Oxygen Kinetics and the Art of Physiological Monitoring

MOST OF THE studies of oxygen kinetics in critically ill patients involve measuring oxygen consumption (Vo2) after a change in oxygen delivery (Do2). These studies cover only a small portion of the Vo2/Do2 curve and are subject to mathematical and logistical problems, making interpretation difficult at best. In this issue of the Journal of Critical Care, Weissman and Kemper measured Do2 after a change in Vo2 using independent measurements of the variables. This approach has generated interesting data that allows interpretation of several aspects of critical care physiology.

The method was simply to measure Vo2, Do2, and related hemodynamic and respiratory parameters before, during, and after a short period of hypermetabolism caused by mild exercise in the form of chest physical therapy (CPT). The patients were old (average, 67 years), postoperative, ventilated, and not septic (i.e., Vo2 was normal). There was a 50% increase in Vo2, which would be expected to lead to a 50% increase in Do2. However, there was only a 17% increase in Do2, and the decreased ratio of Do2 to Vo2 resulted in increased oxygen extraction during hypermetabolism. The authors modestly draw the conservative conclusion that the appropriate integrative response occurred and speculate why the Do2 did not increase as much as might be expected (e.g., old age, heart disease, cardiac depressant medications, short period of exercise). However, there is a wealth of physiological data (and some common errors of methodology) in this elegantly simple experiment that makes this the kind of paper worth spending a few hours studying with a group of students or residents.

The data are replotted in Fig 1A and 1B. Data points 1 and 2 are at rest, 3 and 4 after 1 and 2 minutes of CPT, and 5 and 6 are back at rest. The expected increase in Do2 during a 50% increase in Vo2 is shown as point X. Points worth demonstration and discussion include the following.

1. The metabolic rate of these patients is probably normal (points 1 and 2). Normal oxygen consumption for adults is 3 mL/kg/min or 120 mL/min. Assuming the patients are normal-sized adults, the oxygen consumption is in the normal range. From this observation, we learn that postoperative patients are not hypermetabolic. We can assume that these patients were not septic. We can also assume that the patients were normothermic and not on significant catecholamine infusions. The Vo2 was measured by comparison of mixed expired gas analysis to inspired gas analysis. The authors do not tell us if this measurement is expressed as ambient temperature and pressure, saturated with water vapor, or standard temperature and pressure, dry. They correctly used totally independent measurements of Vo2 and Do2. Although they did not tell us what the Vo2 would have been if calculated by the Fick equation using shared variables with Do2, from the data they provide we can make some calculations and discover that the Fick-derived Vo2 is fairly close to the measured values.

2. In our first conclusion (above), we had to state that the Vo2 was probably normal and make some other assumptions, because the authors did not tell us the size of the patients and did not account for variable patient size in reporting the physiological parameters. Thus, the standard deviations are quite wide. Gas exchange, hemodynamic, and respiratory physiology data should be normalized to body weight or body surface area to allow comparison among and between individual patients and groups of patients. The data would be much tighter if they were properly normalized.

3. Similar to Vo2, Do2 is normal in these patients (i.e., 4 to 5 times Vo2). These patients are anemic with hemoglobin concentration approximately one third less than normal but are compensated because the cardiac index has increased one third above normal (again, making assump-
6. Because the cardiac output increased only 17%, whereas the metabolic rate increased 50%, what made up the difference in oxygen supply? Obviously more oxygen was extracted from each deciliter of flowing blood (ie, the extraction ratio was higher during data points 3 and 4 than the resting measurements). How much can this phenomenon of increased extraction compensate for an increasing \(\text{VO}_2/\text{DO}_2 \) ratio? This is the central question of the discussion of critical delivery levels, below which oxygen consumption becomes supply dependent. This is a fascinating discussion but is not addressed in this particular experiment. In Fig 1A, the relationships between oxygen consumption and delivery are expressed graphically, with isobars representing various extraction ratios. Notice that the "extraction ratio" is the dividend of the consumption to delivery ratio. For each isobar, the corresponding venous saturation is expressed, assuming the idealized condition of arterial saturation equals 100%.

7. Wouldn't it be marvelous if we had a bedside physiological monitor that continuously displayed the \(\text{VO}_2/\text{DO}_2 \) graph shown in Fig 1A. Suppose we could watch the cursor move from point 1 to point 2, then to point 3 and 4. The patient has become hypermetabolic. There has been a compensatory increase in oxygen delivery but less than we would expect (point X). We can visualize the compensation for hypermetabolism achieved by increasing delivery and that achieved by increasing extraction. We can see how close we are to the critical point of 50% extraction ratio. We can easily visualize if treatment is needed, what treatment is appropriate, and what the expected result would be. This idealized monitoring system does not exist, yet. However, we do have a continuous monitoring system that comes close: continuous mixed venous saturation monitoring.

8. The same data points are shown in Fig 1B, in which mixed venous oxygen saturation (\(\text{SvO}_2 \)) is related to time. The \(\text{SvO}_2 \) tells us only the ratio of consumption to delivery and tells us nothing about the absolute values of either one. Nor does it tell us the cardiac output, arterial oxygen, or pulmonary function. Thus, the information from continuous \(\text{SvO}_2 \) monitoring is incomplete and interpretation is a bit of an art. However, with just a little extra information, continuous \(\text{SvO}_2 \) monitoring is as close as we can come to the ideal physiological monitor at the present time.

In the experiment described in this report, we know that hypermetabolism and cardiac response accounted for the change in venous saturation between data points...
1, 2 and 3, 4. But suppose we notice a similar change in a resting paralyzed patient? The consumption to delivery ratio has changed from 1:4 to 1:3. Is this because of increased Vo₂ or decreased Do₂? Could it be both? Is the change significant enough to need treatment? Can Svo₂ be used to monitor the effects of treatment? The answers to all of these questions require more data, but data that is easily acquired. More importantly, we are stimulated to ask and answer the questions before any other physiological parameters suggest that a change has occurred.

Suppose the patient is becoming septic and oxygen delivery matches the increased metabolic rate. This is the situation represented by point X. In this example, the venous saturation has not changed, but fever, tachycardia, and leukocytosis suggest that the patient is hypermetabolic. The Svo₂ tells us that the patient has compensated for hypermetabolism by moving normally up the isohar, rather than by increasing extraction.

With this understanding of the physiology of oxygen kinetics and with the art of interpreting the continuous Svo₂ monitor, we can use Svo₂ not only to detect and treat problems before they become serious but also to titrate positive end-expiratory pressure and inotropic drugs, to decide when and how much to transfuse blood, when and how to use temperature or positioning as treatment, and to construct a mental image of the more complete monitor suggested in Fig 1A.

The purpose of this discussion is not to critique the Weissman and Kemper report. They promise us similar studies on patients with sepsis and cardiac failure that should be very interesting; we hope they give us all the data with appropriate normalization. The purpose is to point out the breadth and depth of the information that they bring to us based on simple bedside information (all without a Western blot or RNA probe). Surely, we have all seen the Svo₂ drop during CPT, coughing, or painful procedures. But how often do we stop to analyze the complex processes involved? Not only have the authors done that, they did it in an organized fashion in several patients and challenged the rest of us to learn something. Those who take the time to read this paper will be better intensivists, researchers, and teachers.

Robert H. Bartlett, MD
Department of Surgery
University of Michigan Medical Center
Ann Arbor, Michigan

REFERENCES