
Computer, Math. Applic. Vol. 25, No. 2, pp. 33-38, 1993 0097-4943/93 $5.00 + 0.00
Pr in ted in Great Britain. All r ights reserved Copyright~) 1992 Pergamon Press Ltd

T H E C A T E G O R I C A L F R A M E W O R K O F
O B J E C T - O R I E N T E D C O N C U R R E N T S Y S T E M S

D. H. H. YOON
Depar tment of Computer and Information Science, Univerdty of Michigan-Dearborn

Dearborn, MI 48128, U.S.A.

(Received September 1991 and in revi, ed .?own MarcK 199£)

A l m t r a c t - - - C a t e g o r y Theory is introduced as a mathemat ica l model for an object-oriented concur-
rent system which is viewed as a collection of objects and processes. An object can be represented
as an algebra, whereas a process as a subalgebra.

1. I N T R O D U C T I O N

One of the major challenges facing today's computer scientists is developing a computer system
for an autonomous mobile robot which constantly interacts with its environment, updates its
knowledge base including the world model, and carries out tasks specified by humans. Due to the
massive influx of input data, the system has to perform computations concurrently. Also, human
users should be able to interact with the system in the object-oriented fashion. Such a system
can be described as an object-oriented concurrent system (OOCS) which can accommodate new
components. The most fundamental elements of such a system are objects and processes: An
object is a human-oriented concept in that humans think of the real world in terms of objects,
whereas a process is machine-oriented. A category is introduced as a mathematical model for the
system, and objects and processes are precisely defined in the categorical framework.

2. T H E T H E O R E T I C A L MODEL F O R AN
O B J E C T - O R I E N T E D C O N C U R R E N T SYSTEM

Just like other computer systems, the object-oriented concurrent system consists of users,
software and hardware. Considering users as a system component is one of the most important
assumptions to be made in developing an object-oriented system because the final product should
be user-friendly and easy to use. In order to achieve these goals, the system should be designed
in such a way that users can communicate with it in terms of objects.

The objects in a user's program will be eventually partitioned into processes inside the system.
However, the users do not have to know the presence of processes in the system. The better
shielded the processes are from the users, the better the system will be.

Software will be viewed as the collection of autonomous processes which communicate with
each other: A process does not know the inner workings of other processes, but interacts with
them through communication channels. The mathematical model based on these assumptions
will become the foundation for developing both software and hardware for object-oriented systems
and is a variation of a category.

DEFINITION 1 [1]. A category C consists of
(i) a class of elements 0 called objects of C,

(ii) for each object .4 E 0 a set U(A), called the universal set of A,
(iii) for each pair of objects, A, B, a set hom(A,B) of maps from U(A) to U(B), called the

morphisms from A to B in C, these being subject to the following conditions:
(a) for each object A, hom(A,A) contains the identity 1U(A);
(b) for objects A, B, D from C, when f , g are from horn(A, B) and hom(B,D), respec-

tively, the composite map g • f belongs to hom(A, D).

Typeset by AAdS-TEX

33

34 D.H.H. YOON

The identity map mentioned in (iii, a) of the above definition is always suppressed in a computer
system.

A category is an abstraction of sets and functions defined on them. Using this fact, we formulate
an object-oriented concurrent system as follows:

o o c s = (o , s) ,

where O is the collection of objects and S is system software. The objects are the internal
representations of entities such as physical objects, abstract data types and robot motions and
constitute the user space. The question of object-orientation arises in this space. On the other
hand, system software S consists of processes, and concurrency is the problem due to the interac-
tions between processes. An object has to be eventually blended into the world of processes, which
we call the kernel space. In the next two sections, an object and a process are precisely defined
using the notion of algebra and their relationship will become clear as the paper progresses.

2.i. The Space of Objects 0

As mentioned earlier, a computer system consists of users, software and hardware. In an
operating system like UNIX the three spaces are clearly defined. Objects are the fundamental
elements of the user space, whereas processes are those of the kernel space realized by system
software. An object, in this paper, refers to an entity that a user defines and is fully self-
contained except communication with other objects. A process, on the other hand, is created by
an operating system and shares similarities with objects.

Some common characteristics of both object and processes are that they are allowed to access
only their own respective local variables and that communication is achieved through legitimate
means. An object defined in the user space will be partitioned into processes as the object
is brought into the kernel space. How to partition an object into processes depends on the
swapping and paging policies of the system and we will not consider the details. Instead, the
common structure of both object and process will be discussed in detail using the notion of an
algebra.

e.i.a. Algebras

We have defined OOCS as the collection of objects and software using the concept of category.
It turns out that the mathematical model for an object is an algebra and that a process can
be represented as a subalgebra. In order to introduce the concept of algebra, we start with an
example which most computer scientists feel comfortable with. The ADT (abstract data type)
stack is specified in Figure 1 [2].

Using the ADT stack as an example, we now introduce the notions of sort, signature, algebra
and initial algebra. A sort corresponds to the collection of data types employed in the ADT
stack. A signature introduces the names of constants and functions as in the operation section
in Figure 1. Associated with each function name, the arity of the function is the number of
arguments of the function. For example, ar i ty(zero)= 0, ari ty(succ)= 1 and arity(push)= 2.
Now let us define an algebra.

DEFINITION 2. I rE iS a signature, a E-algebra is a pair {A, EA) where

(i) A is a set, called the sort,
(ii) EA is a set of functions {fA : f G E}, such that i f arity(f) = n, then

.fA :A" --*A.

Relating the definition to the stack example, the sort A = {stack, nat , bool}, the signature
E = {true, fa2se, zero, succ, neestack, push, i snees tack, pop, top} and EA consists of all
the entries in the axiom section. The signature essentially specifies the syntax of the functions,
whereas its algebra specifies the semantics.

As illustrated above, an object is represented as an algebra. Hence, a category can be rephrased
as a collection of E-algebras. Now we will define an object in the categorical framework.

Object-or iented concurrent sys tems 35

TYPE s t a c k _ t y p e ;

SORTS 8 tack ; n a t ; bool;
OPERATIO|S

t r u o , ~ a l s s : - ~ bool;
z s r o : - ~ n a t ;

zucc: na t -> n a t ;

n s u s t a c k : - > s t a c k ;

push: s t a c k e s t a c k -> s t a c k ;

i s n e g s t a c k : s t a c k -~ booZ;

pop: s t a c k -> s t a c k ;

top : s t a c k -~ n a t ;

d e c l a r e s : s t a c k ; n : n a t ;

AXIORS

i s n s u s t a c k (n e u s t a c k) = 8 t r u e ;

i s n e w s t a c k (p u s h (s , n)) == f a l s e ;

pop (newztack) == nsws tack ;

pop (p u s h (s , n)) = = s ;

t op (n e s s t a c k) =1= ze ro ;

t o p (p u s h (s , n)) = = n;

Ell)TYPE.

Figure 1. A D T stack.

2.i.b. An object

Now let us view a category C as a collection of ~-algebras and let <A, EA) and (B, EB) be two
E-algebras in C. A function h : A ~ B is a E-homomorphism if for every f E E of arity/c

h(fA(al , . . . ,a t))=fB(h(ai) , . . . ,h(ak)) .

A E-homomorphism f : A --+ B is called a E-isomorphism if it is one-to-one and onto. In order
to define an object in the categorical sense, we need the notion of initial algebra.

DEFINITION 3. Let C be a category of E-algebras. Then, a E-algebra I E C is initial in C g / o r
every E-algebra J E C, there exists a unique E-homomorphism from I to J.

Now we are ready to define an object formally.

DEFINITION 4. An object is the isomorphism class of an initial algebra in s category orE-algebras.

Let us elaborate the above definition in terms of the ADT stack. An empty stack created by
the operation n e n t a c k () is regarded as an initial algebra. Different instances of the stack due
to a finite number of push() and pop() operations on it belong to the isomorphism class of the
stack, and, hence, the ADT stack is an object.

Hence, the set O in the definition of an object-oriented concurrent system can be viewed as a

collection of initial algebras of a category. In the next section, we define a process in terms of a
subalgebra.

~.ii. System Software S

The system software S can be viewed as the collection of processes acting on objects in the
system. The notion of process is so crucial in developing system software that we review how
the term process has been used in traditional operating systems and define it algebraically. A
process is a computing agent consisting of instructions, local data and a stack. The program
segment consisting of instructions acts on the data. The stack is created by an operating system
to keep track of whereabouts of the process within the system. Hence, a process can be regarded

36 D.H.H. YooN

as a collection of a program segment and local data including the stack. It is self-contained and
communicates with other processes through a communication mechanism.

The relationship between an object and processes is very important. In the previous section,
we introduced an algebra as the mathematical model for an object. The object, when introduced
into the kernel space, is parti t ioned into one or more processes by the operating system. For
instance, a module implementing one of the functions in the stack example could be a process
to the operating system. Since an object has been represented as an algebra, a process will be
represented as a subalgebra to emphasize the relationship between an object and processes.

DEFINITION 5. A process is the isomorphism class of an initial subalgebra in an algebra.

Throughout this paper we have considered only user processes. However, a process can execute
in either user or kernel mode. The process executing in kernel mode is known as a system process.
For example, a bootstrap module which boots a system is an important system process. Hence,
system software consists of user and system processes.

2.iii. Communication

A process has been informally described as a computing agent which is capable of commu-
nicating with other processes. Communication between processes is one of the most important
tasks in an object-oriented concurrent system. For example, communication between sensors and
a robot or between actuators and a robot remains to be resolved. This problem boils down to
communication between processes. In this section, we consider two important communication
schemes: classical and message-passing.

The classical scheme is based on the inpu t /ou tpu t operations of a computer system. In this
scheme, participating processes are equipped with ports through which communication takes
place. Since a process is a computing agent, it can be described as a formal machine. Following
Steenstrup et al. [3], we describe the sending and receiving operations of a process as a port
automaton.

DEFINITION 6. A port automaton P is a collection of objects and maps (L, Q, r, 6, ~, X , Y) , where
L is the set of ports, Q is the set of states, r E 2 ° is the set of initial states, X = {Xi : i E L},
where Xi is the input set for port i, Y = { ~ : i E L}, where Yi is the output set for port i,
6 : Q x u X i ~ 2 0 is the transition map, ~ = {fli : i E L}, where ~i : Q "+ ~ is the output map
for port i, all subject to the axiom that for q E Q, {z E X : 6(q, (z, i)) = 0 or Xi} .

It is a common belief that this technique alone might be too application-dependent and may
not be suitable for a concurrent system, which should be able to add new components without
damaging the integrity of the system. However, when employed along with the message-passing
technique, this technique appears to be essential in a communication system.

Compared to the classical technique, the message-passing technique is flexible and has been
successful in many applications. There are two modes of passing messages in use: direct and
indirect. In the direct system, a message is directly sent to a process, say P, or received from
another process, say Q. Two primitive operations of this system are sending and receiving as
follows [4]:

send (P, message) = send a message to process P,

receive (q, message) = receive a message from process Q.

The disadvantage of this mode is, when a process has a new name in a system, it is necessary
to examine all the process definitions in the system. This situation is not desirable. To overcome
this drawback, indirect mode is often used.

In the indirect system, a message is sent from a mailbox and received by a mailbox:

send (A, message) = send a message to mailbox A,

receive (B, message) = receive a message from mailbox B.

There are various issues in the indirect message system such as the ownership of a mailbox. A
detailed discussion of the topic is beyond the scope of this paper and we conclude this section by
reiterating that communication is one of the central issues in a concurrent system.

Object-oriented concurrent systems 37

~.iv. An Illustration

As an application of the theory developed so far, we present a brief description of a workcell in
a computer integrated manufacturing (CIM) system in which computers play the major role. The
workcell (Figure 2) described in this section is very similar to the one in [5]. It consists ofa workcell
controller, two workstations, and a transport system. Roughly speaking, the workstation A
produces products and places them on the transport system T. Then the workstation B processes
and outputs them to the environment. The workcell controller is responsible for the operations
of the workcell and communication between the workcell and the environment.

I
f
! !

w f

! °

[workccll controller[

Figure 2. A simple workceU.

To be more specific, a 'workstation' is the smallest unit of the manufacturing system that
can be commanded to test, store, and transform a product. A 'transport system' is a unit
that can be commanded to accept products from senders and to transport them to receivers.
A 'workcell controller' is a system that interfaces with the environment, and tells workstations
which operations to execute and the transport system where products must be transported to.

The above workcell, as a whole, can be modeled as a process which communicates with its
environment. The process then is partitioned into subprocesses which are further refined. Hence,
the entire workcell is considered as a hierarchy of process definitions.

A complete specification of the workcell is beyond the scope of this paper. However, we
illustrate how the theory developed in the previous sections can be employed in the specification
of the workcell by describing two primitives of the workcell, the product type and the command
type in terms of algebras.

Let us assume that there are two kinds of products manufactured in the workcell, product_l
and product_2, and further, that product_2 can be obtained by processing product_l . The
product_type can be specified as follows:

TYPE product_type;
SORTS product ;

0PEP~tTIOMS

processed : product - -> product ;

declare product_l, product_2: product ;

AXIOMS
processed (product_l) == product_2;

processed (product_2) == product_2;

E|IYrYPE.

38 D.H.H. YOON

The other primitive of the workcell is concerned with communication between the workcell con-
troller and workstations. As mentioned earlier in this paper, a process is an agent communicating
with other processes, and hence, the means of communication is one of the most important as-
pects of OOCS. The workcell controller communicates with a workstation by sending a command
to and receiving a status report from the workstation. Both a command and a status report can
be specified in terms of algebra as follows:

TYPE command_and_status_type ;

SORTS operation_command, ready_s ta tus ;

OPERATIO|S

command: i n t e g e r - -> operation_command;

number_in: operation_cowmumd--> in t ege r ;

ready : --> ready_sta tus ;
AXION number_in(command (n)) •ffi n;

E|DTYPE.

Here, we have presented specifications of two primitive elements of the CIM system for the
illustrative purpose. However, the specification of the entire workcell requires additional primitive
processes. Then each component of the workcell such as the controller and workstations will be
specified in terms of the processes which have been previously defined.

Such a formal specification is invaluable in the development of computer systems at least for
two reasons: First, a good formal specification method eliminates ambiguities in the description
of a system. Second, it allows a designer to test the system prior to its implementation so that
he can avoid specifying a system which will fail later.

3. CONCLUSION

An OOCS, which supports object-orientation, concurrency and dynamic adaptation, is a very
complex system. In order to develop such a system, a firm theoretical foundation is urgently
needed. A few attempts have been made to develop such systems. However, it appears that
further research needs to be carried out at the theoretical level. Toward this effort, we have
presented the categorical framework for an object-oriented concurrent system in which objects
and processes are the fundamental elements.

REFERENCES

1. V.S. Krishnan, An Introduction 1o Category Theory, North-Holland, New York, (1981).
2. I.V. Horebeek and J. Lewi, Algebraic Specification in Software Engineering: An Introduction, Springer-

Verlag, New York, (1989).
3. M. Steenstrup, M.A. Arbib and E.G. Manes, Port automata and the algebra of concurrent process, J. Com-

puter ~ System Sciences 27 (1), 29-50 (1983).
4. J.L. Peterson and A. Silberschatz, Operatino Systems Concepts, 2 nded. , Addison-Wesley, Reading, MA,

(1985).
5. F. Biemans and P. Blonk, On the formal specification and verification of CIM architecture using Lotos,

Computers in lndustr*j 7 (6), 491-504 (1986).

