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Abstract-This work studies the class of singular optimal control problems, where a performance index 
must be outimized at the final time of omration of a batch process. Owimal state feedback laws for the 
singular region of operation are derived ‘for the first time. The existence-of a singular region as well as the 
nature of the feedback law (static or dynamic) are completely characterized in terms of the Lie bracket 
structure of the system dynamics. Explicit synthesis formulae for the state feedback laws are first obtained 
for time-invariant systems and then extended to time-varying systems. As illustrative examples of applica- 
tion of the proposed methodology, we consider several end-point optimization problems in batch chemical 
and biochemical reactors. 

INTRCJDUCTJON 

Batch and semi-batch processes are of great import- 
ance to the chemical industry. A wide variety of 
specialty chemicals such as antibiotics and polymers 
are produced in batch reactors; they are preferred due 
to their ease and flexibility of operation. Batch reac- 
tors are used when there are many processing steps in 
the chemical process, when isolation is required for 
reasons of sterility or safety and when the materials 
involved are hard to handle. 

The first step to rational design of a batch chemical 
reactor generally consists of guaranteeing safety and 
operability objectives. Once these goals are achieved, 
the next step is to make its operation profitable. Since 
batch processes typically produce low-volume-high- 
cost products, optimal operation is extremely import- 
ant. Every small improvement in the process may 
result in considerable reduction in production costs. 
Batch processes are transient in nature; the process 
variables undergo significant changes during the 
batch cycle and there is no process steady state. Gen- 
erally, the major objective is not to keep the system at 
a set point but to maximize the product of interest at 
the end of the batch cycle. Thus, in this situation, the 
role of control is to optimize a performance index at 
the final time rather than to regulate the process. 

There is a vast body of literature dealing with the 
solution of end-point optimization problems on 
a case-by-case basis for specific batch processes. There 
are two different approaches that have been used. 

Open-loop optimization 
In this approach, the optimal trajectory of the ma- 

nipulated input is first calculated off-line via optimal 
control theory and then implemented on the process 
in an open-loop fashion. There have been a plethora 
of articles in using this approach, primarily because of 
its simplicity in implementation. Hicks et al. (1969) 
applied Pontryagin’s principle to a free-radical poly- 
merization reactor to minimize a performance index 

‘Author to whom correspondence should be addressed. 

which was a function of deviations of conversion, 
number average degree of polymerization and poly- 
dispersity from their desired values. Sacks et al. (1972) 
used Pontryagin’s principle to calculate the optimal 
temperature and initiator addition policy to achieve 
a given conversion in a free-radical polymerization 
batch reactor. Chen and Jeng (1978) studied batch- 
wise bulk polymerizations operated under optimal 
temperature and initial initiator concentration. 
Thomas and Kiparissides (1984) applied Pontryagin’s 
minimum principle to a batch polymerization reactor 
to calculate the optimal temperature and initiator 
policies that are required to produce a polymer with 
a desired final conversion, and desired number aver- 
age and weight average molecular weights. Fishman 
and Biryukov (1974) considered the problem of op- 
timal glucose feed strategy for penicillin production. 
Ohno et al. (1976) used a method based on Greens’ 
theorem for optimizing the production of lysine. 
Weigand (1981) calculated the optimal feeding stra- 
tegy in a repeated fed-batch fermentation to maximize 
cell mass production. 

Optimal state feedback 
Using an open-loop optimization scheme is appro- 

priate in situations where the process model is ac- 
curately known and there are no external disturbances 
to the process. To account for unanticipated changes 
in the process or the environment, the use of optimal 
state feedback has been proposed in the literature in 
a number of specific applications. In this approach, 
the solution to the optimization problem is calculated 
off-line as a function of the states and implemented as 
a state feedback law. In this way, the process is 
“forced” to follow a path in state space which has been 
determined LI priori. Modek and Lim (1987) used this 
approach to show that the closed-loop system was 
able to attenuate errors in initial conditions in lysine 
fermentation. Chen and Huang (1981) derived the 
optimal initiator feeding policy as a function of the 
system states in a semi-batch isothermal solution 
polymerization process. 
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The derivation of optimal state feedback laws is 
available in the literature only for sgeci$c batch ap- 
plications. There are no results available which pro- 
vide conditions under which a state feedback exists or 
general formulae for the control law. The purpose of 
this paper is to study the general problem of syn- 
thesizing optimal state feedback laws which guarantee 
optimality at a fixed final time of the batch. We first 
give a brief review of the optimal control formulation 
of the end-point optimization problem both in the 
context of the classical Pontryagin’s principle as well 
as from the modern geometric perspective. The latter 
provides the notion of degree of singularity that 
allows a more transparent characterization of the 
necessary conditions for optimality. We then proceed 
to the main mission of this paper, which is to derive 
for the first time, optimal state feedback laws for the 
singular region of operation. Time-invariant systems 
are studied first. Theorem 1 provides a complete char- 
acterization of the case of infinite degree of singular- 
ity; it is shown that either a singular extremal does not 
exist or, when it does, the end-point optimization 
problem reduces to a standard regulator problem. 
Theorems 2 and 3 study the case of finite degree of 
singularity; they provide explicit state feedback laws 
for optimality at the end of the batch time. All the 
results are then extended to include time-varying sys- 
tems (via theorems 4 and 5). Once we have derived 
state feedback laws for end-point optimization, we 
discuss some issues on how these laws can be imple- 
mented as part of a closed-loop scheme. Finally, as 
illustrative examples of the application of the pro- 
posed methodology, we consider several end-point 
optimization problems in batch chemical and bio- 
chemical reactors. 

By Pontryagin’s principle, the above minimization 
problem is equivalent to minimizing the Hamiltonian 

END-POINT OPTIMIZATION FOR TIME-INVARIANT 

SYSTEMS 

Formulation of the end-point optimization problem: the 
classical optimal control perspective 

For a large class of chemical processes, the manip- 
ulated input appears linearly in the state model. For 
such systems, end-point optimization problems can be 
mathematically formulated as follows. Minimize the 
performance index 

J = 4(X@/)) (1) 

subject to the dynamics 

i -f(x) + g(x)u, 0 < t c t/ 

x(0) = xg 
(2) 

where u is the (scalar) manipulated input, x is the 
n-vector of states, tf is the final time,_f(x) and g(x) are 
smooth vector functions and 4(x) is a smooth scalar 
function such that 

g(x) + [O 0 . . . 01 

$X)f~O 0 . . . OJ 

H(x, a, u) = n=f(x) + ITg(x)u 

where L is the solution of 

(4) 

AT = _ AT 

> 
(3 

J-@/l = g (x(tJ)). 

Because the Hamiltonian is linear in the control, u, the 
optimal control problem is singular. The optimal tra- 
jectories u(t) will correspond to either hitting a con- 
straint or to a singular extremal. By definition, 
a function u(t) is called a singular extremal if it satis- 
fies 

H,(x, II, u) = 0 

and in addition 

H,,.(x, A, u) = 0. 

Methods for calculating singular extremals are 
available in the classical optimal control literature 
[see standard texts such as Bryson and Ho (1975), 
Denn (1969) and Ray (1981)]. In the above optimiza- 
tion problem, 

H*(X. 1, u) = nTg(x). 

For a singular u(t) we will have 

#Irg(x) = 0 (6) 

for all times; therefore its successive time derivatives 
are also zero. Thus, we have 

This sequence of differentiations is performed until 
u appears explicitly. The resulting expression can then 
be solved for u in terms of x and a. 

The function d’g(x) is called the switching function. 
This function vanishes over the singular time interval. 
Outside the singular interval, the manipulated input, 
u, takes either its maximum value, u,,,, or its min- 
imum value, u,,,~” depending on the sign of the switch- 
ing function. When LTg(x) -C 0, u = urnaX and when 
/IT&J(x) > 0, u = Urnin. The time(s) at which the input 
switches from singular to nonsingular interval and 
vice versa or the time(s) at which the input switches 
from minimum to maximum value and vice uersa is 
called switching time. 

Gabasov and Kirillova (1972) have reviewed the 
higher-order necessary conditions for optimality. 
These conditions distinguish the optimal controls 
from nonoptimal controls which satisfy the first-order 
conditions. A second-order necessary condition for for all x. 
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optimal&y, called the generalized Legendre-Clebsch 
condition, can be stated as follows: 

wg (i)‘” H,(x,rZ,u) 
> 

80, k=0,1,2 . . . . 

(8) 
This condition was originally developed by Kelley 
et al. (1967). Third-order necessary conditions for 
optimality have also been developed for singular 
problems (Krener, 1977; Lamnabhi-Lagarrigue and 
Stefani, 1990). 

Characterization of singular extremals: a geometric 
perspective 

The previous subsection gave an overview of the 
classical optimal control formulation. In the present 
subsection it will be seen that geometric tools can be 
used to obtain a more concrete and transparent rep- 
resentation of the necessary conditions for optimality. 
These results will be used in the next subsection to 
develop, for the first time, a general framework for 
end-point optimal state feedback synthesis. 

In the classical approach, the optimal control is 
determined by solving the algebraic equations which 
result by successively differentiating the switching 
function H&c, 1, u) until the control, II, appears ex- 
plicitly. This gives rise to the concept of order or 
degree of a singular problem, originally introduced by 
Kopp and Moyer (1965). Since then, problem- 
oriented definitions of order have been suggested 
(Kelley et al., 1967; Robbins, 1967; McDanell and 
Powers, 1971) and the issue of defining the order of 
the singular control problem became a subject of 
controversy. Lewis (1980) surveys the various defini- 
tions of singular control order. The issue of defining 
the order of a singular control problem was resolved 
in the work of Krener (1977). In the same paper, 
Krener developed a higher-order minimum principle 
and elucidated the importance of Lie brackets in sin- 
gular optimal control problems. 

We first review the definition of Lie brackets of 
a nonlinear system: 

Given f(x), g(x) C” uectorjelds on R”, the Lie bracket 
[f, g] (x) is a vector field defined by 

CXsl(J4 = Ff(x) - F g(x) 

where X(x)/ax and ag(x)/& are the Jacobians. [f, g] is 
also a C w vectorfield on R”. One can define iterated Lie 
brackets [f, [ f, g]], [f, [f, [f, g]] ] etc. The following 
notation is standard: 

ada g(x) = 9(x) 

ad: g(x) = cx gl(x) 

ad? g(x) = CJ; Cf; call (4 

d: g(x) = [f; ads- ’ g](x). 

The system theoretic significance of the Lie brackets ’ 
can be illustrated by the following well-known result. 

Proposition 1 (Hunt, 1982): The dynamic system (2) 
is locally controllable if the vector fields g(x), 
a&g(x), . _ . , ad;-’ g(x) are linearly independent loc- 
ally for every x. 

Throughout this section, we will make the standing 
assumption that g(x), adig(x), . . . , ad?-’ g(x) are lin- 
early independent almost everywhere in x to guarantee 
local controllability of the system almost everywhere. 
This assumption is equivalent to 

det [g(x) ad;g(x) . . . ad;-‘g(x)] $0. (9) 

Uncontrollable situations where some of these vector 
fields are linearly dependent for every x can be 
handled as will be illustrated in examples 2 and 3. 

Definition 1: The system governed by equation (2) has 
a jinite degree of singularity s if 

Cg, ad;sl (4 E span (s(4, adfslx), . . . , adjdx)), 

for all v d s - 1 (10) 

Cs, adjglW$span (&4 ad)gW,. . . I ad;&)). 

(11) 

The system governed by eq. (2) has an infinite degree of 
singularity (s = co) if 

C9, a+1 (x)-wm {g(x), ad)&), . . . , u&W), 

for all v ? 0. (12) 

Since g(x), ad)g(x), . . . , ad?-’ g(x) are assumed to 
be linearly independent, it follows from the definition 
that 1 & s < (n - 2) or s= co. 

Remark 1: It can be shown that this definition is 
completely equivalent to Krener’s definition of degree 
of singularity (Krener, 1977) for the class of systems 
that have g(x), adjg(x), . . . , ad;- ‘g(x) linearly inde- 
pendent. Though the latter does not have this restric- 
tion, it is more difficult to use. 

The following proposition is a rather straightfor- 
ward consequence of known results [see Gabasov and 
Kirillova (1972)] when the above definition of s is 
used. 

Propusition 2: Consider a system governed by eq. (2) 
withfinite degree of singularity s. Then s is odd and the 
first-order necessary conditions for optimality for a sin- 
gular extremal can be written as follows: 

A’s(x) = 0 

I’ad)g(x) = 0 

A’ad;g(x) = 0 

(13) 

Fadjg(x) = 0 

ATad”;‘g(x) + AT[g, adig](x)u = 0 
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where A’ is the solution of eq. (5). Furthermore, the 
second-order necessary condition for optimality takes 
the form 

(- l)(s+l)“l’[g, ad;g] (x) 3 0. (14) 

Zfeq. (2) has an infinite degree of singularity, then the 
first-order necessary conditions for optimality take the 
form A=ad;g(x) = 0 for all v z 0. 

Singular extremal as a state feedback law independent 
of the adjoint states 

The previous subsections provided a brief review of 
the classical as well as the geometric perspective of 
singular .optimal control theory. It was seen in 
proposition 2 that the first-order and second-order 
necessary conditions for optimality in the singular 
region can bc put in a very concrete form in terms of 
the system Lie brackets. The key difficulty in using 
these necessary conditions arises from the presence of 
the adjoint states. To be able to calculate the optimal 
control input, u(t), one must solve a two-point bound- 
ary value problem that involves forward-in-time in- 
tegration of the state equations and backward-in-time 
integration of the adjoint equations. The analysis of 
the optimality conditions would be greatly facilitated 
if the adjoint states could be eliminated from the 
necessary conditions. This elimination problem was 
studied in a general (not necessarily singular) setting 
in the work of Rouff and Lamnabhi-Lagarrigue 
(1986). 

In the present subsection we will address for the 
first time the problem of synthesizing state feedback 
laws to track singular trajectories, based on eliminat- 
ing the adjoint states from the first-order necessary 
conditions for optimality. The case s = cc will be 
studied first; theorem 1 will show that the problem of 
tracking singular extremals can be formulated as 
a standard regulator problem whenever a singular 
extremal exists. In theorem 2, we will derive a static 
state feedback law that tracks the singular extremal 
when the degree of singularity is equal to (n - 2). 
Finally, in theorem 3, we will derive a dynamic state 
feedback law that tracks the singular trajectories 
when the degree of singularity is less than (n - 2). 

Theorem 1: Consider a system oftheform ofeq. (2) with 
degree of singularity s = LXJ and a performance index of 
thefirm ofeq. (1). 

(i) 1fg(x), ad:g(x), . . . , ad:-‘g(x) are linearly Me- 
pendent for all x, then a singular extremal does not 
exist. 

(ii) If g(x), ad: g(x), _ . , ad;- ’ g(x) are linearly in- 
dependent almost everywhere, then the state trajectories 
corresponding to a singular extremal evolve on the 
surface S(x) = 0 where linear independence of g(x), 
adfg(x), . . . , ad;-‘g(x) is lost: 

S(x) = det[g(x) ad)g(x) . . . ad;-‘g(x)] = 0. 

(15) 

Proof of (i): We prove this part of the theorem by 
contradiction. Let us assume that a singular extremal 
exists for the system (2) with degree of singularity 
s = co. The first-order necessary conditions on the 
singular extremal are as follows: 

n=g(x) = 0 

A’ad)g(x) = 0 

ITad)g(x) = 0 

(16) 

ITad;-‘g(x) = 0 

The first n equations can be written in compact form 
as 

A’[g(x) tijg(x) . _ . ad?-‘g(x)] =O. (17) 

Since Aft) is an absolutely continuous nonzero vector 
function in R”, it follows that 

det[g(x) ad+g(x) , . . ad;-‘g(x)] = 0 

for all x in some nonempty set in R”. This contradicts 
the assumption of global linear independence of g(x), 
adig(x . . , ad”/-‘g(x). cl 

Proof of (ii): The first-order necessary conditions on 
the singular extremal are given by eq. (16). Using 
exactly the same argument as in the proof of (i), we 
conclude that the state trajectories corresponding to 
the singular control must lie on the surface 

S(x) = 0. 0 

Corollary 1: Controllable linear systems do not possess 
singular extremals. 

Proof: Consider a single-input controllable linear 
system of the form 

2 = Ax + bu. 

For this system adFg(x) = (- l)LA’b for all k = 0, 
1,2, _ . . . Hence, 

[g, ad;g](x) = 0 for all k = 0, 1,2, . . , . 

Thus, s = cc. Since the system under consideration is 
controllable for all x, the vector fields defined by 
adFg(x) for k = 0, 1,2,. . . , (n - 1) are linearly inde- 
pendent. Thus, from theorem 1, the system under 
consideration does not possess a singular extremal. 

0 

Corollary 2: Zf the vector fields g(x), ad/ g(x), . . . , 
ad; _ i g(x) are linearly independent for all x and the set 
of vector fields 

{g(x), ad)gW,. - , d3-*&)} 

is invohative for all x, i.e. the system isfeedback lineariz- 
able in the Hunt-G-Meyer sense (Hunt et al., 1983), 
then such a system does not possess a singular extremal. 
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Proofi From the involutivity assumption, for all 
k=O, 1,. . .,(n-2) 

where a,,(x) are scalar fields in x. 
Hence, s > (n - 2). But s C (n - 2), if finite. Thus, 

s = co. Since the vector fields defined by o&g(x) for 
k = 0, 1,2, . . . , (n - 1) are linearly independent for 
all x, from theorem 1 the system under consideration 
does not possess a singular extremal. 0 

When a singular extremal does not exist, the opti- 
mal control is bang-bang in nature, that is, the opti- 
mal control corresponds to the maximum or the 
minimum value of the manipulated input. Since con- 
trollable linear systems and feedback-linearizable 
nonlinear systems do not possess singular extremals, 
the existence of singular extremals is a manifestation 
of truly nonlinear behavior. Consequently, if it is 
known on physical grounds that a singular extremal 
exists for a given process, modeling such a process by 
a linear model or an involutive model is inappropriate 
for optimization purposes. 

Another interesting conclusion from theorem 1 is 
that optimality may correspond to loss of state con- 
trollability. In this case, the optimal state trajectories 
must lie on the surface S(x) = 0 [eq. (15)] and the 
problem of synthesizing a state feedback to track the 
singular extremals reduces to a standard regulation 
problem for the output 

Y = S(x) (18) 

with zero set point. This regulation problem can be 
solved by using standard techniques as long as S(x) 
has a finite relative order. For instance, in the case of 
unity relative order {@S(x)/&) g(x) # 0} 

where B is an adjustable positive parameter, is an 
appropriate feedback law for the above regulation 
problem. 

Theorem 2: For a system of the form of eq. (2) and 
a performance index of the form of eq. (l), the singular 
trajectories can be tracked by static state feedback 
when s = (n - 2). The optimal state feedback law is 
given by 

Since these are n equations in n adjoint states, we can 
eliminate the adjoint states IT = [A, A2 . _ . A,] 
to obtain expression (20). 0 

Theorem 3: For a system of the form of eq. (2) and 
a perjbrmance index of the firm of eq. (l), the singular 
trajectories can be tracked by dynamic state feedback 
when s 4 (n - 3). The optimal statefiedback law is the 
solution of an (n - s - 2)th-order ordinary differential 
equation of the form 

where Cp is an algebraic function. This is obtained by 
setting the determinant of 

g(x) 

ad)g(x) 

+ 

n-*-z 

ad;- 1 g(x) + c 
k=O 

~(Cs,~d~-~-~gl(x)u(t)) (21) 

equal to zero. In the above equations, I is the identity 
matrix and dc)fdt is the total time derivative operator 

49 
5 = (f(x) + g(x)u(t))Z + $. 

Proof: From proposition 2, the first-order necessary 
conditions for singular extremal are 

l’g(x) = 0 

det[g(x) ad$g(x) _ . ad;-‘g(x)] 

’ = - det [g(x) ad)g(x) _ . . adi-2g(x) [g, ad;-2g](x)]m 
(20) 

Proof. The first-order necessary conditions for 
s = (n - 2) can be written as 

Irad)g(x) = 0 
A’g(x) = 0 

(22) 
A=ad;g(x) = 0 

nradTg{x) = 0 

A=a&f+lg(X) -t P[g, ad;g](x)u(t) = 0 
iTad;-‘&) = 0 

which constitute (s + 2) equations in n adjoint states. 
n=ud~-‘g(x) + n=[g, ad[i-zg](x)U = 0. Differentiating the last equation (n - s - 2) times we 
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obtain (n - s - 2) more equations: 

IT ad;+2g(x) + [g, ad?+;“g](x)u(r) 

x Kg. adjgl(x)u(t)) 
> 

= 0 

AT 4+3s(x) + Cs, ad;+2(g)lW4t) 

+ 1; ( VW as (4 - - - T”(t) 
ax > 

x (Cc% ad;+ ’ slW40) 1 

x (Cs, ad;glWW) = 0 

n-s-z 
IT ad?-‘g(x) + c 1: - 2 - gu(r) Ir 

k=O > 

x([g, adTwkm2 slG+W) = 0. (23) 

Equations (22) and (23) constitute a set of n equations 
in n adjoint variables which can be eliminated to give 
the dynamic state feedback law. This is obtained by 
setting the determinant of the vector fields in eq. (21) 
equal to zero. q 

END-POINT OFITMIZATION FOR TIMEVARYING 

SYSTEMS 

In the previous section, we derived state feedback 
laws for end-point optimization for processes which 
are described by time-invariant models. These feed- 
back laws can be used directly for a large class of yield 
optimization problems in batch chemical reactors. 
However, there is a class of yield optimization prob- 
lems which fall in the framework of end-point optim- 
ization formulated in this paper with the exception 
that the process models have time appear explicitly as 
a parameter or have parameters that vary with time. 
For example, in biological processes, the system 
models can have time-varying parameters to account 
for intracellular events. For instance, Miura et al. 
(1975) developed a mathematical model to describe 
growth of a microorganism, in this model, time ap- 
pears explicitly as a parameter. Staniskis and 
Levisauskas (1984) developed a mathematical model 
for the production of a-amylase by B. subtilis; this 
model contains time-varying parameters. End-point 
optimization of such processes is important in terms 
of maximizing production of biomass or product yield 
and this motivates the extension of the results de- 

veloped in the previous section to time-varying sys- 
tems. 
Consider the following optimization problem. 
Minimize the performance index 

J = #+(t,)) 

subject to the dynamics 

(24) 

rn=f(x,t)+g(x,t)u O<t<r, 

x(0) = xg 
(25) 

where w is the (scalar) manipulated input, x is the 
n-vector of states, t, is the final time, 4 is a noncon- 
stant scalar function of the system states and (and 
g are vector functions that depend explicitly on the 
time variable, t. 

The classical optimal control perspective presented 
in the previous section is applicable to the above 
system. Thus, in the singular region, the first-order 
necessary conditions are given by eqs (6) and (7), 
where g(x) is replaced by g(x, t). However, the re- 
cursive “ad” notation has to be modified to take into 
account the explicit dependence of the system model 
on time. 

We define modified Lie brackets of the rime-varying 
system (25) as 

&(x, t) = g(x, t) 

w% t) 
;;;I;&, 0 = CA $71(x, t) + ---T$- 

-2 
ad,g(x, r) = cx a&-g](x, f) + 

a& g(x, t) 

dt 
(26) 

&7(x, t) = [J ;;z;- ‘g](x, t) + ““yr”“, ? 
As in the case of time-invariant systems, we make 

the standing assumption that the vector fields g(x, t), 

Zig(x, t). . . . , iii;-- 1 g(x, t) are linearly independent 
almost everywhere in x and t. This assumption is 
equivalent to 

det C&x, t) zjg(x, f) . . ad;--‘g(x, t)] ;f 0. 

(27) 

Definition 2: The system governed by eq. (25) has 
a finite degreeof singularity s zy 

Cs,;;;i;sl(x,t)Espan(g(x,f),;;;i;g(x,t),. . ., 

G&g(x, t)}. for all v < s - 1 (28) 

Is, &gl(x, t) $span {8(x, t), i&(x, f). . . . , 

;;;ijg(x, f)). (29) 

The system governed by eq. (25) has an infinite degree of 
singularity (s = co) if 

Cs,;;;i;sl(x,t)Espanig(x,t),ad~g(x,t),. . . , 

i&g(x. t>}, for all v 3 0. (30) 
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It follows immediately from the definition that 
I<s<(n-2)ors=ec. 

Using the definitions of the modified Lie brackets of 
the system and the degree of singularity, the first- 
order necessary conditions on the singular region can 
be written as 

n=&c, t) = 0 

Lradfg(x, t) = 0 

AG@g(x, t) = 0 

(31) 

nrad;gcx, t) = 0 

AG&+‘g(x, t) + l=[g, ;;;i”rg](x, t)lc = 0. 

Furthermore, the second-order necessary condition 
for optimality takes the form 

(- l)rs+ r)‘zar[g, &73(X, t) 2 0. 

The following theorems generalize the results of the 
previous section to time-varying systems. Theorem 
4 refers to the case s = cc and theorem 5 to the case of 
finite s. 

Theorem 4: Consider a system of the form of eq. (25) 
with degree of singularity s = 03 and a performance 
index of the form of eq. (24). 

(i) If g(x, t), adf g(x, t), . . . , adf”-’ g(x. t) are [in- 
e&y independent for all x and t, then a singular ex- 
tremal does not exist. 

(ii) If g(x, t), ad:g(x, t), . . , ad;-‘g(x, t) are lin- 
early independent almost euerywhere, then the state 
trajectories corresponding to a singular extremal satisfy 
the following relationship: 

s(x, t) = det [g(x, t) zjg(x, t) . . . 2r-l g(x, t)] = 0. 

(32) 

The first n equations can be written in compact 
form as 

nr[g(x, r) ;l;i)g(x, t) . . ad;-‘g(x, t)] = 0. 

(34) 

Since A.(t) is an absolutely continuous nonzero vector 
function in W”, it follows that 

det [g(x, t) z&t(x, t) . z?- 1 g(x, t)] = 0. 

for all x and t in some nonempty set in R” x R. This 
contradicts the assumption of global linear inde- 

pendence of g(x, t), adjg(x, t), . _ , aJ-tg(x, t). q 

Proof of (ii): The first-order necessary conditions on 
the singular extremal are given by eq. (33). Using 
exactly the same argument as in the proof of (i), we 
conclude that the state trajectories corresponding to 
the singular control must satisfy the following rela- 
tionship: 

&7(x, t) = 0. q 

It can be easily shown on the lines of corollary 
1 that controllable linear time-varying systems do not 
possess singular extremals. Furthermore, it is ob- 
served from theorem 4 that optimality may corres- 
pond to loss of state controllability. Whenever 
a singular extremal exists for a system with infinite 
degree of singularity, the problem of synthesizing 
a state feedback to track the singular trajectories 
reduces to a standard regulation problem for the 
time-varying output, i.e. 

y = S(x, t) (35) 

with zero set point. 

Theorem 5: Consider a system of the form of eq. (25) 
and a performance index of the form of eq. (24). 

(i) For s = (n - J), the singular trajectories can be 
tracked by the following state feedback: 

us - 
det Cdx, t) ad$g(x, t) . . . adlf-‘g(x, t)] 

det C&x, t) zjg(x, t) 
. (36) 

. . . a;- ‘8(x, t) L-g. ad;-’ gl (x, tI1 

Proof of (i): We prove this part of the theorem by 
contradiction. Let us assume that a singular extremal 
exists for the system (25) with degree of singularity 
s = co. The first-order necessary conditions on the 
singular extremal are as follows: 

A’g(x, t) = 0 

Aradjg(x, t) = 0 

P&t(x, 1) = 0 

A&-‘g(x, r) = 0 

(33) 

(ii) For s G (n - 3), the singular trajectories can be 
tracked by a dynamic state feedback which is calculated 
by setting the determinant of the following vector fields 
equal to zero. 

;;;s;sk t) 
;;;i;+‘gk t) + Is, &71(x, e4t) 

Z,+zg(x, t) + [g, z,+ lg](x, t)u(t) 
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n-s-2 

8(X*0+ c 
k=O 

(37) 

Proof of (i): For s = n - 2, the first-order necessary 
conditions can be written as 

J”Tg(x, t) = 0 

A’;;;i)g(x, t) = 0 

AZjg(x, t) = 0 

(38) 

AG$2g(x, f) = 0 

ATad;-‘g(x, t) + AT[g, ad;-‘g](x, r)u = 0. 

Since there are n equations in n adjoint states, we can 
eliminate the adjoint states dr = [d,, &. . . . , A,] to 
obtain expression (36). q 

Proof of (ii): For s < (n - 3), the first-order necessary 
conditions can be written as eq. (31) which constitute 
(s + 2) equations in n adjoint states. Differentiating 
the last equation in eq. (31) (a - s - 2) times we ob- 

Equations (31) and (39) constitute a set of n equations 
in n adjoint variables which can be eliminated to give 
the dynamic state feedback law. This is obtained by 
setting the determinant of the vector fields in eq. (37) 
equal to zero. 

If the time dependence of the system model is in 
terms of time-varying parameters, f(x, k(t)) and 
g(x, k(t)), where k(t) is the vector of time-varying 
parameters, it is necessary to express the quantities 

adig, Z;g, . . . in terms of the partial derivatives of 
f and g with respect to k and the time derivatives 
dk/dt, d2k/dt2, _ . to obtain concrete formulae for the 
state feedback law. This can be done in a very 
straightforward manner: 

+(x9 d &g(x, F) = cf; glk t) + 7 

&Ax, Wk = ad;g(x, t) + -- 
8k dt 

= ad;&, t) + ag 
CL 1 f, - b. 6 dk 

+ 8ad)g(x, t) 
ak 

ag(x, t) d*k 

+dkdt2 

tain (n - s - 2) more equations, i.e. 

Ar 
{ 

ZJ+*g(x, t) + [g,Z~“g](x.t)u(t) 

+ 
( 

I$ - v _ ?!!$.(r)) 

x KS, Wgl(x, On(t)) 
> 

= 0 

ar 
{ 

;r;ij+ag(x, t) + [g,ad;+zg](x, t)u(t) 

+ 
( 

I& _ !&$ _ !!!!$(t)) 

x (Lg. ;;li;+ r $71 (x, MO) 
> 

( 

d af k t) %7(x, 0 

> 

z 
+Ilr I-&- -- dx --U(t) 

8X 

x Ke. ;;;i;gl(x, r)u(t)) = 0 

AT 
( 

;;;i;- l g(x, f) 

n-,--Z 

+c k=o ( 
d afk t) ddx, 4 k 

I&- ax - - dxdt) 
> 

x([g,izy2 sl(x, Mr) = 0. 
> 

(40) 

In general, ad$g(x, t) will be expressed as a function of 
x, k(t), dk/dt,. . . , d’kldt’. 0 

IMPLEMENTATION 

The results obtained in the previous sections pro- 
vide optima1 feedback laws strictly in the singular 
region. In the nonsingular region, the manipulated 
input takes the minimum or the maximum value. To 
determine what values (minimum or maximum) the 
manipulated input takes in the nonsingular region as 
well as the switching times between the singular and 
nonsingular regions, one has to integrate, off-line, the 
adjoint equations in addition to the state equations. 
The singular region corresponds to vanishing of the 
switching function ATg, whereas the nonsingular re- 
gions correspond to nonzero values of the switching 
function. To determine whether the singular control is 
indeed optimal, one has to check the higher-order 
necessary conditions as well. 

To implement the optimal state feedback laws as 
a closed-loop scheme, the switching times between 
singular and nonsingular regions are required. These 
switching times can be calculated analytically only for 
a restricted class of models. In most practical situa- 
tions, these have to be computed numerically. From 
the off-line solution of the first-order necessary condi- 

(39) 
tions of optimality, the switching times and the values 
of the system states at the junctions between singular 
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and nonsingular regions are known. This information 
can be used to set up on-line criteria for the onset of 
the singular region in terms of the system states. For 
instance, Modek (1988) determined the onset of the 
singular interval in ethanol fermentation by using an 
expression relating cell mass and substrate concen- 
trations at the junction of the nonsingular and singu- 
lar regions. Alternatively, one can use the a priori 
calculated switching times determined from the off- 
line analysis. In this case a successful feedback imple- 
mentation of the optimal feedback law depends on 
how sensitive the final performance index is to errors 
in the switching times. In example 3, it will be seen 
that the final performance index is not very sensitive 
to small errors in the switching time. Whan 
s <(n - 3), we also need initial conditions for the 
dynamic state feedback law. These initial conditions 
have to be set up in a similar fashion as the switching 
times. 

If the model parameters are known a priori, the 
feedback laws derived in the previous sections can be 
used in conjunction with state estimators. Such an 
implementation can attenuate errors in the initial 
conditions and process disturbances. If some of the 
model parameters are not accurately known a priori, 
these need to bc estimated on-line. In this situation, 
a parameter estimation algorithm is also required. If 
the model parameters are time-varying and the func- 
tional form of these time-varying parameters is not 
known, the theory developed in the preceding sections 
can be used as a basis for an adaptive optimal state 
feedback. In this approach, the optimal state feedback 
is coupled with a state and parameter estimation 
algorithm. The state and parameter estimation algo- 
rithm provides estimates of the system states and 
model parameters which are used to update the state 
feedback law periodically. 

A variety of stochastic methods such as extended 
Kalman filtering (Jazwinski, 1970), and prediction- 
error identification (Ljung, 1985) as well as determin- 
istic methods such as nonlinear least squares, have 
been proposed in the literatureio estimate the system 
states and parameters. These methods have been ap- 
plied to a variety of batch systems for state and 
parameter estimation. For instance, Schuler and 
Papadopodou (1986) developed a decoupled nonlin- 
ear estimator based on an extended Kalman filter for 
the real-time estimation of the chain-length distribu- 
tion and conversions in a batch polystyrene reactor. 
Ellis et al. (1988) applied a two time-scale filtering 
technique to estimate the temperature, monomer con- 
version, initiator conversion, and the entire molecu- 
lar weight distribution in a methyl methacrylate 
batch polymerization. Stephanopoulos and San 
(1984) demonstrated the use of Kalman filtering to 
estimate the specific growth rate and cell mass in 
a batch fermentation using on-line off-gas data. Nu- 
merical implementation aspects relating to coupling 
of a state and parameter estimation algorithm with 
the optimal feedback laws developed in this work will 
be addressed in a future communication. 

ILLUSTRATIVE Ex.4mvxs 

In this section we will illustrate, through four simu- 
lation examples, applications for the theory developed 
in the preceding sections. 

Example 1: linear system 
We consider a yield optimization problem in 

a semi-batch chemical reactor where the following 
reactions are occurring: 

A+B 

B-+C 

A+D 

The species A is being fed to the reactor. All reactions 
follow first-order kinetics. The unsteady-state mass 
balance equations are given by 

d(C, V) 
-= -k&,V-kk,CAV+spu 

dt 

d(CB VI p= 
dt 

ksCA V - k,C, V 

d(Cn VI -= kBCAV 
dt 

dV 

dt=” 

where the manipulated input, u, is the feed rate of 
species A. The objective is to operate the batch reactor 
so that the total amount of B is maximized at a pre- 
specified final time t,. Thus, the performance index to 
minimize is 

3= - G VI,=,,. (42) 

Define 

x1 = C,V 

x2 = c,v (43) 

xj = C,V 

xq = v 

The optimization problem can be stated as follows. 
Minimize 

J =x,(tf) (4) 

subject to 

d 

dt 

SR 

0 I[1 + a. 
0 

(45) 

1 

The system model is of the form 

2 =f(x) + s(x)u (46) 
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where 

- kBxl - kDxi 

b, -kcxz 

kDxi 

0 

It can be easily verified that the vector fields g(x), 
adig( ~&g(x), ad;&) are linearly independent 
constant vectors and so the system is controllable 
everywhere. We note from the vector fieldsf(x) and 
g(x) that the system under consideration is linear. 
Thus, this system does not possess a singular extremal 

Fig. 1. Profile of switching function AT&) (example 1). 

Table l(a). Model parameters 

-b l.OOI/h 
kc 0.50 l/h 
kD 0.20 l/h 
SF 10.00 kg/m3 

%nax 5.00x10-3m3~ 

t/ 5.00 h 

Table i(b). Initial conditions 

c.4 (Q) 
C,(O) 
CD (0) 
V(O) 

1.0 kg/m3 
0.0 kg/m3 
0.0 kg/m3 
1.0x lo-3d 

(corollary l), and therefore the optimal control is 
bang-bang in nature. The sign of I’g(x) = s&,(t) 
determines if the maximum value or the minimum 
value of u should be used. It can be easily seen that 

k, 
‘l(‘) = kc _ k, _ kD {expCk(t - f,)l 

- exp I& + kdt - t/)1 I. (47) 

Figure 1 shows the time profile of A’g(x) for the 
model parameters given in Table l(a) and the initial 
conditions given in Table l(b). Since ITg(x) is always 
negative in this region, the optimal operation is to use 
the maximum feed rate u,.. throughout the batch 
time. Figure 2 shows the time profile of species B when 
the maximum feed rate is used. 

Example 2: s = cc 

We consider a fed-batch fermentation for the pro- 
duction of baker’s yeast (Menawat et al., 1987). The 
unsteady-state material balances are as follows (see 
Notation for explanation of symbols): 

d(X VI - = /d(S, t)x Y 
dt 

W VI m ox v -= - 
dr Y 

+ SFU (48) 

dV 

dt = l4 

The objective is to maximize the cell mass at a pre- 
specified final time, tf. Thus 

J = - XVI,,,,. 

The manipulated variable, u, is the feed rate of the 
substrate. The specific growth rate, p, is given by the 
Haldane-Monod function (Edwards, 1970) 

P,W K2 
p(S, t) = --. 

K1+SK*+S 
(4% 

The parameter F,,,(f) decreases with time due to degra- 
dation of intracellular enzymes and its time variation 

Fig. 2. Optimal time profile of species B (example I). 
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is shown in Fig. 3. Condition (27) is violated every- 
where for this system. In this situation, we need to do 
model reduction to eliminate the redundant state 
equations, so that condition (27) is satisfied almost 
everywhere in x. It can be easily shown that X, S and 
V are algebraically related by 

($F+sv) - (T +s(o)v(o)) 
= sp( v - V(0)). (50) 

Thus, there are only two independent equations. De- 
fining 

x,=XY 

x1 = v 

and eliminating S from eq. (50) 

1 x1 - X(O)V(O) s=+-- 
Y ( X.7 > 

+ 

( 

S(0) Y(O) - s, V(0) 

x2 > 

the model can be put in the form 

i-w I x2. ~)Xl 0 
0 1 [I + lU 

(51) 

(52) 

(53) 

where p is obtained by substituting S from eq. (52) 
into the expression for ,V [eq. (49)]. For this system 

Since n = 2, we necessarily have s = co. It can be 
easily seen that the necessary condition 

leads to 

det [g(x, t) ad:g(x, t)] = 0 (55) 

afi 
-x1 = 0. 
ax2 

Fig. 3. Profile of time-varying parameter p,(t) (example 2). 

In terms of the original variables (S and X), the above 
equation takes the form 

$g(SF - S)X = 0. 

Since S # sR, X # 0, this further simplifies to 

which from the kinetic expression (49) for ,u leads to 

s--=0. (59) 

Thus, the problem of maximizing cell mass at the end 
of the batch time reduces to regulating the substrate 

concentration to ,/m. On intuitive grounds also, 
this solution makes sense. To maximize biomass, the 
system must operate at that level of S that maximizes 
the specific growth rate p. 

We use the following state feedback law to regulate 

the substrate concentration to m: 

tl = (P(S, W/Y) + L/a - 9 
(h-SW . 

(60) 

Since the reactor starts with a high substrate concen- 
tration, there will be an initial nonsingular phase 
where no substrate is fed. The switch to the singular 

phase occurs when S reaches the value m. Fig- 
ures 4 and 5 show the optimal feeding profile, the 
optimal cell mass profile and the optimal substrate 
concentration profile for the system parameters in 
Table 2(a) and initial conditions designated case A in 
Table 2(b). The first-order necessary condition for 
optimality @‘g(x) = 0) was verified by integrating the 
adjoint equations backwards in time and is shown in 
Fig. 6. 

The robustness of the control law to errors in the 
kinetic parameters was tested. In the control law, the 
values of parameters K1 and K2 used were 10% lower 
than those of the system parameters shown in Table 
2(a). The results are summarized in Table 2(c). It is 
observed that the performance index is very close to 

-=a 4 0.9 , 1 ., IJ I , , 

God 
3 , 3s . , 43 , 

Fig. 4. Optimal input profile (example 2). 
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Fig. 5. Optimal cell mass and substrate profiles (example 2): 
(--- ) cell mass (kg); (- -) substrate concentration 

(kg/m’). 

that obtained in the nominal case, where the true 
values df the parameters were used in the control law. 

The sensitivity of the performance of the control 
law with respect to errors in the initial conditions is 
also studied. Feedback implementation was com- 
pared to the conventional open-loop implementation. 
The input profile otitaincd for the initial conditions 
designated case A in Table 2(b) was implemented in 
open loop to the system with initial conditions desig- 
nated case B in Table 2(b). This was compared to the 

Table 2(a). Model parameters 

0.5 kg/m3 
500.0 kg/m” 

25.0 kg/m3 
0.5 kg/kg 
5.0 h 

Table 2(b). Initial conditions 

Case A 

15.0 kg/m3 
25.0 kg/m3 

1.0 x 10m3 m3 

Case B 

X(O) 
S(0) 
V(O) 

25.0 kg/m3 
17.5 kg/m3 

1.0 x lOearn 

Fig. 6. Profile of switching function AT&, r) (example 2). 

case where the input profile was determined by the 
state feedback in closed loop. The condition 

SE= was used to calculate the switching time 
from the nonsingular to singular region in the closed- 
loop implementation. The closed-loop scheme 
provides optimal performance since the switching 
time is calculated on-line and the substrate concentra- 
tion is kept at the optimum level. The results are 
summarized in Table 2(d). It is observed that there is 
a reduction of about 3% in the performance index of 
the open-loop scheme over the closed-loop scheme. 

Example 3: static state feedback 
In this example we consider a yield optimization 

problem in ethanol production of S. cereuisiae in 
a fed-batch fermentation. The unsteady-state material 
balances are as follows (see Notation for explanation 
of symbols): 

d(XV) 
- = AS, P, t)XV dt 

W VI __ = &(S, P, t)XV 
dt 

(61) 

dV 

dt=U 

Table 2(c). Robustness analysis 

Parameter in control law 

K1 = 0.5, K2 = 500 
All other parameter 
values from Table 2(a) 

K, = 0.45, K2 = 450 
All other parameter 
values from Table 2(a) 

Parameters in process 

KI = 0.5, KZ = 500 
All other parameter 
values from Table 2(a) 

K, = 0.5, K2 = 500 
All other parameter 
values from Table 2(a) 

Performance index 

- 132.993 x lO-3 kg 

- 132.932~ 10-3.kg 
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Table 2(d). Open-loop vs closed-loop implementation 

Open-loop implementation 

Initial conditions: case B in Table 2(b) 
Input profile: optimal solution for case A 
Performance index at final time: - 214.85 x lo-’ kg 

Closed-loop implementation 

Initial conditions: case B in Table 2(b) 
Input profile: state feedback law from eq. (60) 
Performance index at final time: - 221.84 x 10e3 kg 

where the manipulated input, a, is the feed rate of the 
substrate. The objective is to maximize the concentra- 
tion of the product, ethanol, at a prespecified final 
time t,. Thus, 

J= - m/b (62) 

The following kinetic expressions for p and e derived 
by Aiba et al. (1973) are used. 

POW s 
L4s9 p7 t, = (1 + P/K&.)(& + S) (63) 

volt) S 

e(S7P’ ‘) =(I f P/K$)(Kz + S)' W) 

The parameters pO and v,, decrease with time due to 
degradation of intracellular enzymes and their time 
variation is shown in Fig. 7. 

Condition (27) is violated everywhere. As in 
example 2, we do model reduction to eliminate the 
redundant state equation. It can be easily shown that 
X, S, and V are algebraically related by 

(F+sv) -(x(*~~*~+s(o)Y(o)) 
= s,(V- Y(0)). (65) 

Thus, there are only three independent equations. 
Defining 

It can easily be verified that now condition (27) is 
satisfied. Also, n = 3, and a straightforward calcu- 
lation shows that s = 1 and so the state feedback that 
tracks the singular trajectories will be static. Using 
expressions (36) and (40) we obtain the following static 
state feedback law: 

r 
det &,t) 1 ad;dx,t) a&&, t) + 

dad; g(x, t) dk 
ak  

dt a= - 1 det Cgk t) ~hdx, 4 Cs, ad&~1 (x, t)l . (70) 

Fig. 7. Profiles of time-varying parameters ro(t) and v,,(t) 
(example 3). (- ) i%(t); (- -) “0 (r). 

the model can be put in the form 

where 9 and d are obtained by substituting S from cq. 

(67) and P = x*/x, into the expressions for jt and e. 
For this system 

X= 

. (69) 

x,=xv 

xz=PV (66) 

x3 = v 

w = CPOW vo(W 
and eliminating the variabIe S from eq. (65), 

5-s _A xl-x(o)v(o) 
F 

Y x3 > 

+ s(o) v(o) - sF v(o) > (67) 
x3 

Since the fermentor starts with a high substrate con- 
centration, there is an initial nonsingular phase where 
no substrate is fed, followed by a singular phase which 
involves substrate feeding. In this region there is some 
accumulation of substrate. Substrate feeding leads to 
enhancement of product formation. However, the 
product also gets diluted due to increase in volume. 
Since these are competing effects, there will be a short 
nonsingular phase at the end to use up the accumu- 
lated substrate. Thus, on intuitive grounds, we expect 
to have three phases-nonsingular, singular, nonsin- 
gular with two switching times to be calculated. The 

CES 48:1-x 
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presence of the second nonsingular region is further 
necessitated by the fact that the terminal conditions 
for the adjoint states, I, are incompatible with the 
first-order necessary condition on the singular region, 
ITg(x, t) = 0. 

A two-dimensional search was performed numer- 
ically as described in Lim et al. (1986) to get initial 
estimates of the two switching times. These estimates 
were further refined till the first-order condition 
dTg(x, t) = 0 was satisfied on the singular region. Fig- 
ures 8 and 9 show the optimal feeding profile and the 
corresponding product profile for the model para- 
meters in Table 3(a) and the initial conditions desig- 
nated case A in Table 3(b). Figure 10 depicts 
the corresponding time profile of the switching 
function (I”g(x, t)) and the second-order condition 
( --ilT[g, zj g] (x, t)). The switching function vanishes 
on the singular time interval and is positive every- 
where else. The positivity of the switching function is 
consistent with u(t) taking its minimal value (u = 0) in 
the nonsingular intervals. Furthermore, the second- 
order condition - IT[g, ad$g](x, t) > 0 is satisfied in 
the singular region and so the singular extremal is 
indeed optimal. 

I lo-’ 
3.2 

“t--- - I 
-02 2;;_ n,:cw 

Fig. 8. Optimal input profile (example 3). 

Fig. 9. Optimal time profile of ethanol (example 3). 

Table 3(a). Model parameters 

K= 16.0 kg/m3 
KS 0.22 kg/m” 
KS 71.5 kg/m” 
G 0.44 kg/m3 
Y 0.1 kg/kg 
SF 150.0 kg/m3 
tr 19.1 h 

Table 3(b). Initial conditions 

Case A 

X(0) 
NO) 
P(O) 
V(0) 

Case B 

1.0 kg/m3 
150.0 kg/m3 

0.0 kg/m” 
10.0 x 10e5 m3 

X(O) 
S(0) 
P(O) 
V(0) 

0.9 kg/m3 
165.0 kg/m3 

0.0 kg/m’ 
10.0 x lo-’ m3 

Table 3(c). Sensitivity of error in switching 
time on performance index 

Assumed switching Performance index 
time (h) (kg/m’) 

12.00 - 73.607 
12.25 - 73.843 
12.50 _ 73.850 
12.15 - 73.833 
13.00 - 73.749 

Table 3(d). Open-loop vs closed-loop implementation 

Optimal solution for case A 

Initial conditions: case A in Table 3(b) 
Switching times: 12.5, 18 h 
Ethanol concentration at final time: 73.850 kg/m3 

Optimal solution for case B 

Initial conditions: case B in Table 3(b) 
Switching times: 14.5, 17.5 h 
Ethanol concentration at final time: 79.660 kg/m3 

Open-loop implementation 

Initial conditions: case B in Table 3(b) 
Switching times: 12.5, 18 h (from case A) 
input profile: optimal solution for case A 
Ethanol concentration at final time: 73.408 kg/m” 

Closed-loop implementation 

lnitial conditions: case B in Table 3(b) 
Switching times: 12.5, 18 h (from case A) 
Input profile: state feedback law from eq. (70) 
Ethanol concentration at final time: 78.049 kg/m3 
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The sensitivity of the performance index to errors in 
the first switching time was checked. In the nonsingu- 
lar regions u was set to 0. It was assumed that there 
was an error in estimating the first switching time. 
Assuming various values of the first switching time, 
the feeding profile was calculated using the static state 
feedback law in the singular region. It is observed 
[Table 3(c)] that the final performance index is quite 
robust to errors in the assumed switching time. A sim- 
ilar effect was observed for errors in the second 
switching time (results not shown). From this study, 
we conclude that the performance index is not very 
sensitive to errors in the switching times and so 
a priori estimates of the switching times can be used in 
closed-loop implementation. The sensitivity of yield 
optimization with respect to errors in the initial con- 
ditions was also studied. Feedback implementation 
was compared to the conventional open-loop imple- 
mentation. The results are summarized in Table 3(d). 
It is observed that there is a reduction of about 10% 
in the performance index when we implement the 
optimal input profile in an open-loop fashion. How- 
ever, there is a 6.32% improvement in the perform- 
ance index over the open-loop scheme when the 
closed-loop scheme is used. Thus, the closed-loop 
scheme is able to attenuate errors in the initial condi- 
tions. 

Example 4: dynamic state feedback 
We consider a yield optimization problem in 

a semi-batch chemical reactor, where the following 
reactions are occurring: 

A-rB 

B-+C 

A -+ D. 

The reaction from A to B follows the following kin- 
etics: 

h CAC~ 
-‘=kz+k3CA+kcC;’ 

(71) 

All other reactions are first-order reactions. The un- 
steady-state mass balance equations are given by 

d(C, VI ktCACnV 
~ = - k2 + kaCA + k4C: dt 

- kDCAV+ sFu 

W, V) k,C,CnV -= 
dt k, + ksC, + k*C: 

- kcCBV 

d(CDV) 
(72) 

p= kDCAV 
dt 

dV 

dt = Us 

The objective is to operate the reactor so that the total 
amount of B is maximized at a prespecified final time 
tI. Thus, the performance index to minimize is 

Define 

x1 = CAV 

xz=cgv 
x,=cgv 
x‘$ = v 

The optimization problem can be stated as follows. 
Minimize 

J = - xz(t,) (75) 

subject to 

k,x,x2x4 
kp; + kJxIx4 + k4x: - km 

k,x, 

0 

U. (76) 

The system model is of the form 

1 =f(x) -I” g(x)u 

where 

(77) 

x1 

x2 
x= [I x3 

x4 

f(x) = 

kxxx 1124 
- kzxt + k3xix4 + k,x: 

- kDx, 

klxtxzx4 
kzx: -t k3x,x4 + k,x: 

- kcxz 

bx, 

0 

SF 
0 

q(x) = o [I . 

1 

It can be easily verified that the vector fields g(x), 
ad)g(x), u&g(x), ad;g(x) are linearly independent 

J = - Ca VI,=.,. (731 - .. -a and thus condition (9) is satisfied everywhere. For this 
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Fig. 10. Profile of switching function ATg(x, t) and second- 
order condition - lT[g, 2; g](x, t) (example 3). 

system n = 4 and s = 1. Thus, the optimal state feed- 
back in the singular region will bc dynamic. Substi- 
tuting n = 4 and s = 1 in eq. (21), we obtain a dynamic 
feedback law by setting the determinant of 

g(x) 

a&?(x) 

&g(x) + Cs, &dbb 

ad;&) + (CCL &d(x) + CL Ca 4sllW 

+ Cs, b, ad)dlCWu + Cs, ~dhAb)~ 

equal to zero. Since the reactor starts with a high 
concentration of A and the reaction rate is a decreas- 
ing function of A, we expect that there will be an initial 
nonsingular phase where no A is fed, so that the 
concentration of A decreases, followed by a singular 
phase which involves feeding of species A. The 
terminal conditions of the adjoint states d are compat- 
ible with the first-order necessary condition on the 
singular region, J’g(x) = 0. Thus, intuitively we ex- 
pect that there will be two phases-a nonsingular 
phase followed by a singular phase with one switching 
time to be calculated. 

An initial estimate of the switching time was found 
by performing a one-dimensional numerical search as 
described by Lim et al. (1986). This estimate was 
further refined till the first-order condition nrg(x) = 0 
was satisfied on the singular region. Figures 11 and 12 
show the optimal feeding profile and the optimal 
profiie of species B for the system parameters in Table 
4(a) and the initial conditions in Table 4(b). Figure 13 
depicts the corresponding time profiles of the switch- 
ing function ( ATg (x)) and the second-order condition 
(- Ir[g. adfg] (x)). The switching function vanishes 
in the singular time interval and is positive every- 
where else. The positivity of the switching function is 
consistent with u(t) taking its minimum value (u = 0) 
in the nonsingular interval. Furthermore, the second- 
order condition - ,?r [ g, ad)g] (x, t) 2 0 is satisfied in 
the singular region and so the singular extremal is 
indeed optimal. 

Since the optimal state feedback is dynamic, we 

Fig. 11. Optimal input profile (example 4). 

Fig. 12. Optimal time profile of species B (example 4). 

Fig. 13. Profile of switching function AT&) and second- 
order condition - dTb, ad;a](x) (example 4). 

need the initial condition of u to implement the state 
feedback law. The effect of error in the initial condi- 
tion of IA on the final performance index was studied. 
The results are shown in Table 4(c)_ It is observed that 
the final performance index is very robust to errors in 
the assumed initial condition for u(t). From this study, 
we conclude that the performance index is not sensi- 
tive at all to errors in the initial condition for u(t) and 
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so an c priori estimate of the initial condition for u(t) 
can be used in closed-loop implementation. 

The robustness of the dynamic state feedback law 
with respect to errors in the system parameter ki was 
tested. With the initial condition for u and switching 
time from the nominal case+ the dynamic feedback law 
was implemented using a 13.4% higher ki than its 
true value. The results are summarized in Table 4(d). 
It is observed that the performance index is very close 
to that obtained in the nominal case. 

Acknowledgement-Financial support by NSF Research 
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Table 4(a). Model parameters 

0.530 m’/kmol h 
1.00 
1.00 m”/kmol 
l/22 m3/kmo12 
0.01 l/h 
0.01 l/h 
2.00 h 

Table 4(b). Initial conditions 

CA(O) 
C,(O) 
CD(O) 
V(0) 

7.5 kg/m’ 
8.0 kg/m3 
0.0 kg/m3 
2.0 x 10e3 m3 

Table 4(c). Sensitivity of error in initial condi- 
tion of u(t) on performan= index 

Assumed initial Performance index 
condition of u(t) (kg) 

0.00 - 32.726 x 10-s 
0.25 - 32.726 x lo-” 
0.50 - 32.726 x lO-3 
0.75 - 32.726 x 10-s 
1.00 - 32.726 x 10-a 

CA 
CL3 
cc 
CO 
det 

f 
9 
H 

HU 
H”” 

K2 

KP 

Kd 

Kb 

KS 

n 

P 
s 

SF 
s 
t 

t / 
II 
v 
x 
x 

Y 
Y 

NOTATION 

concentration of species A, kg/m’ 
concentration of species B, kg/m3 
concentration of species C, kg/m3 
concentration of species D, kg/m3 
determinant 
vector function in dynamic model (2) or (25) 
vector function in dynamic model (2) or (25) 
Hamiltonian 
first derivative of Hamiltonian with respect to a 
second derivative of Hamiltonian with respect 
to u 
identity matrix 
performance index 
kinetic parameter in eq. (71), m3/kg h 
kinetic parameter in eq. (71) 
kinetic parameter in eq. (71), m’/kg 
kinetic parameter in eq. (71), m3/kg2 
kinetic rate constant of reaction A + B, l/h 
kinetic rate constant of reaction B + C, I/h 
kinetic rate constant of reaction A + D, I/h 
dissociation constant in the Haldan+Monod 
function [eq. (49)], kg/m3 
inhibition constant in the Haldane-Monod 
function [eq. (49)], kg/m3 
kinetic parameter in rate eq. (63), kg/m3 
kinetic parameter in rate eq. (64), kg/m3 
kinetic parameter in rate eq. (64), kdrn’ 
kinetic parameter in rate eq. (63), kg/m3 
number of state equations (= dimension of 
state vector x) 
product concentration, kg/m3 
degree of singularity 
concentration of feed, kg/m3 
substrate concentration, kg/m3 
time 
final time, h 
manipulated input 
volume, m3 
vector of system states 
cell mass concentration, kg/m3 
output 
yield coefficient 

Greek letters 

B adjustable parameter in the feedback law 

(19) 
& specific product formation rate, l/h 

Table 4(d). Robustness analysis 

Parameters in control law 

k, = 0.530 
All other parameter 
values from Table 4(a) 

k, = 0.601 
All other parameter 
values from Table 4(a) 

Parameters in process 

k, = 0.530 
All other parameter 
values from Table 4(a) 

kl = 0.530 
All other parameter 
values from Table 4(a) 

Performance index 

- 32.726 x lO-3 kg 

- 32.715 x lO-3 kg 
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II vector of adjoint states 

P specific growth rate, l/h 

PLO kinetic parameter in rate eq. (64), m3/kg h 

Pnl kinetic parameter in rate eq. (49), ma/kg h 

vo kinetic parameter in rate eq. (65). m3/kg h 

4 scalar function expressing the performance in- 

dex in terms of the system states 
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