optimum sets in ¥ (n, m—j) for 0<j<m. In
addition, since determining optimum labelings for @, for large r is a
challenging combinatorial problem in itself, usually only near optimum
labelings would be available. Consider, for example, the following construc-
tion. For each jin 0, ..., r, pick a set S, of x(r, /) nodes of Q, that contains
0.-.-0 and whose removal from Q, leaves no j-cube. Define a labeling h as
follows: for ¢ a node of Q,, let A(q)=max{k | g€ S,}. Clearly, for each
collection of sets S§,,S,,.., S,, the resulting labeling £ satisfies the
requirements set forth in Theorem 3, but to obtain near optimum labelings
by this method, one would want to choose the sets so that §; overlaps §;,
for j<i, as much as possible. Whatever the selection, 0-.-0 will have
label r, and those nodes with label O will not be in S,. In the worst case,
we would construct by this method a set R in & (n, m), where

[RI<k(r,r)k(n—r,m—r)+ [k(r,0)—k(r, )] k(n—r, m)

r—1t

+ Y [k(r,)—11x(n—r,m—)).

j=1
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2.2. Level Sets

Our next upper bound on x is established by the simple device of
removing all nodes at given distances from the origin 0-.--0 of Q,. An
example of such a fault set appears in Fig. 1.

THEOREM 4. If n,m2=1 and a is any integer, then

K(n, m) < Y (Z)

k=amodm+ 1
Further, this sum is minimized when a=| (n—m—1)/2 |.

Proof. The nodes of @, can be partitioned into levels, where level i con-
sists of all nodes of weight i, 0 < w <n. Any m-dimensional subcube of Q,
must include nodes from m + 1 consecutive levels. Consequently, if all the
nodes are removed from at least one level in every set of m + 1 consecutive
levels, then no Q,, will remain. This can be accomplished by removing all
nodes whose weights are in a fixed congruence class a modulo m+1.
Furthermore, we can minimize the number of nodes removed in this way
by judicious choice of a. The level size is monotone decreasing away
from the center level (or levels, for n odd). Selecting a={ (n—1—m)/2 |
results in the removal of levels as far from the center level(s) as possible.
A straightforward term-by term comparison shows the optimality of this
value of a. |

While many authors [3,7,20-22,24] utilize the approach of the
theorem just proved, most choose to express their result in the following
simpler but weaker form.

COROLLARY 4.1. Fornzm>1,

n

< .
w(n, m) m+1

Proof. The desired result follows from the identity

VD VN (A EET
a=0 k=amodm+ 1
The bound given by Theorem 4 in the case k=2 is sharp according to
the results of Johnson and Entringer [24], who used constructive methods
to determine f(n, 2), the complement of x(n, 2). We state their result in
terms of .
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THEOREM 5 [24]). Fornz=?2,
k(n, 2)=12"31

Before further discussion concerning the use of level sets, let us
simplify notation by letting C(n,m, a)=3 i _smoam+1 (1), and setting
C*(n,m)=min{C(n, m,a): 0<a<m}. In [21,28] it was noted that, for
fixed m, C*(n, m) satisfies a recursive equation, and this was later solved
for m=3,4,5 in [20,21,23]. These results yield upper bounds for
k(n, m) for m=3,4,5 which are improvements over those provided by
Corollary 4.1. We summarize these in the following.

THEOREM 6 [20, 21,23]. Forn,m>=1,

Q) K(n, 3) <2774 — 227,
. 2775 —(2/5) L, n odd
(i) "(”’4)<{2"/5—(1/5)L,,+, neven,

where L,, the Lucas number, is [(1 + \/g)" +(1 ——\/g)"]/Z".

276 — 3172472 + 1/6 n odd

< .
(ii1) K(n, 5) {2"/6 — 3Ln/2J/3 +1/3 neven

Johnson [21] suggested that the bound C*(»n, m) given by Theorem 4
may be sharp, and formally conjectured equality in that case m=4.
However, for any fixed m>2, equality between x(n, m) and C*(n, m)
cannot hold for all n>m. For m=3 this follows from the fact that
x(7, 3)=24, from Table 1, Section 5, whereas C*(7, 3) = 28. For m> 3, we
see that equality fails between x(m+ 2, m), whose value is given by
Theorem 9, and C*(m + 2, m), whose value is m + 3.

For fixed m and large n, C*(n, m) is the best upper bound known
for k(n, m), but it may still be far from optimal, for, as we shall see in
Section 4, there is a large gap between C*(n, m) and the known lower
bounds in these cases.

2.3. Independent Sets

We now turn to the theory of independent sets to help us in our study
of k. A family F of sets is k-independent if for every pair of disjoint subsets
S, and S, of F such that |S,| + |S,| =k, there is at least one element com-
mon to all the sets in §; which is in none of the sets in S,. The following
lemma shows the close relationship between k-independent sets and sets in
F(n,n~k). To state it, we first need some additional notation. Let &#(r, k)
denote all k-independent sets of subsets of {1, .., r}. For any set T of i
elements, by the orderings of T we mean the set of i! i-tuples which, when
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viewed as unordered sets, are equal to T. Let ?A’ (r, k) denote the set of all
orderings of all elements of #(r, k), and let & (n, n — k) denote the set of
all orderings of all elements of ¥ (n, n—k).

LeEMMA 7. Given positive integers k,r,n, there is a natural bijection
between the n-tuples of # (r, k) and the r-tuples of &(n, n—k).

Proof. Let F=(F,,.., F,) be an n-tuple of #(r, k). F can be used to
construct an r-tuple in & (n, n—k) as follows. Let M = (m;) be the rxn
matrix defined by

{ 1 if ieF
m;=

0 otherwise’

Then, for each 1 <j< n, the jth column of M represents the characteristic
function of the set F;. Morecover, for each 1 <i<r, the ith row of M can
be associated with the element i of {1, .., r}, and also represents a node of
Q,, where the jth entry of the row is the jth bit of the node’s label. We
denote by S,, the r-tuple of nodes represented by the rows of M, and claim
that S,, is in £(n, n—k). To see why this is the case, let A =a,a,---a, be
an (n—k)-cube in Q, and define S,={F;:a,=1} and §,={F;:a,=0}.
Since A4 is an (n—k)-cube, |S,]+|S,| =k, and since F is k-independent
there is at least one element, say x, that is in each set in S, and is in none
of the sets in S,. Thus the node represented by row x is in both 4 and S,,,
proving that S,, is in #(n, n—k).

It is clear that the above mapping from n-tuples of £ (r, k) to r-tuples of
P(n, n—k)is 1-1. To see that it is onto, let S be an r-tuple in F(n, n—k).
Create the rxn matrix M by setting m; equal to the jth bit of the ith
element of S, and construct an n-tuple F=(F,, F,, .., F,) of subsets of
{1, .., r} by interpreting the jth column of M as the characteristic function
of the set F;. We claim that F is k-independent. To prove this, suppose S,
and S, are disjoint subsets of F, where |S,| +|S,| =%, and J,, J, are their
index sets defined by J,={i: F,e S,} forp=1,2. Let B=bb,---b, be the
(n — k) — dimensional subcube described by

1 if ield,
b;=<0 if ield,
*

otherwise.

Since S is in #(n, n— k), B must contain at least one element, say the yth
element, of S. This means that ye F; for each ieJ, and y ¢ F, for ie J,,
which allows us to conclude that F is k-independent. |}

The correspondence established in the lemma, used in [3, 7], gives the
following result.
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THEOREM 8 [3,7]. Let F(r,k) denote the maximum size of a
k-independent family of subsets of a set of r elements. Then

k{n,m)=min{r | F(r,n—m)=n}.

Schénheim [34], Brace and Daykin [6], and Kleitman and Spencer [26]
determined the maximum size of a family of 2-independent sets. Kleitman
and Spencer proved that F(r,2)={(,,},," ), observing that this maximum
is attained by taking all subsets of size | r/2 | that contain a fixed element
of X. Using this result and the above theorem, one immediately obtains the
following.

THEOREM 9. «k(n,n—2) is the minimum positive integer r such that
(L2t zn.

Chandra et al. [7] rediscovered this result and the following corollary,
as did Becker and Simon [3].

CoOROLLARY 9.1 [3,7). x(n,n—2)=lgn+ilglgn+ O(1), where the
O(1) term is non-negative.

Kleitman and Spencer also obtained bounds for F(r, k). They proved an
upper bound for F(r, k) for k>3 [26, inequality (17)], from which we
deduce the more convenient but slightly weaker form

1 -2
F(r,k)sl{(k-z)zz('>/<x>} “ )+(k—3), (4)
2 p/i\p

where x=|r/2"2]+1 and p=| x/2 ]+ 1. When we combine this result
with Theorem 8, we obtain the following.
THEOREM 10. For n2k >3,

S k—2
TH(12K" Y —1/2% 2

kK(n,n—k) lg(n—k+3)—klgk—-2l1glgn,
where H(x)= —[xlgx+ (1 —x)1g(l —x)].

At present, the lower bound just obtained is the best known for
k(n,n—k) for k fixed and large n, k. When it is rewritten in the slightly
weaker form

-2
x(n,n—k)>2"’l<§-_—§+lge) lgn—k+3)—klgk—2lglgn, (5)
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it can easily be compared with the improvement gained over the bound
from [3]

k(n,n—k)=2"?[lg(n—k+2)+0.1251glg(n — k + 2)],

which is the result of applying Theorems 2 and 9.
Now, in the other direction, Kleitman and Spencer [26] used a non-
constructive probabilistic argument to prove that

F(r, k) = (1/2)(k 1) (2424 = 1)) (6)

When this inequality is combined with Theorem 8, it is straightforward to
show that

k

NV e
kK(n,n—k)< (1 -2 %)

1g n. (7

This inequality, first established in [7] and later in [3], provides the best
known upper bound for fixed & and large n, k. It will be discussed further
in Section 4.

Using the non-constructive methods of Erdds er al. [10], we next derive
a new upper bound for k(n, n — 3) that, for n large, is superior to any other
known bounds. The best upper bound known previously, given by
inequality (7) with k=3, is k(n,n—3)<15.571 Ig n.

THEOREM 11.  For n sufficiently large, x(n,n—3)<7.57 1g n.

Proof. Let r be an even positive integer and let X be a set of r elements.
We will prove that there is a 3-independent family of subsets of X that con-
tains at least (1.0959)" elements when r is sufficiently large. From this we
will be able to conclude that x(n, n—3) <lg n/lg 1.0959 for » sufficiently
large, which well complete the proof of the theorem.

Let X’ be the set of all subsets of X of size r/2, and let p be a real
number, 0 <p <1, whose value will be determined later. Denote by § a
random collection of subsets obtained by choosing independently and with
probability p each of the subsets in X”. Using S, we form a 3-independent
family by successively deleting any set 4 from S for which there are sets B
and C in S that satisfy either

(1) A<BuC or

(2) BnCcA.
For a fixed 4 e X, let b,(4, r) denote the number of pairs (B, C)e X' x X’
for which (1) holds and let b,(4, r) be defined analogously for (2). Setting

b(r)=Y 4cx [6:(A,r)+by(A,r)], we see that the expected number of
members deleted from S is at most p°(,/,) b(r). By choosing p = (2b(r))"?,

643/102:2-9
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the existence of a 3-independent set with at least (1/2)(2b(r))~'?(,},)
members can be guaranteed.

We need an upper bound for b(r), but it will suffice to determine an
upper bound for b,(A4, r) because b(A4, r}=b,(X' — A, r) for Ae X’ and
b(r)=2% 4.5 b(A, r). To this end, suppose A4 is a given set in X’. The
pairs (B, C)e X" x X’ for which condition (1) holds can be put in one-to-
one correspondence with the four-tuples of sets (U,, U,, ¥V, V,) which
satisfy the set of restricitions

R: VeU, <4,

U,, VoS X— A4,
U |+ Uz | =r/2,
Vil +1Val=1U,l

To illustrate the intended correspondence, if we are given the pair (B, C)
for which condition (1) holds, take U, =A4n B, U,=B— A4, V,=U,nC,
and V,=C— A. It is straightforward to check that (U,, U,, V,, V) does
satisfy each condition of R. Conversely, if the four-tuple (U,, U,, V,, ¥,)
satisfies all of the conditions listed in R, then with B=U,u U, and
C=V,u(d-U,)uV,, the pair (B, C) satisfies condition (1). It follows
that b,(4, r) is the number of such four-tuples satisfying the conditions in
R. Hence,

_ r/2 r/2 x < /2 )
b4, r) osér/:z(x)("/z“x)os;sx(y) x=y/)

Since the ratio of consecutive terms in the sum for b,(4, r) is monotone
decreasing, the maximum term occurs where this ratio is approximately 1,
namely for x ~0.309r. Using Stirling’s approximation, n! ~ (nfe)" (2nn)"?,
we find that b(r)<(3.3302)" and so (2b(r))~'?(,},)>2(1.0959) for r
sufficiently large. ||

2.4. Partitions

We now introduce another technique for obtaining upper bounds for
k(n, m). While the results of this section are asymptotically weaker than
those of the previous section, they provide good recursive constructions for
small values of n which are not available from the probabilistic arguments
employed.

Consider a collection P,, P,, .., P, of partitions of {1, 2,.., n} with the
following property.

Property #(n, k): for every pair of disjoint subsets U and V of
{1,2,..,n} for which [Uu V| =k, there is some partition P,
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such that no cell of P, contains both an element of U and an
element of V.

A collection of r partitions satisfying property #(n, k) can be used to con-
struct a k-independent family of size n as well as a set in &(n,n—k). In
view of the correspondence described at the beginning of Section 2.3
between k-independent sets and sets in %(n, m), it suffices to show how a
collection of partitions satisfying property #(n, k) can be used to construct
a set in & (n, n—k).

Let P be a partition of {1, 2, .., n} with non-empty cells 4,, 4,, .., A,,
and for each i, 1<i<n, let ¢(i) be the unique integer j for which ie 4;.
Further, if J<= {1,2, .., n}, let ¢(J)= {#(i): ie J}. We use P, and therefore
@, to construct a function t from {0, 1}7 to {0, 1}" as follows:

ay, Ay, s @) = (@y(1ys Qgays oo Qgemy)-

That is, for each subset W of {1, 2, ..., p}, T maps the characteristic function
of W to the characteristic function of | ), 4 4, as a subset of {1,2, .., n}.
Now, suppose P, P,,.., P, is a collection of partitions of {1,2,..,n}
satisfying property #(n, k), where P, has ¢, non-empty cells
A, A, .., A, Further, let 7, and ¢, be the functions obtained from P, as
described above. For each i, 1<i<r, choose a minimum size set
S.€ #(c;,c;—k) and let X, = {1(s): se S;}. Since we can always choose a
minimum set in %(n, m) that contains (0, ..., 0), we will do so, and then
modify each X, for i>1 by removing the n-tuple (0, ..., 0). We claim that
the resulting set X=);_, X, is in &#(n,n—k). To prove this, suppose
U=uwuu,- - u, is a subcube of @, of dimension n—k, and let J, and J, be
the index sets determined by

1 if iel,
u;=<0 if ield,
*

otherwise.

We want to show that there is some element of X that is in U. Since
property P(n, k) is satisfied by the collection P, P,, .., P,, at least one of
these partitions, say P,, is such that none of its cells contains both an
element of J, and an element of J,. Thus, we can define the subcube
V=vv,---v,0f Q. by

1 if ied(J,)
v,=<0 if ied(J,)
* otherwise
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and conclude that V is of dimension c¢,—k. Furthermore, since
S,e #(c,, c,—k), there is an element x=x,x,---x,€(VnS,), which
shows that 7,(x)e (X U). We formalize this result in terms of « in the
following.

THEOREM 12. Let n>2k = 1. Suppose P, P,, .., P, is a collection of par-
titions of {1, 2, ..., n} satisfying property #(n, k), where P, has c; non-empty
cells for 1 <i<r. Then

kmn—k)< ¥ ke, ei—k)—r+1.
i=1

This inequality is very useful when a small collection of partitions
satisfying property #(n, k) can be found, as illustrated in the following for
k=3

CoROLLARY 12.1. For all integers s and t such that st2nz2s>123,
kK(n,n—3)<2k(s,s—3)+«(t,1—3)-2.

Proof. Choose the integers s and ¢ in the given range. Let P, denote the
partitions of {1, 2, .., n} with cells

Ay={m:1<m<n m=jmods},

for 0 <j<s—1; let P, denote the partition with cells

m .
Azj:{m:lsmSn, t;Jz}},

for 0 <j<1t; and let P, denote the partition with cells
m
A3,={m: 1<m<n, [—J—#msjmods},
‘ s

for 0<j<s— 1. It is relatively easy to check that this collection of parti-
tions P,, P,, P, does indeed have property P(n, 3). §

Although Corollary 12.1 gives an upper bound for x({n, n — 3) which is
O((lg n)'®%), its results, when combined with Theorem 13 and the exact
values of « in Table 1, actually give a better upper bound than that
provided by Theorem 11 for n < 1600.

Friedman [12] showed how to construct, for any fixed k and #, a collec-
tion of O(lgn) partitions of {1,2,..,n} such that for any subset T of
{1,2, .., n} of size k, there is a partition in which each of its cells contain
at most one element of 7. Becker and Simon [3] used Friedman’s result
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to construct sets in #(n, n — k) of size at most 1g n(k*/lg k) 2218k +3% While
this construction vyields sets of the right order of magnitude, namely
O(lg n), for small k they are impractically large. For example, if k=3 and
n =40, they are of size 2% Ig 40, whereas the above corollary with s =9 and
t =35 yields a set of size 32.

The next theorem contains an upper bound for x(n, n— 3) which is also
established by constructive means. Although its methods yield sets of size
O((Ig n)?), as pointed out earlier, when it is combined with Corollary 12.1
and Table 1, it yields superior bounds for x(n, n — 3) for n < 1600. A similar
construction was used by Chandra et al. [7] to construct sets in
F(n,n—k) of size O((Ign)*~"), but for specific n and &, their sets are
somewhat larger than ours because they could not utilize the results in
Table 1.

THEOREM 13. For n=S$,
k(n,n—=3)<k([n/27,Tn/27=3)+x([n/27,Tn/27-2).

Proof. 1If nis odd then the bound given for x(n, n —3) is the same as
the one for x(r+1,n—2). Since part (ii) of Theorem 2 shows that
k(n,n—3)<«k(n+ 1, n—2), it suffices to consider only the case when » is
even.

For an arbitrary positive integer m, let x and y be two binary m-bit
strings and denote by xy the 2m-bit string formed by the concatenation of
x and y. The complement of x is denoted by x’, that is, x” is the string
xi---x,, where x;=0if x,=1 and x/ =1 otherwise, 1 <i<m.

Now, let S|, S, denote sets in F(n/2, n/2 —3), ¥ (n/2, n/2 —-2), respec-
tively, of minimum size. Define the set S by

S={xx|xeS }u{y|yeSs,}

To complete the proof, we show that S is in & (n, n—3).

Suppose i,j, and k are integers in {1,..r} and a,b,ce{0,1}. Let
T=1T(r;i,j,k:a,b,c) denote the (r—3)-cube of Q, given by u, ---u,,
where u;=a, u;=b, u,=c, and u,=x for all h#ijk 1<h<r
Analogously, we denote by W(r;i,j:a, b) the (r —2)-cube of Q, given by
u,---u,, where u;=a, u;=>b,and u,=xfor all A#4, 5, k, I<h<r

Let T be an (n—3)-cube of Q,, say T=1T(n;i,j, k:a, b, c), where we
may suppose, without loss of generality, that i <j < k. We divide the proof
into cases and show, in each case, that T contains an element of S. The
details of the proof in the case where both i<n/2 and n/2 < are omitted
since they are handled almost identically to those listed below.
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o k<n/2 or n2<i If k<n/2, then T(n/2;i,j,k:a,b,c)nS,#¢,
whereas if n/2 <, then T(n/2;i—n/2,j—n/2,k—n/2:a,b,c)nS,#¢. In
either case, if x is an element of this intersection, then xxe Trn S.

o j<n/2,n2<k, and k—n/2#1i,j. Since T(n/2;i,j,k—n/2:a,b, c)n
S| # ¢, it follows, as in the previous case, that TN S # ¢.

e j<n/2,k—n/2=1i and c=a or if j<n/2,k—n/2=j; and c=5.
Choose an integer k, in 1...n/2 other than i, j Since
T(n/2;i,j,k,:a,b,0)n S, #¢, we have T S+#¢.

o j<n/2,k—n/2=1i, and c#a or if j<n/2,k—n2=j, and c#b.
Since W(n/2;i,j:a, b)n S, # ¢, if y is an element of this intersection, then
weTnS. |

The proof of the above theorem can be extended to show that for all
nz2hz2,

can-nes(E}]2]0
SRR

A slightly weaker result appears in [7], where the factor
k([§7],7571—1i)—1 in the above summation is replaced by x(['57, [51]— ).

3. THE VALUES OF A

Turning to the corresponding questions involving edge faults instead of
node faults, we find that many of the results and proof techniques for k
have their analogs for 4. Once again, proofs of recursive bounds show how
to construct small fault sets. By a slight abuse of notation, we will use
a,---axa, ,---a, to denote the edge of the I-cube as well as the 1-cube
itself. When we speak of removing the edge a, ---a*a;,,---a, from Q,, we
remove the edge but not the nodes to which it is incident.

3.1. Elementary Bounds

THEOREM 14. Forn>1,
(i) Aln,m)=1
(il An,m—1)=3 forn=3
(iii) An, 1)=n2""1,
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Proof. Parts (i) and (iii) are immediate. To establish (ii), let Q" and Q"
denote two disjoint copies of an (n— 1)-cube in Q,. Clearly, at least one
edge must be removed from each of Q' and Q". Moreover, at least one edge
with one endpoint in Q' and the other in Q" must be removed to prevent
an (n—1)-cube made up of corresponding (n—2)-cubes in Q' and Q"
Thus, A(n, n—1)>3. To realize this bound for n > 3, take the set of edges
of @, given by T=(*0---0, 11x1---1,0%10.--0}. It is easy to check that
Tisin F(n,n—1). |

Recursive upper and lower bounds corresponding to Theorem 2 are now
established for 4.

THEOREM 15. For nz=m,
(i) A(n, m)zmax{(n/m)2" " [24(n—1, m)n/(n—1)7, k(n, m)}

2iin—1,m)+k(n—1,m—1),
(ii) An,mys<min< A(n—1,m— 1)+ A(n—1, m),
(n—m+1)yx(n, m)

(iii) IfAn+1, m+1y<n+1 then i(n,m)<i(n+1,m+1).

Proof. For (i), first note that there are () 2"~ ™ copies of Q,, in Q, and
each edge is contained in (2_") of the Q,,’s. Thus A(n, m) = (n/m) 2"~ ™.

To show that A(n,m)>2i(n—1,m)+[ A(n, m)/n7), from which the
second implied inequality of part (i) follows, let T denote a set of minimum
size in 7 (n, m). There exist at least [ A(n, m)/n"] parallel edges in 7T, and
without loss of generality, we may suppose these are parallel to =0--..0.
The desired inequality now follows from the observation that the two
node-disjoint cubes of dimension (n— 1) given by Ox --- % and 1% ... % must
each contain at least A(n— 1, m) edges of T.

To see that A(n, m) > k(n, m), observe that if T is a set of size A(n, m) in
F (n, m) then the set S={v| {v, w} e T and weight(v) < weight(w)} is in
F(n, m).

In order to show the first of the implied inequalities in (ii), we construct
a set T in 7 (n, m) as follows. Let Q’, Q” be node-disjoint (n — 1)-cubes of
Q.. Choose sets T, T, each of i(n— 1, m) edges from Q’, Q”, respectively,
whose removal from @', Q" leaves no Q,,. Further, choose a set of S of
k(n—1, m—1) nodes of Q' whose removal from Q' leaves no Q,, ,, and
let T; be the set of edges of Q, with one endpoint in S and the other in
Q". It is straightforward to verify that T=T,0 T, U T, is in J (n, m).
Thus, A(n,m)<24(n—1, m)+x(n—1,m—1).

The inequality A(n,m)< A(n—1,m—1)+ i(n—1, m) can be proved in
the same way as the corresponding inequality for k in Theorem 2.
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To prove the last of the implied inequalities in (ii), choose a set of nodes
S of size k(n, m) in ¥(n, m) and let

T={{uv}|{uv}isanedgeof Q,, ues,

v has the same first m — 1 components as u }.

Since any m-cube of Q, contains at least one node in S, it will contain at
least one edge of T. Thus, Te 7 (n, m) and |T| < (n—m+ 1) k(n, m).

For the proof of (iii), suppose for some n that A(n+1,m+1)<n+1,
and let T be a set of minimum size in 4 (n+ 1, m+ 1). By our assumption
on n, there is some j, 1 <j<n+ 1, for which no element of 7 has a = for
its jth component. If we project 7 on this component we see that the
resulting set is in J (n, m). |}

In part (i) of Theorem 15, each of the first two terms providing a lower
bounds for A(n, m) is larger than the remaining two terms for certain values
of n and m. For m=1, (n/m) 2"~ " = A(n, m), and for n=7 and m =4, the
term [ 24{n — 1, m) n/(n — 1)7] gives the best bound. We have not found an
example for which the third term, x(n, m), exceeds the other two, but
neither have we been able to prove that it is always at most the maximum
of the other two. In the inequality occurring in part (ii) of the above
theorem, we find that for m=1, the first and third terms are equal to
A(n, 1), whereas for n=7 and m=35, the second term is less than the
other two. We have not found an example for which the third term,
(n—m+1)x(n, m), is less than the other two, nor have we been able to
show that it is always at least as the minimum of the other two. The
example 8 = A(4, 2) < A(3, 1) =12 shows that, unlike the corresponding
inequality for k, the conclusion of part (iii) of our theorem does not hold
for all n>m. Figure 1 illustrates (4, 2).

We state two straightforward consequences of Theorem 15 which were
also observed in [3].

COROLLARY 15.1. Fornz3,
(1) k(n,n=-2)<A(n,n-2)<k(n—-1,n-3)+6
(i) An,n—2)=lgn+ilglgn+0O(1).

The labeling technique used in Theorem 3 has an analog for A(n, m).

THEOREM 16. Let r be a fixed integer, O0<r<m, and let
r'=min{r, m—1}. Label the nodes of Q, with integers in [0, r] and label
some subset E_ of the edges of Q, with integers in [0, r'] in such a way that
every I-cube of Q, has either a node or an edge whose label is at least |,
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0</I<r. If Uq) is the label of node q in Q, and ['(e) is the label of edge e
in E, then

An,m)< Y iAln—r,m—1I(g)+ Y k(n—r,m—1'(e)).
q9€Q, ecE,

Proof. We construct a set T of edges of O, as follows. For each
g=q,---9,€Q,, choose a set T, of A(n—r, m—I(q)) edges of the (n—r)-
cube Q,(¢)=gq, ---¢,*---* whose removal from Q,(g) leaves no (m — l(g))-
cube. Further, if e=u, ---u;*u,,,---u, is an edge in E,, choose a set S, of
k(n—r,m—1I'(e)) nodes of the (n—r)cube Q,(u, ---uOu; ,---u)=
uy - uOu; 5 --u *---x whose removal from Q,(u, ---u,0u,, ,---u,) leaves
no cube of dimension (m—/'(e)). Now, let T, be the set of edges with
one endpoint in S, and the other in Q,(u,---u;lu,, ,---u)=
uy--wlu; o---u *---x It is straightforward to verify that the set

T=(quQ, Tq)U(UesE, Te) iS in g.(”’m)' '
3.2. Level Sets

We now construct sets in J (n, m) by removing edges from Q, whose
nodes are at a specified distance from the origin. The size of the sets con-
structed by this technique are, for fixed m and large » the smallest yielded
by any of the known constructions.

THEOREM 17. Ifnzm=>1 and a is any integer, then

A(n,m)<(n-m+1)[ 5 (";1>+ Y (Z:;)]

k=amodm k=ua+ lmodm
k< n/2 k>(n+1)2

Further, this sum is minimized when a=| (n—m)/2 |.

Proof. Consider, as in the proof of Theorem 4, the nodes of Q, parti-
tioned into levels in which all nodes of weight i compose level i, 0 <i<n.
Suppose that in every set of m+ 1 consecutive levels there are two con-
secutive levels, say level i and i+ 1, in the set from which we have removed
each edge that joins a node in level / to a node in level i+ 1. Clearly, no
Q.. can remain. We can improve upon this, for if we fix some n—m+1
dimensions, we need only remove those edges that join a node in level i
to a node in level i+ 1 along these dimensions. Equivalently, we could
have removed the edges that join nodes in level i and i—1 along these
dimensions. To be more explicit, let Ny(i, j), N (i, j) denote the set of nodes
of Q, at level i with jth component equal to 0, 1, respectively.

If 0<i<n/2 and 0<j<n—m+1, let T, denote the set of edges of
Q, with one endpoint in Ny(i,j) and the other in N,(i+1,j); if
(n+1)2<ig<nand 0<j<n—m+1, let T, be the set of edges of @, with
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one endpoint in N,(i,j) and the other in Ny(i—1,/). Further, setting
Ti=Uo<j<n_m+1 Ty for 0<i<n, we see that |T,|=(n—m+1)("7").
Now, fix some integer a. If we remove the edges in T, for i<n/2 and
i=amodm together with the edges in T, for k>(n+1)/2 and
k=a+ 1 modm then no set of m+ 1 consecutive levels can contain an
m-dimensional subcube of Q,. Again, as in Theorem 4, we choose a in
order to minimize the number of edges removed in this manner. The value
a=|(n—m)/2 | ensures that, where possible, we avoid removing edges
incident with level n/2 when n is even and levels (n—1)/2 and (n+ 1)/2
when n is odd. |}

COROLLARY 17.1. Fornzm2>=1,

An,m)<(n—m+1)2"" Ym.

Proof. The desired result is a consequence of the identity

.z (%) ()]
+ <27
ago [ksagn:odm( k k a+zimodm k—_ 1 '

k<n/2 k:>(n+l)/2

3.3. Partitions

Using techniques similar to those in Section 2.4, a collection of r parti-
tions satisfying property 2(n, k) can be used to construct sets in
J (n,n—k). We merely need to modify the method used to construct sets
in S(n, m) by changing 7 as follows. If P is a partition of {1,2, .., n} with
non-empty cells 4,, 45, ..,4,., and if t=(¢,,1,,..,¢t.) is an edge of Q_,
where 1, = *, say, then let (1, ¢,, .., t,)=(d,, d,, .., d,), where d, =1, if
i is not in ¢ '(e), d;== if i is the least element in ¢ '(e), and d,=0
otherwise. The same methods as those used to establish Theorem 12 and
Corollary 12.1 can be used to prove the following.

THEOREM 18. Let n=k = 1. Suppose P, P,, .., P, is a collection of
partitions of {1,2, .., n} satisfying property P(n, k), where P, has c, non-
empty cells for 1 <i<r. Then

Mn,n—k)< ) Mc,ci—k)—r+ 1.
i=1
This theorem is very useful when a small collection of partitions

satisfying property 2(n, k) can be found, as illustrated in the following for
k=3

COROLLARY 18.1. For all integers s and t such that st=2n>=s>1>3,

An,n—3)<2A(s,s=3)+ A1, 1 —3)-2.
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The next result is an analog of Theorem 13.

THEOREM 19. For n2= 6,
An,n—=3)<A(n2 L[ n27-3)Y+A([n/27,[n/27-2).

Proof. We use an argument similar to that in the proof of Theorem 13
except that special consideration is needed for the case n odd.

First we introduce some notation to show how two edges of Q, will be
used to form an edge in Q,. If x=x,---x;%x;,.,---x, i5 a l-cube in Q,
let

XE=0q XXy X0x,, 000 Xy

and

xf':xl ...xkx'l ...x;Ox;+2...x;(
Thus, x% and x%' are 1-cubes in Q5.
Suppose n=2p. Choose sets T,, T, of minimum size in J(p,p—3),
T (p, p—2), repectively and define

T={xx|xeT,}u{y¥|yeT,}.

The proof that Te 7 (n,n—3) is almost identical to that used for
Theorem 13 and so we suppress the details.

Now, suppose n=2p—1. Let W, W, be sets in J(p,p—3),
T (p, p—12), respectively, each of minimum size. We form a set W in
J(n,n—3) in the same way as we formed T in the »n even case,
except that we project the (n+1)-tuples on the last component. That
is, f x=x,---x,,,€Q,,; and P, (x)=x,---x, we take W=
{P, (x%) | xe W }u{P,,. (/)| ye W,}. We suppress the details of the
proof that W is in 7 (n, n— 3) as they are straightforward. |

3.4. Lower Bounds for A

Since A(n, m)>=x(n, m), from Theorem 15, various lower bounds for
A(n, m) can be derived from the lower bounds for x(n, m). In particular, the
new lower bound proved in Theorem 10 gives us the improved lower
bound for A(n, n— k) for fixed k and large n which we state below.

THEOREM 20. Fornz=zk>=3,

k-2
H(1/2k- )y —1/2F2

AMn,n—k)= lg(n—k+3)—klgk-2lglgn,

where H(x)= —[xlg x + (1 — x) Ig(1 — x)].



304 GRAHAM ET AL.

At present, the lower bound just obtained is the best known for
A(n,n—k) for k fixed and large n, k. We write it in the following slightly
weaker form to make it easier to sec the size of the bound:

k-2
}t(n,n—k)22"‘(—]:5+lge>lg(n—k+3)—klgk—21glgn. (8)

The next theorem gives lower bounds for A(n, m) which, for small m,
are better than those available from the inequality in Theorem 20. Its
proof is an extension and generalization of an argument used by Johnson
[22], who proved that g(5,2)<56. Our extension establishes that
g(n, 2)<k2" '+ b/2, where k is the integer such that 4(5) < (1) <4(*3"),
and b is the largest integer such that (2"—5)(%)+b(*%')< (32" % and
further generalizes this to arbitrary g(n,m). F.Chung (personal com-
munication, July 1988) independently proved a result which is essentially
the same as our result for g(n, 2), namely that the edge density x = g(n, 2)/
(n2" ') must satisfy (n— 1)(n —2) = 4x(xn—1)(xn — 2). Thus, for large n,
the edge density is bounded above by (1/4)"2. In terms of i(n, 2), we see
that, for # large, at least 0.37 of the edges must be faulty in order that every
Q, is faulty. By Theorems 1 and 15(ii), at most 1 of the edges need be
faulty to ensure that every @, is faulty. Some time ago, Erdés [9] conjec-
tured that, for every £<0, there is an n, such that, for all n>n,,
g(n, 2)y<(3+¢)n2""", ie, that the edge density becomes arbitrarily close
to 1. He also conjectured that g(n, k) < cn“2", where a, <1 and a, -0 as
k— 0.

THEOREM 21. For nz2m>21, let g(n, m) be the largest number of edges
in a subgraph of Q, that contains no Q,,. Then

gn,m)<k2' '+ 572,

where k is the integer determined by

2m+l< k <(2m+]—6) n <2m+1 k+1
m+1 m+1 m+1

b=[((2’”“—6)(m1 1) e _(mi 1) 2)/(:”

Proof. We call a node in Q, together with its » incident edges an n-star,
and refer to the node as its center. We first note that any induced subgraph
of Q,, ., with at least 2”*' —5 of the (m + 1)-stars must contain a Q,,. For
suppose / is an induced subgraph of Q, ., that is lacking only five

and
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(m + 1)-stars. Split H into two node-disjoint subgraphs H, and H,, where
the nodes of H; have first coordinate i, =0, 1. If either H, or H, lacks
only one (m+ 1)-star, then it must be a Q,,. Without loss of generality,
suppose H, lacks only two (m + 1)-stars, centered at nodes p, and g,. Then
po and g, must be adjacent, for otherwise H, would be a Q,,. Let 4,
denote an (m — 1)-cube of H; that does not contain nodes p, and ¢, and
let A, be its neighbor in H,. Since A, must be missing at least one edge,
it must contain at least two of the centers, say r and s, of the missing
(m+ 1)-stars of H, and these must be adjacent. Now, there are at least two
node-disjoint (m — 1)-cubes of H,, say B, and C,, with p, a node of B, and
qo 2 node of C,. At least one of their neighbors in H,, B; or C,, contains
all of its possible (m+ 1)-stars and so will form an m-cube with its
neighbor in H,,.
Let E denote a set of edges of Q,, let G denote the subgraph of Q,
induced by E, and suppose G contains no Q,,.;. Since there are
me1)2" ™71 cubes of dimension m+1 in Q,, G can contain at most

(2m*1-6)(,,” ,)2"~" ! of the (m+ 1)-stars. Let x; denote the number of

m+1

nodes of G of degree i, for 1 <i<n, then |E|=1/237_, ix;. We must have

- k m+1i n n—m-—1
2 <m+1>xk<(2 -6)(m+1>2 '

k=m+1

Now, let M(z)=M(z,,..,z,)=33"_, iz, and consider the problem of
maximizing M subject to the following three constraints:

Cl: z;is an integer in [0, 2"] for 1 <i<n,
C2: ¥i_,z;<2%
C3: Z?=m+l(mil)zis(zm*—l—6)('"'_:_1)2"""’1_

Note that if y=(y,, .., ¥,) satisfies these constraints and if, say, y,, y;,;,
and y,,, are all non-zero, then the n-tuple y'=(y1, .., y,) also satisfies
these constraints, where y.=y,— 1, yi, 1=V, o1+ 2, Vie2=Vis>—1, and
y; =y, otherwise. Moreover, M(y')= M(y). In view of this property, if
x=(x;, .., X,) yields a maximum value for M subject to these constraints,
then we may assume without loss of generality that all but at most two of
the x/s are 0, and that these two are consecutive. We see that the integer
k given in the statement of the theorem is the integer for which x, # 0, and
x;=0 for all i#k, k+ 1. The theorem now follows from the simpler
problem of maximizing M = (kx, + (k+ 1) x,, ,)/2 subject to the modified
constraints:

Cl": x, and x,,, are non-negative integers,
C2: xXp+Xxe,,=2"
C3: (s )Xt D) X @771 =6)(, 0 )2 "L

m+ 1
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COROLLARY 21.1. Fornzm2>21,
An,m)y=(n—k)2"—1-b)2,

where k is the integer determined by

e Yool ) (A1)
b=[((2'"+1 =) (mi 1) 2,._m4_(ml_: 1) 2)/(::1”

4, ASYMPTOTICS

and

What is known about the behavior of x and A for large values of » and
m falls roughly into two categories: results for n —m fixed and those for m
fixed. The successful techniques for studying the case n —m fixed are quite
different from those that succeed in the case of m fixed. Moreover, the
bounds obtained for fixed n — m are not useful for fixed m, and conversely.
In this section we describe the best known bounds for each of these cases
and mention several open problems concerning the relative sizes of «
and A

Kleitman and Spencer [26] used probabilistic methods to determine
bounds for the maximum size of families of k-independent sets. Chandra
et al. {7] used a probabilistic argument equivalent to that in [26] to prove
the following bound on x. Becker and Simon [3] rediscovered this result,
and used similar arguments to establish an upper bound for A. These
bounds are stated in the following.

THEOREM 22.[3,7]). Forallnzm2>=1,

k(n,m)<(In2)(n—m)2" "lgn
An,m)<(In2)(n—m) 2"~ "(n/im)lgn. |}
Combining these bounds with those given by Theorems 10 and 20, we

see that both x(n, m) and A(n, m) are @(log n) for n— m fixed, but there are
significant gaps between these bounds.

Question. For fixed n — m, does the limit lim,, _, ,, k(n, n —m)/lg n exist?

This limit exists for n—m =2 by the result on 2-independent sets as does
the corresponding limit with 4 in place of k. Another question suggested by
the slowly increasing nature of x along the diagonals is:
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Question. For fixed n—m, is it true that x(n+1,m+1)—x(n,m)< 1
for all sufficiently large n?

The same question could, of course, be asked for 4 as well.

When m is fixed, and m and n are large, Theorem 10 and Corollary 4.1
combine to show that x(n, m)=6(2"). Analogously, Theorem 20 and
Corollary 17.1 show that A(n,m)=©(n2"), but here, too, there are
significant gaps between the upper and lower bounds for both x and A. Let

= lim x(n, mj/2”".

n—= o0

We see that a, exists for all m>0, for Theorem 2 implies that
k(n, m)/2" is non-decreasing for fixed m. Moreover, the inequalities
20, ,,29,>4,,, follow from this same theorem. The definition of «,,
and the results of Theorems 1 and 5 show that

=1, “1=%’ a2=%,
and that a,, satisfies the inequality
k(n, m) 1
<0, <
2" m+1

for every n. It would be interesting to know the exact values of «,, for
m23.
In the case of edges, there are many analogies to the above. Let

B, = lim A(n, m)/(n2"~").
The fact that f,, exists for all m>1 is a consequence of part (i) of
Theorem 15 which shows that the sequence A(n, m)/n2"~" is nondecreasing
for fixed m. Theorem 14 shows that §, =1, and Corollary 17.1 together
with the definition of §,, shows that

An, m)

nan- YR \ﬂm\'—

for m>1. Using Theorem 21, we find f§,>0.37 and B,>0.112. Table 2
gives A(7,4)>=19, which yields f,>0.042. The bound f5>0.016 is from
Theorem 21. Stronger lower bound results and extensions of the tables of
values of ¥ and 4 would be of considerable interest as they can improve our
asymptotic estimates as well as yield more information about «,, and §,,.

Considering the relative sizes of ¥ and 4, we see that A(n, m)/x(n, m) is
©(n) when m is fixed. Another question concerning the behavior of these
functions along the diagonal is:
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Question. If n—m is constant, is it true that A(n, m)/k(n, m) is @(1)?

Along the same lines, we have seen that, for n —m <2, the difference
A(n, m) —k(n, m) is bounded, which prompts us to ask the following:

Question. For n—m fixed, is it true that A(n, m) —k(n, m)=0(1)?

5. EXACT VALUES

In application to hypercubes, the behavior of k¥ and 1 for relatively small
values of n and m is more important than their asymptotic values. We must
keep in mind that » represents the dimension of the hypercube and so
values of # > 50, say, represent a hypercube with more than a quadrilion
processors! Consequently, in most applications, the exact values and con-
structive bounds that yield good approximations for n < 50 are most useful.

Values of x(n, m) for 0 <m<n<10 are represented in Table 1, where
exact values are given if known, and otherwise lower and upper bounds are
given in the form lower-upper. The exact values for m=0,1,n—1, and »
follow from Theorem 1, the values of k(n, n —2) are from Theorem 9, and
the k(n, 2) values are obtained from Theorem 5. A computer program using
a greedy heuristic was developed to construct small sets S in &(n, m). To
a partially constructed set S, the program randomly adds a node to S that
is in the largest number of remaining fault-free m-cubes. This program
found sets that resulted in the upper bounds for (9, 4), x(10, 5), x(10, 6),
and (10, 7) shown in the table. In the remaining cases, the upper and

TABLE 1

Values of x(n, m)

m
n 0 1 2 3 4 5 6 7 8 9 10
0 1

1 2 1

2 4 2 1

3 8 4 2 1

4 16 8 5 2 1

5 32 16 10 6 2 1

6 64 32 21 12 6 2 l

7 128 64 42 24 12 6 2 1

8 256 128 85 48-56 24 12 6 2 1

9 512 256 170 96-120 48-64 24 12 6 2 1

10 1024 512 341 192-240 96-165 48-68 24-25 12-13 6 2 1




SUBCUBE FAULT-TOLERANCE IN HYPERCUBES 309

TABLE 2

Values of i(n, m)

m
n 1 2 3 4 5 6 7
1 1

2 4 1

3 12 3 1

4 32 8 3 1

5 80 24 8 3 1

6 192 59-64  20-22 8 3 1

7 448  142-160 47-62 19-20 7 3 1

lower bounds for x(n, m) are determined from part (ii) of Theorem 2 and
Theorem 4.

Much less has been determined about the exact values of A(n, m). Table 2
displays values of A(n,m) for 1<m<n<7, showing lower and upper
bounds when exact values are not known. The values for m=1, n— 1, and
n follow from Theorem 14. All remaining lower bounds can be obtained
from Theorems 21.1 and 15. Upper bounds for A(n, 2) are from part (ii) of
Theorem 15, while the remaining upper bounds in the table were found by
construction. A computer program analogous to the one for xk was
designed to construct small sets in F (n, m). A separate program was
developed to determine that A(7, 5)=7.

(A copy of the sets constructed for k and 1 may be obtained by writing
to Quentin F. Stout.)

It would be very useful to extend the table of values of ¥ and 1 both for
practical instances and because it would, in turn, yield improvements in
known bounds for x(n, m) and A(n, m) not included in the table. However,
finding small sets in ¥(n, m) and J (n, m) is computationally very difficult.

6. CONSTRUCTIONS

The construction of fault sets that are of nearly minimum size is of inter-
est to saboteurs, to computer architects solving resource allocation
problems such as those described in [28], and to persons needing to con-
struct k-independent sets for testing purposes [27]. Unfortunately, finding
such sets is a very difficult problem in general. Arguments in [26, 7] show
that nondeterministic methods have a high probability of success for n
large and n—m fixed. Probabilistic arguments similar to those in [26]
were used in [3,7] to prove that, with high probability, a randomly

643/102/2-10
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chosen set of (In2)(n—m)2" "lgn nodes of Q, is in &F(n,m). An
analogous argument shows that, with high probability, a randomly chosen
set of (In 2)}(n —m) 2"~ ™ (n/m)lg n edges of Q, is in J (n, m) [3].

Levithin and Karpovsky [27] developed constructive methods for a
problem equivalent to the study of x(n, m). The problem involves the
exhaustive testing of devices with n inputs where each output is a Boolean
function of at most k binary input variables. Using MDS codes, they con-
structed an r x n binary matrix such that all 2* possible binary k-vectors
appear in each of the k£ columns, where r = O(log” n) and w can be chosen
arbitrarily close to 1. Their results give a construction of a set in & (n, m)
of size O(log* n), where w can arbitrarily close to 1. Alon [1] has given a
construction of a family of k-independent subsets of a set of size r. Through
the correspondence between independent sets and elements of & (n, m)~
shown in the proof of Theorem 8, this yields a construction of a set in
& (n, m) of size O((n ~m)""’“’"’2 log n) for some constant ¢ about 24. For
fixed n— m, this size is the same order of magnitude as a minimum set in
&(n, m), but even for n —m =13, say, it is more than 3*¢Ign.

As discussed in Section 2.4, Becker and Simon [3] used results
of Friedman [12] to construct sets in #(n,n—k) of size at most
1g n(k*/1g k) 225+ 3k When n—m =k is fixed, this has the right order of
growth, but for small values such as n—m =3 and n =20, say, this bound
is more than 22°1g 20. On the other hand, the construction in Theorem 13
yields a set in &(20, 17) of size 19. Even the construction using level sets,
Theorem 4, yields a set of size 40 in this case.

When m is fixed, the constructions in [12] and [3] give sets whose sizes
are far from the same order of magnitude as k(n, m). In this case the best
constructions for near minimum fault sets are given by the level sets in
Theorems 4 and 17. It would certainly be of interest to find constructions
of sets in &(n, m) of size ~x(n, m) and corresponding sets in 7 (n, m) of
size ~ A(n, m) for m fixed.

To construct small fault sets for practical sizes of n and m, the best
strategy is to employ the constructive methods that led to the recursive
inequalities of Sections 2 and 3 coupled with the computational results that
led to Tables 1 and 2.

7. CONCLUDING REMARKS

Our analysis of subcube fault-tolerance assumes that it is sufficient to
find an arbitrary fault-free m-dimensional subcube. However, the problem
of determining a fault-free subcube of a given dimension is computationally
intensive, so in practice the allocation routines examine the availability of
only a certain subset of the subcubes of a given dimension. Most allocation
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schemes use some variant of the “buddy system™ allocating only m-cubes of
the form a,---a,_,,*---* [32].

Under a given allocation scheme o/, let &/(Q, denote the set of all sub-
cubes of Q, that are recognized by /. A natural extension of x(n, m) is to
k(; n, m), which we define as the least number of nodes that need to be
removed from Q, so that the resulting graph contains no m-cube in &/Q,,.
We define A(&/; n, m) in an analogous way. As an example, if # denotes the
buddy allocation scheme then #Q, = {a, ---a,*---* | r=0, .., n}, and it is
easy to check that x(#;n, m)=A{#;n,m)=2"""for n=>m>= 1. While the
buddy system is the only allocation scheme used on hypercube computers
thus far, we see it is not particularly fault-tolerant. For some specific alloca-
tion schemes of interest, Livingston and Stout [29] determined x(./; n, m).
For arbitrary allocation scheme &/, Becker and Simon [3] showed that the
problem of determining x(&/;n, n—2) is equivalent to a graph-coloring
problem. The general problem of determining x(/; #, m) and A(sZ; n, m) is
open.

The fault-intolerance questions considered here can be generalized to
arbitrary architectures and arbitrary graph properties. That is, given a
graph G which represents the connectivity of the processors, how tolerant
is G to retaining some specific graph property P under the removal of suc-
cessive copies of a subgraph H? Here, we define the quantity x(P, H; G) as
the minimum number of copies of H whose deletion from G leaves the
resulting graph without property P. For example, suppose G is @,,, P is the
property of being connected, and H is a single edge; then x(P, H; Q,)=n.
If Gis Q,, P is the property of containing an m-cube, and H is a single
m-cube, then x(Q,,, Q..; Q,) is the mispacking number mispacy(Q,, < @,)
discussed in [13]. As a final example along these lines, consider the
problem, described in [25], due to Yuzvinski: How many nodes of the
n-cube must be removed in order that no connected component of the rest
contains an antipodal pair of nodes? Kleitman [257 solved this problem by
establishing the more general result that at least (|,,,) nodes must be
removed from Q, if no connected component of the remaining graph is to
contain more than 2" ' nodes.

In the generalized problem considered above, asking for the minimum
number of copies of H whose removal from G destroys P is appropiate in
an adversarial situation, in certain resource allocation problems [28], in
designing efficient test [27], or in constructing k-independent sets [26].
However, suppose each copy of H to be removed is selected uniformly and
at random from the set of all copies of H in G. A natural question that
arises is What is the expected number of copies of H that must be removed
from G so that the resulting graph fails to have property P? Consider, for
example, the case in which G is Q,, H is a single node, and P is the
property of containing an (n— 1)-cube. In contrast to x(n,n—1)=2 we
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find that its expected value, denoted k. (n, n— 1), is &(log n). Some of the
properties of x.{n, m) and and A,(n, m) for arbitrary n and m, and of
Kg(sf;n, m) and Ag(o/; n, m) for certain allocation schemes <, are studied
in [29, 30]. A related but somewhat different situation arises if we are only
concerned that, with high probability, G fails to have property P. What is
the expected number of copies of H that must be removed in this case?
Becker and Simon [3] considered an instance of this question in which G
is Q,, H is a single node, and P denotes the property of containing an
m-cube. They showed that if at least (n —m) 2"~ ™ Ig n nodes are removed
from Q,,, the probability that there are no remaining m-cubes approaches
1 as n tends to infinity.

A variation of these questions appears in the work of Burton [2], and
Erdés and Spencer [11]. Using a probabilistic model of Q, in which each
edge is deleted independently and with fixed probability p, they showed
that if P,(Q,, p) denotes the probability that the resulting subgraph of Q,
is connected then

1 if p<1/2;
lim P (Q,,p)=¢{1/e if p=1/2;
e 0 otherwise.

When p is allowed to vary with n, Bollobas [4, 5] proved that if >0 and
p=pm)=1—3{u+o(l)}'"

then

hm Pl(Qn’ p) =e_l"

n— o

Suppose that instead of deleting edges from Q, we delete nodes, together
with their incident edges, with fixed probability p and define Py(Q,, p) as
the probability that the resulting subgraph of @, is connected. Najjar and
Gaudiot [31], investing the reliability of the hypercube network in the
presence of node faults, used Monte Carlo simulation to estimate Py(Q,,, p)
for small n. In [30], and analog of the above results for P,(Q,,p) is
proved for Py(Q,, p), namely

1 if p<1/2;

lim Py(Q,,p)=<1/2 il p=1/2
e 0 otherwise.
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