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The paper presents the analysis of vertical oscillations of a flexible circular plate 
on the surface of an elastic half-space and an elastic layered system by the 'ring 
method'. The matrix of influence coefficients for the layered system is evaluated 
based on the stiffness matrix approach, and numerical integration is used to 
perform the inverse Hankel transforms. The plate discretization is achieved by the 
finite difference energy method. Vertical oscillations have been analyzed to 
determine the displacement and soil reaction distributions at the soil-plate 
interface, and the impedance functions. The results indicate that the response of a 
flexible plate strongly depends on the material and geometrical properties of both 
a soil system and a plate, and the load distribution on the plate. In most cases the 
behavior of a flexible plate differs significantly from the behavior of a rigid one. 

INTRODUCTION 

Vertical oscillations of  rigid, massless, circular foun- 
dations at the surface of  an elastic half-space have been 
investigated for more than 50 years. Richart et aL l and 
Gazetas 2 summarized earlier solutions. The problem of  
vertical oscillations of  rigid and flexible foundations on 
layered media has been investigated during the last 
20 years. Studies by Luco, 3'4 Kausel, 5 Tassoulas 6 and 
Wolf and Darbre 7 deal with rigid disks on layered media, 
and indicate the strong influence of  soil layering on the 
response of  foundations. Some of  the studies on the 
response of  flexible foundations are by Lin, s Iguchi and 
Luco, 9'!0 Riggs and Waas, II Karabalis and Beskos, 12 
Gaitanaros and Karabalis 13 and Swaddiwudhipong 
et al)  4 These studies involved flexible foundations on 
the surface of  an elastic half-space, except the studies by 
Riggs and Waas, and Swaddiwudhipong et al. which 
involved the flexible circular and rectangular foun- 
dations on a layered stratum on a rigid bedrock, 
respectively; and the study by Iguchi and Luco 1° which 
involved a massless circular plate with a rigid core on a 
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layered viscoelastic half-space. Their results indicate a 
significant influence of  the flexibility of  the foundation 
in its response to dynamic loadings, especially for higher 
frequency loadings. 

In most cases the foundation of  a dynamically loaded 
structure can be described as a flexible plate resting on 
or embedded into a layered half-space. Therefore the 
primary objective of  this paper is to present the solution 
to the problem of  oscillations of  a flexible circular disk 
at the surface of  a layered elastic half-space. The 
secondary objective is to examine the geometrical and 
material properties of  the plate and the medium for 
which the behavior significantly differs from that of  a 
rigid plate. 
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M E T H O D  OF ANALYSIS 

The critical point in the solution of  problems of  
oscillations of  plates on an elastic medium constitutes 
a knowledge of  the soil reaction distribution. Many of  
the earlier solutions of  rigid plates are based on the 
assumption of  the soil reaction distribution. 1 Once the 
distribution is known, the problem can be treated as any 
other problem of  oscillations of  flexible plates. The 
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Table 1. The stiffness matrix of a layer in cylindrical c o o r d i n a t e s  21 
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procedure used for the analytical solution of this 
problem is based on the 'ring method', ls'16 The soil 
reaction is assumed to be constant within each of a set of 
rings. The pressure in each ring is then determined from 
a compatibility of displacements. In the case of a rigid 
footing the displacements for all rings must be equal. In 
the case of a flexible plate the compatibility requires 
the vertical displacement of the plate to be equal to that 
of the soil. Thus a lubricated disk-soil interface is 
assumed. 

To define the relationship between the soil reaction 
and displacement distributions, the stiffness matrix 
approach was used. The part of the solution represent- 
ing the response of the layered system is based on the 
solution for the stiffness matrix of a layer in the 
frequency-wave number domain. 17 The part of the 
solution representing the response of the plate is based 
on the finite difference energy method (FDEM) in the 
derivation of the stiffness matrix of a circular plate. The 
following sections describe (1) the stiffness-matrix 
approach in problems of soil-structure interaction, (2) 
the FDEM approach in the derivation of the stiffness 
matrix of the circular plate, and (3) combination of these 
two elements in the solution of vertical oscillations of a 
flexible plate. 

The stiffness-matrix approach in problems of  
soil-structure interaction 

The stiffness-matrix approach corresponds to the stiffness 
or the displacement method in structural analysis. The 
stiffness matrix for the layered soil medium is assembled 
from the stiffness matrices of the soil layers and the 
half-space in the same way as the stiffness matrix of a 
structure is assembled from the stiffness matrices of 

structural elements. The major difference is that the 
stiffness matrices of layers and the half-space are 
evaluated in the domain of frequency-wave number 
instead of the common spatial domain. The equilibrium 
equation of the soil system is presented by 

S(k)u(k) = q(k) (1) 

where S is the stiffness matrix of the soil system, u the 
vector of layer interface displacements, q the vector of 
external layer interface loadings, and k the wave 
number. Wave number k is defined as the ratio w/c, 
where w is circular frequency and c the phase velocity. 

The stiffness matrix of a layer was presented by 
Kausel and Roesset 17 as an extension of the transfer 
matrix formulation by Thomson Is and Haskell. 19 The 
stiffness matrix was later represented in a slightly 
modified form by Wolf and Obernhuber 2° and Wolf. 21 
The stiffness matrix of a half-space can be derived from 
the stiffness matrix of a layer by implementing the 
radiation condition, i.e. no incoming waves present in 
the system. Therefore the stiffness-matrix approach 
efficiently resolves problems of energy radiation in a 
layered half-space. Since the problem of vertical 
oscillations of a circular disk is axisymmetric, the 
stiffness matrices presented in Tables 1 and 2 contain 
only the in-plane displacement components u (radial) 

Table 2. The stiffness matrix of the half-space in cylindrical 
coordtpntes 21 

E.ol iiSl+, 2  t21i 1 =ka* l+~t -1 - -~ t ]  .o 
Ro 2 1 + ?  it(l+__t2)/ Wo 

l + s t  l + s t  J 



Vertical vibrations of circular flexible foundations 185 

Fig. 1. An axisynunetric model of a soil system with circular 
loading. 22 

and w (vertical), and loading components P (radial) and 
R (vertical) (Fig. 1). Modified stiffness matrices for cases 
when k and aJ take values zero or infinity can be found in 
Kausel and Roesset 17 and Wolf 21 where G*, Vp* and Is* 
are complex shear moduli, p-wave and s-wave velocities, 
respectively, and d the thickenss of the layer. 

An arbitrary time forcing function can be expressed in 
terms of its harmonics by using Fourier transforms. 
Therefore, the following discussion will be concentrated 

on the frequency domain analysis only. The loading 
needs first to be transformed from a spatial domain to a 
frequency-wave number domain. In the case of axi- 
symmetric loading, a common procedure is to expand 
the loading function in a Fourier series in the 
circumferential direction 0 and into Bessel functions by 
Hankers transforms, involving the frequency wave 
number k, in the radial direction r. For a uniform 
vertical loading Po acting over a radius Ro, the 
corresponding loading in the wave number domain is 

qo(k) = P:°J](kRo) (2) 

where J1 is the Bessel function of  the first kind of 
order o. 

Displacements u(k) and w(k) can be easily obtained 
by solving eqn (1), where qo is the only nonzero 
component of the loading vector q. Figure 2 is an 
example of vertical surface displacements in the 
frequency wave number domain due to uniform vertical 
circular loading at the surface of a two-layer over a 
half-space system. Other values included in the figure 
represent the layer thickness dj, the Poisson's ratio v 
and the damping ratio ~ of soil. The strong peak 
displacements represent Rayleigh waves. 

To obtain displacements in the spatial domain, the 
inverse Hankel's transform needs to be applied on the 
displacements in the wave number domain as the 
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Fig. 3. Surface vertical displacements in the spatial domain. Real part ( ), imaginary part (-  - -). 

summation in the circumferential direction. General 
expressions for this operation can be found elsewhere. 
For this particular problem the surface vertical 
displacement Wso(r ) can be written as 

J; Jl (kRo)Jo(kr)wlo(k) dk (3) Wso(r) = -poRo =0 

where Wlo represents the surface vertical displacement 
due to a unit surface vertical loading in the wave number 
domain. The displacements in Fig. 2 have been 
numerically integrated according to eqn (3) and the 
vertical displacements presented in Fig. 3. The inte- 
gration was performed along the real k axis. A very low 
material damping was introduced to avoid singularities 
along the axis for the undamped system. 

The F D E M  solution for the stiffness matrix of  a circular 
plate 

The solution by the FDEM involves evaluation of the 
stiffness matrix of the plate through evaluation of the 
internal virtual work of the plate element. It has been 
described and successfully implemented by Bushnell. 23 
The difference between the FDEM and the Finite 
Element Method (FEM) is that in the FDEM displace- 
ments are specified at certain nodal points without 
specifying exactly how the displacements vary between 
nodal points. Figure 4 shows the discretized model of 
the plate and corresponding degrees of freedom. 

The stiffness matrix of ringj relates displacements and 

loadings at degrees j + 1, j and j - 1. It is equal to 
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Fig. 4. A schematic of the discretized model of the plate for 
FDEM. 
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Ep, Up and h are the modulus of  elasticity, Poisson's 
ratio and the thickness of the plate, respectively. The 
loading components in this case are represented by 
equivalent loadings for the entire ring. 

Degrees of freedom w_l and wN+I are eliminated by 
imposing boundary conditions at the center and at the 
edge of the plate. This results in special 2 x 2 stiffness 
matrices Sp0 and Splv for rings 0 and N. They are 
equal to 

2Do 
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The system stiffness matrix of the plate Sp c a n  be 
assembled using a procedure equivalent to that in the 
FEM. 

Solution of  the problem of vertical oscillations of  a flexible 
plate 

The dynamic equilibrium of the plate for a particular 
frequency w can be expressed as 

(Sp -- w 2 M p ) w  = Po - es (I0) 

where Mp is the mass matrix of the plate 

Mp = diag (Ajhjp)  = pAH (11) 

Aj = 27rrj A r  for j ~ 0, 
(12) 

.4:. = (Ar)21r/4 f o r j  = 0 

and p the mass density of the plate. Po and Ps are 
vectors of equivalent concentrated forces for external 

Fig. 5. A schematic of a circular ring at the surface of a layered 
half-space. 

loading and soil reaction, respectively, with components 

Pj = pj,4:, e,j = psja:  (13) 

Vector Ps can be expressed in terms of surface 
displacements from the solution of the problem of 
vertical oscillations of a circular ring at the surface of a 
layered system, as shown in Fig. 5. This solution can be 
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Fig. 7. Influence of the stiffness ratio on variation of soil reaction (a) and displacement (b) distributions for a plate on a half-space 
and ao = 2.69. 

easily derived from the solution of vertical oscillations of 
a layered elastic half-space due to a circular uniform 
loading at the surface, described by eqn (5). 

In this case the solution can be represented by a 
superposition of solutions for a uniform vertical circular 
loading Po of radius R + AR and loading -Po of radius 
R. From eqn (3) the surface vertical displacement Wso(r) 
is then equal to 

I: Wso(r) = po =0[JL (k(R + AR))(R + AR) 

- J , ( k g ) R l k J o ( k r ) w ~ ( k )  Ok (14) 

Displacement Wso due to the entire set of rings 
j = 0 , . . . ,  N can be further expressed by the sum 

N ( P o j  [Oo 
Wso(r)  = E ~ - ~ ]  Jk=o [s'fkfRj + ARj) )fRj + ARj) 

j = l  

- J,(kRj)Rj]kJo(kr)wlo(k)dk) (15) 

This can be written in the matrix form 

LPs = w (16) 

where 

L,j = 71(k(R; + aRj))(Rj + aRj) 
=0 

- JL (kR;)Rj]kJo(kri)wlo(k) dk (17) 

represents an influence factor for ring i due to ring 
loadingj. Radius ri represents the middle of ring i and is 
equal 

r i :- R i + ARt~2 (18) 

Equation (10) can be combined with eqn (16) to give the 
solution for the soil reaction vector 

[ ( S p  - -  w2Mp)L + I]Ps = Po (19) 

Displacement vector w can be determined from soil 
reaction vector Ps by using eqn (15). 

The procedure described has been implemented in 
program FLEXFOUN, which evaluates displacements 
below the circular plate for an arbitrary distributed 
axisymmetric vertical loading and displacements at any 
point outside the plate which lies at a layer interface. It 
also evaluates the soil reaction distribution and the 
impedance of the plate. The impedance is evaluated 
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based on the average displacement over the area of  
the plate, otherwise there would be variable results 
depending on the selection of  the reference point. The 
validity of  the procedure and operation of  the program 
were verified by comparing the impedance function 
results for a rigid circular footing on an elastic half- 
space with the analytical solution. Figure 6 shows a 
comparison of  impedance coefficients k and e taken 
from Gazetas ~- with those obtained by the program. A 
plate with ten rings was used in the analysis. Gazetas 
used the definition of  the impedance of  the form 

K = Ks(k + iaoc)(1 + 2i~) (20) 

where K s is the static stiffness and a o the dimensionless 
frequency defined by 

(21) 
a 0 ~ V s  

The static stiffness of  the disc is equal to 

4GRo (22) Ks-7-; 
The static stiffness obtained from the program differs 
less than 2% from the stiffness defined by eqn (22). 
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NUMERICAL EXAMPLES 

The examples included illustrate the influence of  the 
stiffness of  the plate relative to the stiffness of  a soil 
medium, the geometry and mass of  the plate, and the 
loading distribution on the response of  the plate. Even 
though the program can analyze soil systems with an 
arbitrary number of  layers, the examples herein are 
limited to cases of a flexible plate at the surface of  a 
half-space, and a layer over a half-space system. 

Figures 7(a) and 7(b) illustrate the influence of  the 
stiffness ratio on the soil reaction and displacement 
distributions below the plate at the surface of a half- 
space for ao = 2.69. The stiffness ratio, Sr, represents the 
ratio of  the stiffness of  the plate and the stiffness of  the 
soil medium subjected to the surface vertical loading, 
and is defined as Sr Eph3/(pl 2 3 = VfiRo). Vsi and Pl are the 
shear wave velocity and the mass density of  the surface 
layer, in this case the half-space. The other variables 
used in the presentation of  the results are: normalized 
radius r o = r/Ro, normalized soil reaction Po/Ps, and 
normalized displacement w/lwmaxl. The Poisson's ratio 
of the plate Up is kept constant with a value 0.25 and the 
plate is divided into ten rings in this and all other cases. 
The plate is massless, which is defined through the 
mass density ratio ~ -- ph/(plRo) equal to zero, of  the 
uniform thickness and with uniformly distributed 
loading. Significant decrease of the soil reaction 
concentration in the vicinity of the edge and strong 
variations of  the displacements in the radial direction 
can be observed for Sr equal to or less than 0.125. On 
the other hand, an almost uniform displacement 
distribution, typical for the response of rigid plates, 
can be observed for sr equal to or greater than 8. Soil 
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Fig. 11. Influence of  the loading distribution on soil reaction (a) and displacement (b) distributions for a plate on a half-space and 
ao = 2-69. 
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Fig. 12. Influence of the stiffness ratio on variation of impedance coefficients k and c for a plate on a layer underlain by a stiffer (a) 
and a softer half-space Co). 

reaction and displacement distributions vary with 
frequency, especially for low values of  the stiffness 
ratios. This is illustrated for displacements in Fig. 8. 

Figure 9 shows cases that illustrate the influence of  
mass and stiffness distribution of  the plate and load 
distribution in the radial direction on vertical oscil- 
lations of  the plate. The influence of  the mass and 
stiffness distribution on the soil reaction distribution 
and impedance coefficients is illustrated in Figs 10(a) 
and 10(b), respectively. The stiffness ratio of all the 
plates is 0.0125 and is based on the marked thickness h 
in Fig. 9. All the plates, except for the massless plate of  
case 1, have a mass density ratio equal to 0-0575. The 
soil reaction distribution of  all the cases is similar to the 
one for the massless plate, except for the plate with the 
rigid edge which has a distribution similar to the rigid 
plate (Fig. 7(a)). Similar behavior can be described for 
the impedance. Cases 2, 4 and 5 have very close 
impedances, while cases 1 and 3 differ from those due 
to different plate mass and due to the rigid edge, 
respectively. 

Influence of  the load distribution on the soil reaction 
and displacement distributions is illustrated in Figs 11 (a) 
and 1 l(b), respectively, for Sr = 0" 125. The condition for 
the loading cases is that the total loading in all four cases 

is equal. Variations of  both distributions are pro- 
nounced in cases with concentrated loadings at the 
center and the edge. For  a stiffness ratio equal to or 
greater than 8, not shown here, the variations are small. 

Finally, the influence of  the stiffness ratio on the 
impedance of  a flexible plate at the surface of  a layer 
over a half-space system is demonstrated in Fig. 12. The 
system in Fig. 12(a) represents the case when the layer is 
underlain by a stiffer half-space, while the system in Fig. 
12(b) represents the case when the layer is underlain by a 
softer half-space. The dimensionless frequency in this 
case is defined as ao = wRo/Vsl, where 17s2 represents 
the ratio of  velocities Vs2 and Vsl. Variations of the 
impedance coefficients in the first cases become 
more pronounced for ao greater than about 3, which 
corresponds, approximately, to the first natural fre- 
quency of  vertical oscillations of  the layer over a rigid 
bedrock. In the second case the variations become more 
pronounced at a much lower dimensionless frequency. 

SUMMARY AND CONCLUSIONS 

The solution to the problem of vertical oscillations of  a 
flexible circular foundation at the surface of  an elastic 
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layered half-space has been presented. The solution is 
based on the stiffness-matrix approach for the definition 
of the influence coefficient matrix for the soil system, 
and the finite difference energy method for the definition 
of the stiffness matrix of  the plate. Numerical examples 
presented indicate that the response of  a flexible plate 
depends on several parameters, and in most cases 
significantly differs from the response of a rigid plate. 
Some of  the parameters presented include the stiffness 
ratio, mass and stiffness distribution of  the plate, the 
loading distribution, and the soil stratification. 
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