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Abstract 

We show that Joyal’s rule of signs in combinatorics arises naturally from Dress’s concept of 
exponentiation of virtual G-sets. We also show that two finite G-sets admit a G-equivariant 
bijection between their power sets if and only if the (complex) linear representations they 
determine are equivalent. 

0. Introduction 

We present in this paper two theorems about exponentiation of (actual or virtual) 

G-sets, where G is a finite group. The first theorem uses a special case of Dress’s 

concept of exponentiation for virtual G-sets [2] to clarify the rule of signs introduced 

by Joyal [3,4] in his theory of virtual species. The second relates the power sets of 

(actual) G-sets to the corresponding linear representations of G. 

Section 1 is devoted to a review of the needed parts of the well-known theory of 

Burnside rings of finite groups, including Dress’s exponentiation. Sections 2 and 

3 contain the proofs of the two theorems and some additional remarks and examples. 

1. Burnside rings and exponentiation 

Let G be a finite group. By a G-set, we mean a finite set A equipped with a left action 

of G, which we write as g(u) or simply as ga. If A and B are two G-sets, then so are the 

disjoint union A + B with G acting on each summand separately, the Cartesian product 

A x B with G acting componentwise, and the set BA of functions from A to B with 

G acting by 

(slf)(a)=s(f(K’a)). 
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These three constructions respect isomorphism, so we obtain operations of addi- 

tion, multiplication and exponentiation on the set S(G) of isomorphism classes of 

G-sets. The addition and multiplication operations make S(G) into a commutative 

semi-ring with additive cancellation, so the formal differences of elements of S(G) form 

a commutative ring (with unity, given by the one-element G-set) called the Burnside 

ring f?(G) of G. Ignoring the distinction between a G-set and its isomorphism class, 

one often refers to elements of S(G) as (actual) G-sets and to elements of Q(G) as 

virtual G-sets. 

It is clear that exponentiation cannot be reasonably extended from S(G) to all of 

Q(G), not even when G is trivial for then S(G) = N and L?(G) = Z. Nevertheless, Dress 

[2] showed that, with any fixed actual exponent A, BA is an algebraic function of B (in 

the sense defined in [2]) and therefore extends naturally to virtual G-sets B. Thus, 

exponentiation makes sense in L?(G) as long as the exponent is an actual G-set. 

We shall need a convenient framework for computations in Burnside rings. Every 

G-set is the disjoint union of transitive G-sets called its orbits, and every transitive 

G-set is isomorphic to one of the form G/H (the set of left cosets gH, acted upon 

according to g’(gH)=(g’g)H) where H ranges over a system K(G) of representatives 

of the conjugacy classes of subgroups of G. It follows that the additive structure of 

S(G) (resp. Q(G)) is easily described as the free abelian semi-group (resp. group) 

generated by the orbits G/H with HEK(G). Unfortunately, in this description, multi- 

plication looks rather complicated, since the product of two orbits can be a complic- 

ated sum of orbits. We therefore prefer to describe elements of Q(G) by means of the 

marks defined by Burnside [l, Section 1801 as follows. For any G-set A and any 

subgroup H of G, the mark of H in A is the number (H, A) of elements of A fixed by 

the action of H. It is clear that, with a fixed H, this defines a homomorphism of 

semi-rings S(G)--+N, which determines a unique homomorphism of rings SZ(G)+Z, 

still denoted by (H, _). The mark (H, A) equals the number of G-equivariant (i.e. 

preserving the G-action) maps from G/H to A. (An H-fixed aeA yields the equivariant 

map sending each gH to g(a); an equivariant map f : G/H+A yields an H-fixed 

element f(lH)~ A; and these constructions are inverse to each other.) Hence, conju- 

gate subgroups have the same marks, so it is customary to consider marks (H, A) 
only for HEK(G). 

The (H,_)‘s for all HEK(G) are the components of a ring homomorphism 

Q(G)+Zk, where k is the number of conjugacy classes of subgroups of G. This 

homomorphism is known to be one-to-one; since we shall need this fact, we sketch the 

proof for the sake of completeness. View the additive structure of 52(G) as the free 

abelian group generated by the G/H with HE&C(G). Now 

(HI,GIHz)=O if IHll>lH21 

(or even if HI is conjugate to no subgroup of H,) because the stabilizers of elements 

of G/H2 are the conjugates of Ha. On the other hand, (H, G/H) #O since H fixes 
1H in G/H. (In fact, (H, G/H) is the index of H in its normalizer.) Thus, if we 

order the groups in K(G) according to size, then the matrix representing our 
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ring-homomorphism (in terms of the {G/H} basis for Q(G) and the standard basis 

for Zk) is triangular with non-zero diagonal entries. So the homomorphism 

is one-to-one. 

We shall need the marks in BA, which may be easily computed as follows. Suppose 

first that both A and B are actual G-sets and that H is a subgroup of G. Then 

(H, BA) =The number of H-equivariant functions A+B. 

Let us write A 1 H and BI H for A and B viewed as H-sets by restricting the given 

G-actions to H. Furthermore, let us decompose A into H-orbits, A =Cr= 1 H/K, for 

certain subgroups Ki of H. Then an H-equivariant map A+B is determined by 

r H-equivariant maps fi: H/Ki~BI H. The number of choices for fi is the 

mark (relative to H) of Ki in BI H, which is also the mark (relative to G) of Ki in B. 

Thus, 

<H, B*>= i (Ki, B), (1) 
i=l 

where Al H =C;= 1 H/Ki. The Ki need not belong to K(G) (even if they belonged to 

K(H)), so if one insists on considering marks only of groups in K(G) then each Ki in 

(1) should be replaced by its conjugate in K(G). 
Equation(l), although established under the assumption that both A and B are 

actual G-sets, continues to hold when B is a virtual G-set because both sides are 

algebraic functions so Dress’s theorem about unique extensions [2] applies. 

The formula (1) simplifies greatly if the G-action on B is trivial, i.e. if B = b. 1 in O(G) 

for some beN (or bEi2). Then (Ki, B) = b regardless of what Ki is, so 

(H,(b.l)*)=b’, (2) 

where r is the number of H-orbits in A. 
We finish this section by recalling Burnside’s lemma [l, Section 1451. The number 

of orbits in a G-set A is 

where (g) is the cyclic subgroup generated by g. 

2. Joyal’s rule of signs 

Polynomial formulas arising in enumerative combinatorics frequently have a (new) 

enumerative interpretation when the variables are allowed to take negative values. 

For a simple example, fix kEN and consider the polynomial in n enumerating the 
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k-element subsets of an n-element set: 

n 0 n(n-l)(n-2).-+(n-k+l) 
= 

k k! 

If we allow n to take negative values -M, with rn~N, this polynomial 

m(m+l)(m+2)~~~(m+k+l) 

k! 

enumerates (except for the sign (- l)k) the k-element subsets of m with repeated 
elements allowed in the subsets. 

Joyal [3,4] provided a general framework for considering such phenomena (as well 
as more general ones). He considered functors F, from the category of sets into itself, 
that have the form 

F(A)= 1 A" x F,. 
ES30 sn 

Here S, is the symmetric group on n objects, Fn is an $-set, A” is the nth Cartesian 

power of A with S, acting by permuting the n components, and x means the set of 

&-orbits in the Cartesian product. To visualize what (3) mea&, it is useful to 
decompose each F, into its S,-orbits, say $,/Hi for certain subgroups H,EK(S,). Then 

A”; F&A” x (&,/HI) 
I S, 

=C (A"/'Hi), 
i 

where A”/Hi means that the set of Hi-orbits in A”. (Recall that S, and therefore the 
subgroup Hi act on A” by permuting the n components.) The isomorphism in the last 
line displayed above is a consequence of the easily verified general fact that, for any 

group G, subgroup H, and G-set X, X ; (G/H)r X/H; every G-orbit in X x (G/H) 

intersects the ‘column’ X x { lH1, which can be identified with X, in an H-orbit. 
These considerations show that F(A) in (3) is just the disjoint union of various 

An/Hi, for (possibly) different n’s and subgroups Hick. An/Hi should be viewed as 
the set of n-element subsets of A (possibly with repeated elements) with some extra 
structure. For example, when n = 3, A3/ (1 f is the set of ordered triples from A, A3/S3 is 
the set of unordered triples, A3/(alternating group) is the set of cyclically ordered 
triples, and A3/(subgroup of order 2) is the set of triples with a distinguished first 
element but no relative order of the other two elements. 

Joyal considered the problem of extending functors F of the form (3) to negative 
values of A, i.e., to virtual sets. Of course, the values of F will then also be virtual sets, 
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and there is a strong temptation to write 

F(-A)= c (-1)“A” x F” (4) 
II>0 S” 

= c A”x”F,- 1 A”xF,,. 
“e”e” sn nodd S” 

This is wrong. For example, if F(A) = A2/S2, the set of unordered pairs with repetition 

allowed, then (4) gives F( - A) = F (A), whereas F( - A) ought to be the set of unordered 

pairs without repetition, or in any case something enumerated by n(n- 1)/2, not 

n(n+ 1)/2, since reversing the sign of n in the latter yields the former. 

Motivated by desirable formal properties of the ‘exponential’ functor Cn3O A”/& 

Joyal [3,4] found the right definition of F( - A), his rule of signs: 

F(-A)= c A” x YF,,, 
tl>O s. 

where E” is the virtual &-set E; - ~7 given by 

s”o={flf maps n onto an even kCN}, 

sl={f(f maps n onto an odd k~fV}. 

(We use here the standard set-theoretic identification of a natural number n with the 

set{O,l,..., n - l}, and similarly for k.) S, acts on .s; and ET by permuting the domains 

of the f’s. 

Notice that, for the example F(A)= A2/S2 considered earlier, (5) gives 

F(-A)=A2 x xs2=(A2; &;)-(A2 x E;). 
S1 S2 

E: consists of the two surjections 2 -2, which S2 interchanges, so E; =S2/{ l} and 

therefore A2 x E$= A2/{ l} = A2. E: consists of the one surjection 2+1, so A2 x E: = 

A2/S2. Thusr”F( - A)= A2 -(A2/S2), The enumerating function for this i? n2 - 

(n(n+ 1)/2)=n(n- 1)/2, as it should be. 

We digress for a moment to answer a possible objection, namely that, although 

F( - A) has the expected enumerating function n(n - 1)/2, it is not the expected result, 

the set of unordered pairs from A without repetition. One answer is that this expected 

result is not a functor of A, as it does not transform reasonably under maps A-+B that 

are not one-to-one. A better answer, using only bijective maps, can be obtained by 

considering what happens when A is not merely a set but a G-set for some non-trivial 

group G, say G = S2 for simplicity. Then A consists of a number p of fixed points and 

a number of q of two-element orbits. An easy computation shows that F(A) = A2/S2 

has 

P(P+ 1) 
p+q fixed points and pq+q2 two-element orbits. 

2 
(6) 
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The ‘expected’ result, the set of unordered pairs without repetitions, has 

P(P- 1) 
----+q fixed points and pq+q(q- 1) two-element orbits. 

2 

which is not the result of reversing the signs of p and q in (6). On the other hand, 

since A2 has 

pz fixed points and 2pq+2qz two-element orbits, 

we find, by subtracting (6), that A2 -(A2/S2) has 

P(P- 1) 
~-4 fixed points 

2 
and pq + q2 two-element orbits, 

which is the result of reversing the signs of p and q in (6). Thus, Joyal’s formula for 

F( - A) is (at least) more acceptable than the expected result. 

We shall show that Joyal’s rule of signs arises quite naturally from Dress’s concept 

of exponentiation in Burnside rings. To see this, let us return to the formula (3) for 

F(A) and consider how the &-action involved in it arises. F, is given as an &-set, but 

S, also acts on the other factor, A”, by permutation of components. That is to say, 

what we have called A” is actually the (exponential) &-set (A. l)c where A. 1 is the set 

A with trivia1 S, action while n is the set n = (0, 1,2, . . . , n - l} with the natural action 

of S, on it. The distinction between the trivia1 &-set A. 1 and the mere set A will be 

unimportant; we henceforth write simply A, and the trivial action is to be tacitly 

understood. The distinction between the non-trioial &-set n and the mere set (or 

number) n, on the other hand, is crucial. In fact, this distinction is the source of the 

error in (4). Keeping track of the distinction, we find that the first line of (4) should 

read 

F(-A)= c (-l)-“Ar x F,, 
II30 S, 

and the second line of (4) is no longer justified since (- l)E is not merely f 1 according 

as n is even or odd. In fact, in place of the second line of (4), we now get Joyal’s rule of 

signs, by virtue of the following result. 

Theorem 2.1. (- 1)” = E”, as virtual $,-sets. 

Proof. According to results in Section 1, it suffices to check that the marks 

(H,(-l)~)and(H,~“)agree,forallsubgroupsHofS,.By(2),(H,(-l)~)=(-l)‘, 

where r is the number of H-orbits 

<H, s”) = (H, ~“0) -<H, G > 

=F (- l)k.(Number 

in ?. So it remains to calculate 

of H-fixed surjections n+k). 
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Since H acts on the surjections by permuting the domains, a surjection is fixed by H if 

and only if it is constant on each of the I orbits of H in n. Viewing such a surjection as 

a function on the set of orbits, we have 

(H, s”)=~(-l)k.(Number of surjections r+k). 
k 

The quickest way to compute this is to use the well-known polynomial identity 

xr=C~(r,k).x(x-l)...(x-k+l), 
k 

where S(r, k) is the Stirling number of the second kind, the number of partitions of 

r into k pieces. Putting x= - 1, we find 

(-l)‘=xS(r,k).(-1)(-2).*.(-k) 
k 

=c S(r, k)( - l)kk!. 
k 

Since S(r, k)k! is the number of surjections r+k, we have (H, E”)=(-l)‘= 

(H, (- l)-?). 0 

The crucial fact in the preceding proof, the identity 

;(-1)‘. (N urn b er of surjections r+k)=( - 1)’ (7) 

also has a bijective proof. The left side counts all surjections f: r-tk, for arbitrary 

k (necessarily <r), with weight (- l)k. One of these surjections is the identity map r+r, 

with weight (- l)‘, which matches the right side of (7). Thus, to prove (7) it suffices to 

pair off all the non-identity surjections f of positive weight with those of negative 

weight. Such a pairing f + f * can be defined as follows. Given f : r-k, not the identity 

map, view it as partitioning r into blocks f-’ {i] for iEk and ordering the set of blocks 

according to the value of i. Let p be the smallest number Ek such that f-‘(p) #{p>; 

this exists because f is not the identity. If p is the only element in its block, so 

{ p} = f - 1 {q} for some q > p (by choice of p), then we obtain f* by merging this block 

with the previous one; that is, 

f*(x)= 
i 

;;;;_1 ;; ;;;;;;: 

If, on the other hand, p is not the only member of its block, so {p} s f - ’ {q) for some 

q>p, then we split this block into {p} and the rest, putting {pj after the rest in the 

ordering; that is 

f*(X)= 
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In the first case, the range k decreases by 1, and in the second case it increases by 1, so 

the weight off* is always the negative of the weight off: Furthermore, whichever case 

applies to f, the other applies to f* with the same value of p, and f** =f: So we have 

the desired pairing. 

3. Linear representations and power sets 

Any G-set A determines a (complex) linear representation CA of G; @A is the vector 

space of formal @-linear combinations of elements of A, and G acts on it by the linear 

extension of its action on A. With respect to the basis A of @A, the matrices of the 

representation of G are permutation matrices, and their traces, the characters of the 

representation, are given by the numbers of fixed points: 

X&g)=Number of points in A fixed by g = ((g), A). 

It is entirely possible for two non-isomorphic G-sets to produce the same 

character and therefore isomorphic linear representations. All that is needed is 

for all the cyclic subgroups of G, but not all the non-cyclic subgroups of G, to 

have the same marks in the two G-sets, and this situation arises for every non-cyclic G. 

To see this, recall from Section 1 that Q(G) is, in its additive structure, a free abelian 

group of rank equal to the number k of conjugacy classes of subgroups of G, and that 

the marks define an embedding of Q(G) into hk. It follows easily that the marks of 

a proper subfamily of the subgroups in K(G) cannot determine the other marks; in 

particular, the marks of cyclic subgroups do not determine the marks of non-cyclic 

subgroups. 

We shall need to refer to the examples of this phenomenon involving the two 

smallest non-cyclic groups, so we describe these examples here. (A more complicated 

example given by Burnside [l, Section 2173 can be described as follows. The set X of 

points and the set Y of lines in the projective plane of seven points (over the field h2) 

are non-isomorphic G-sets, where G is this plane’s collineation group (of order 168), 

but @X and @ Y are isomorphic linear representations of G. Unlike the examples that 

follow, this one involves transitive G-sets.) 

If G is the Klein four-group V= { 1, a, b, c}, we define A to be the transitive I’-set 

I’/(a), and similarly for B and C. In addition to these three V-orbits, there are the 

regular action I’= V/(l) and the trivial one-element V-set 1 = V/V. By inspection of 

the characters, one finds that the V-sets A + B + C and I’+ 1 + 1 determine isomorphic 

linear representations. 

If G is the symmetric group Ss, there are four non-isomorphic transitive actions: the 

regular action S3 =S,/(l), the natural action 3 =s,/(t) where t is any one of the three 

transpositions, the two-element G-set A=&/(c) where c is a 3-cycle (so (c) is the 

alternating group), and the trivial action 1 = S3/S3. By inspection of characters 

again, one finds that the S,-sets ,3 + ,3 + A and S3 + 1 + 1 determine isomorphic linear 

representations. 
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The main result of this section was suggested when Norbert Brunner remarked to 

me that the Klein four-group I’ has two non-isomorphic V-sets whose power sets are 

isomorphic. (Brunner cites [S] as the source of this observation.) It turned out that the 

two L’-sets he had in mind were the same two, A + B + C and V+ 1 + 1, as in the first 

example above. This is no coincidence. 

Theorem 3.1. For any two G-sets A and B, the following are equivalent. 

(a) @A and @B are equivalent representations of G. 

(b) 2* and 2’ are isomorphic G-sets. (Here 2 is a two-element set with trivial G-action, 

so 2* is the power set of A.) 

(c) C2* and @2* are equivalent representations of G. 

Proof. Consider the data needed to determine @A, 2*, and C2A (up to G-isomorphism 

for 2*, and up to linear G-isomorphism in the other two cases). For @A, we need the 

characters, i.e. the marks ((g), A) of cyclic subgroups in A. For 2*, we need the marks 

(H,2*) of all subgroups H in 2A. For @2*, we need the marks ((g),2*) of cyclic 

subgroups in 2A. So the theorem will be established if we show that all marks in 2A are 

determined by the cyclic marks in A and that the cyclic marks in A are determined by 

the cyclic marks in 2*. 

For the first of these, we need only recall from Section 1 that 

(H,2*)=2’, 

where r is the number of H-orbits in A, and that, by Burnside’s lemma, 

So the cyclic marks in A suffice to determine all the marks in 2*, as desired. 

For the second objective, suppose that we are given the cyclic marks ((h), 2*); we 

seek to determine the cyclic marks ((g), A). As above, they are related by 

1 
logzW>2A)=lol,~~, <(&A). 

This system of equations expresses the known quantities on the left as linear combina- 

tions of unknown marks on the right. The matrix of this linear system is triangular 

with non-zero diagonal entries if we order the cyclic groups consistently with their 

sizes; indeed, in the equation with (h) on the left, the subgroups (g) that appear on the 

right are (h) and smaller subgroups. Therefore, the matrix is invertible, which means 

that we can express the desired quantities ((g), A) as (rational) linear combinations of 

the known quantities logz((h), 2*). q 

Theorem 3.1 establishes a connection between the linearizations @A and the power 

sets 2* of G-sets A. The existence of such a connection may seem less surprising if one 

remembers that the power set (of a finite set) is itself a sort of linearization; specifically, 
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2A is the underlying set of the vector space ZzA with basis A over the two-element 

field Z2. This point of view would lead one to suspect that the equivalent conditions in 

Theorem 2 should also be equivalent to the following, which can be viewed as a ‘Z, 

version’ of (a) or as a ‘linear version’ of (b): 

(d) ZZ A and ZZ B are equivalent Zz-representations of G. 

But things are not so simple. Of course (d) implies (b) (hence (a) and (c)) because (d) 

requires a Hz-linear G-isomorphism where (b) requires only a G-bijection. But here is 

a counter example to the converse implication. 

Let G be the Klein four-group F’, and consider the V-sets A +B+C and V+ 1+ 1. 

We have already observed that these satisfy condition (a) of Theorem 2, hence also 

conditions (b) and (c). But they do not satisfy (d). One way to see this is to consider, in 

each of Zz(A +B+C) and Z,( V+ I+ l), the vectors that are fixed by at least one 

non-identity element in V. In hz(A +B+C), these vectors include the six standard 

basis vectors (as both elements of A are fixed by UE V, and similarly for B and C), so 

they span the entire space. In Z,( Y+ 1 + l), on the other hand, these vectors all have 

the property that the sum of the coefficients of the basis vectors in V is zero 

(in Z,) - i.e., every subset of V+ l+ 1 with non-trivial stabilizer contains an even 

number of points from the orbit V- so they do not span the whole space. (It can be 

shown that, if G is a p-group and X and Y are G-sets with E,XgZ, Y as linear 

representations of G over h,, then Xr Y as G-sets. This subsumes what we have just 

shown as well as the following sentence.) 

The preceding argument can be extended to show that non-isomorphic V-sets never 

generate isomorphic Z,-linear representations. But this fact about V does not extend 

to arbitrary groups. Specifically, the non-isomorphic S,-sets ,3 + ,3 + A and S3 + 1 + 1 

generate S,-isomorphic Zz-linear spaces. Here is an easy way to see the linear 

isomorphism. In the two-dimensional affine space over the field Z3 (where there are 

nine points and 12 lines), fix a point 0, and consider the configuration consisting of the 

set X of the eight points other than 0 and the set Y of the eight lines not passing 

through 0. The linear transformation f : Z, Y+Z, X that sends each line E Y to the 

sum of the three points on it is a surjection, because each point PEX is f of the sum of 

the three lines through P and the two lines parallel to OP. So f is an isomorphism. It 

clearly commutes with the natural actions on X and Y of any group of affine 

transformations that fix 0. Choose a point P# 0, and consider the group of affine 

motions that fix both 0 and P (and therefore also the third point Q of line OP). This group 

is isomorphic to S3. Its action on X is isomorphic to S3 + 1 + 1, the two fixed points (1 + 1) 

being P and Q. Its action on Y is isomorphic to ,3 + ,3 + A, where one copy of ,3 consists of 

the lines through P, the other of the lines through Q, and A of the lines parallel to OPQ. 
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