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Abstract: In this paper, a multi-period replacement model, based on a mixed integer nonlinear 
programming formulation, is developed for flexible automation investments. The model takes into 
account the costs, benefits and effective utilization of several types of flexibility. The decision variables 
pertain to the selection and optimal implementation sequence for new, CNC modules, the replacement 
schedule for current equipment and the aggregate production plans for transition and subsequent 
periods in the planning horizon. The objective function maximizes the present worth of the cash flows 
over the planning horizon. A two-level, exact solution method is also developed, utilizing dynamic 
programming methodology for the higher level sub-problem and mixed integer-linear programming for 
the lower level sub-problem. 
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I. Introduction 

The advent of multimachine systems, based on computer numerical control (CNC), has created a need 
for equipment replacement models that address the unique characteristics of these technologies. The 
thrust of recent research however, has generally been on investment justification problems, which have 
been identified as major deterrents to implementing these technologies (Gold, 1982; Kaplan, 1986). 

The myopic and tactical procedures for capital budgeting, emphasizing quick and tangible returns, 
along with short term-oriented managerial reward systems, and the difficulties in quantifying improve- 
ments in lead time and quality have been widely articulated. More fundamental problems, relating to 
ineffective manufacturing strategies, have also been highlighted for many years (e.g., Hayes and 
Abernathy, 1980). There has also been a dilemma as to whether one should pursue the quantification 
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more rigorously, or, should one explicitly recognize 'strategic' factors without quantification. But, as 
Kaplan (1986) and others have stressed, capital budgeting procedures based on discounted cash flow 
methods are still valid, and financial analysis cannot be bypassed. 

The justification problems can also be traced to the high capital costs and risk, and the high rates of 
obsolescence of these technologies. There has been a need for equipment replacement models that 
capture the unique operational characteristics (like tool magazine-oriented setups), and the economic 
value of various types of flexibility offered by these systems. Equipment replacement models developed 
to date have mainly addressed the replacement of single machines or systems. Models devoted to 
multimachine systems have mostly assumed serial production contexts, with limited operational flexibil- 
ity. This paper presents a new multi-period replacement model and associated solution methodology for 
flexible multimachine systems. Several types of flexibility are considered concurrently, and an exact 
solution procedure is developed, by exploiting the special characteristics of the problem. 

This paper is organized as follows. A review of the related literature is presented in the next section, 
followed by the problem definition. The means by which several types of flexibility are considered in the 
model, and the model formulation, are then stated. A solution procedure is presented next, followed by a 
numerical example and conclusions. 

2. Related literature 

Equipment replacement studies, commencing with the seminal work of Terborgh (1949), have 
developed into a comprehensive theory. A brief survey of this literature, as well as a useful reconciliation 
with the engineering economics approach, are provided by Fraser and Posey (1989). Van der Veen and 
Jordan (1989) classify the literature into models devoted to 'serial replacements' (which assume one 
machine or system operating in each period), and 'parallel replacements' (involving several machines in 
each period). As they point out, most of the models developed to date have addressed the serial 
replacement problem. A one-time implementation and a single-system replacement are assumed in most 
of these models, along with several restrictive assumptions regarding operational costs and other input 
data. 

Studies devoted to multimachine systems have mostly assumed linear production flows. Davis and 
Miller (1978) and Hayes, Davis and Wysk (1981) address the 'machine requirements planning problem', 
in which the objective is to determine the optimum number of machines for each station and the 
operating speed (capacity), given production requirements for a serial flow system. Dynamic program- 
ming and mixed integer programming methods are utilized in these studies. Stinson and Khumawala 
(1987) utilize a heuristic procedure to derive near-optimal machine replacement sequences in a serial 
production system. Given a finite planning horizon, the objective in this study is to determine the time 
periods in which the entire system is to be shut down to make replacements, and the specific machines to 
be replaced in the shutdown periods. The objective function minimizes the present worth of the relevant 
cash outflows. 

Leung and Tanchoco (1987) present a single-period model to illustrate the complexity in multimachine 
replacements, which involve 'challengers' capable of replacing more than one 'defender'. Given the 
versatility (machine flexibility) of CNC equipment, the assignment of parts and operations are redis- 
tributed among new sets of defenders and challengers, which leads to changes in the cost structure. 
Among studies devoted to the economic value of flexibility, expansion flexibility is first addressed in the 
literature by Hutchinson (1976) and Hutchinson and Holland (1982). These involve a comparison of 
manufacturing costs in a full-fledged transfer line and an incrementally acquired system. Burstein and 
Talbi (1984) propose a mixed integer programming formulation for maximizing the net present value 
(NPV) of investments in flexible automation, again utilizing expansion flexibility. Product flexibility has 
also been addressed in economic terms, and Fine and Freund (1990) provide a summary of this 
literature. They also develop an economic model that captures the value of product flexibility when a 
firm faces uncertainty in demand. A two-product case is considered, in which the firm faces capacity 
investment decisions before the resolution of uncertainty in demand. 
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Azzone and Bertele (1989) provide an integrative framework, in which many types of flexibility are 
considered in the justification of a specific system. Their model is based on simulation methodology. 
Computer simulation has been widely used in recent years for design and justification of flexible 
manufacturing systems (FMS). Simulation of manufacturing systems has become increasingly sophisti- 
cated, even as the base of analytical models has grown. The main utility of simulation however, is in the 
lower-level, more detailed stage of the analysis, for the evaluation of specific systems under detailed and 
realistic conditions. 

The complexities of flexible automation systems generally require the design and evaluation to be 
carried out in two phases: a high-level approximation phase, followed by more detailed design and 
evaluation at the lower level. Given the numerous choices relating to part family, configuration, 
operating policies and parameter assumptions, the number of candidate systems to be analyzed tends to 
explode. Analytical approximations utilizing mathematical programming and closed queuing networks 
are therefore utilized at the higher level to narrow down the choices prior to detailed analysis and 
multiple criteria evaluation. 

The model developed in this paper is aimed at providing a high-level, deterministic approximation. It 
is assumed that the model is to be utilized in conjunction with several other tools and techniques, 
particularly closed queuing networks, in a decision support system (DSS) environment, as described in 
Suresh (1990). The model is aimed at deriving an optimal implementation schedule for new, CNC 
modules, and optimal replacement of current equipment. Refinements in the treatment of system setups 
and process flexibility are introduced in this model. Aggregate production plans, based on optimal 
utilization of flexibility, are also derived for transition and subsequent periods. The objective function 
involves maximizing the net present value (NPV) of the after-tax cash flows. The specific problem 
addressed in this paper is discussed next. 

3. Problem definition 

It is assumed that a candidate part family, with strategic payoffs, has been tentatively identified. These 
part types, denoted by the index set i ~ I, are proposed to be eventually manufactured in a multimachine 
system, involving a network of primarily CNC machines. The operations required for a part type i ~ I, 
are denoted by the set j ~ J/. These operations are performed at present using current machine types, 
denoted by the index set m ~ CMT. The operation capabilities are represented by an incidence matrix 
element, zi'#~, which assumes a value of one if operation j of part type i can be processed by machine 
type rn, and zero otherwise. The corresponding setup and operation times are denoted by STi~ m and 
Pi)m, respectively. Similarly, the setup cost (SC[jm), unit variable c o s t  (6itjm), and a fixed cost element 
(e[j,,) are specified for every operation capability. The notation is summarized in Table 1. 

A planning horizon, t ~ T, is assumed. The current machines are to be replaced during the planning 
horizon by the new, CNC modules. The set of candidate CNC machine types considered for the part 
family is denoted by n ~ NMT. These machine types, with different capabilities, capacities, and cost 
parameters, are to be selected, evaluated as a system and integrated. The operational capabilities of the 
new modules are again denoted by an incidence matrix element, zi'~ n. Typically, the machine flexibility of 
the CNC modules is higher, and therefore, the number of elements with a value of one can be expected 
to be greater. Also, the setup time and cost can be expected to be lower, given such features as automatic 
tool changers and swift downloading of part programs. The notation for the setup parameters for the 
new modules reflect the difference in setup activity between current and new machine types. 

The number of current machines of type m and new modules of type n operating in a given period t 
is denoted by Mm, t and Nn,t, respectively. Mm, 0 represents the number of machines of type m (operating 
in various work centers) initially earmarked for replacement. As the current machines are phased out 
during the transition periods, the salvage value, Sin,t, contributes to the cash flow. The capital costs for 
new modules, which may be introduced in various periods, C~,'t, have to be estimated basedon price 
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Table 1 
The notation 
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Indices: 
i ~ I  
j~J~ 
m ~ CMT 
n E NMT 
t ~ T  

Index set of  part types 
Index set of  operations required for part type i 
Index set of current  machine types 
Index set of  new machine types 
Index set of time periods in the planning horizon 

Parameters." 
ZiPjm ~ tt Zijn 
~itjn, ~itjm 

t ?l 
Eijm~ 8ijn 

t it 
Pijm, Pijn 
SXitjm, SC;~rn 
ST", sc;; 
Di,t 
Pit, MCi,t 
c£, c", 
Sm,t 
d ' ,  d; 
rt 
T R  t 
r/t 

hi,t 
K 
Y 
~m 

= 1 if operation (i, j )  can be performed on current  and new machine types; 0 otherwise 
Unit  variable cost for operation (i, j )  on machine types m and n 
Fixed costs for an operation capability (i, j )  on machine types m and n 
Processing time for operation (i, j )  on machine types m and n 
Setup time and cost for operation (i, j )  on current  machine type m 
System setup time and setup cost for a new module of type n 
Demand  forecast for part type i in period t 
Price and material cost forecast for part type i in period t 
Capital costs for one unit of machine type m and n at the time of installation 
Salvage value, after tax on capital gain/ loss ,  of  one unit of machine type m disposed of in period t 
Straight line depreciation factors for current  and new machine types 
Discounting factor = 1/(1 + discount rate) t 
Tax rate for period t 
Adjusted tax factor for discount i.e., ( 1 - T R t ) r  t 
Uni t  inventory carrying cost for part type i in period t 
Number  of hours of  available capacity per year 
Slack for routing flexibility 
Last period by which a current  machine of type m has to be phased out 

Decision variables: 
Mm,t  
Nn,t 

Si,t 
L t  
Yijn ,t 
DP ' , t  , D P",t 
BVr 

Number  of current  machines  of  type m in period t 
Number  of new machines  of  type n in period t 
Production quantity for part type i on current  and new machine types in period t, respectively 
Number  of setups for part  type i on current  machines  in period t 
Number  of operating cycles in a period 
Production quantity for operation (i, j )  on new machine type n in period t 
Depreciation for current  and new machine types in period t, respectively 
Book value of assets at end of planning horizon 

trends for such equipment. Several other parameters shown in Table 1, including demand, price and 
material costs, have to be forecasted. 

As the new modules are installed, and the current machines phased out, the parts may be produced 
using both types of machines in the transition periods. The assignment of operations and production 
quantities among the various machine types is based on the effective utilization of flexibility, as denoted 
by the decision variables Xi, t and si, t for current machines, and Y~,t, Lt and Yi#,,t for new machine types. 

The objectives of the model are to: 1) select a subset of new machine types from the set NMT, 2) 
determine the optimum replacement sequence (decision variables Mm, t and N,,,t), and, 3) derive the 
optimal assignment of operations and production quantities (decision variables Xi,t, Si,t, Y~.t, Lt and 
Yi/n,,). Other decision variables may also be involved, depending on the model formulation. The objective 
function attempts to maximize the net present value of the after-tax cash flows over the planning 
horizon, while it is recognized that non-financial criteria are quite important in the evaluation of 
advanced manufacturing systems, financial analysis cannot be bypassed altogether (Kaplan, 1986; 
Miltenburg and Krinsky, 1987; Hundy and Hamblin, 1988; Azzone and Bertele, 1989). As Dean (1954) 
articulated in an early work, "another fallacy is the notion that some projects are so pivotal for the 
long-run welfare of the enterprise that they possess high strategic value; (this) lifts their evaluation into a 
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mystic realm beyond the ken of financial analysis; the idea that there is such a thing as strategic value, 
not ultimately rooted in economic worth, is demonstrably wrong". 

The problem addressed corresponds to the aggregate production and resource planning phases in the 
hierarchy of production planning and control. Essentially, machine-level equipment replacement, typi- 
cally requiring tactical-level decisions, is now elevated to considering a part family and its manufacturing 
processes as a whole. We next discuss the types of flexibility which are considered in the model. 

4. Flexibility 

The flexibility of CNC-based systems is due to reprogrammability and versatility of the equipment, i.e., 
the ability to perform several operations for a given job on the same setup in a machining center, as well 
as the capability of performing a given operation on several types of machines. When such machines are 
operated as a system, other types of flexibility also arise. These have been analyzed and incorporated 
into production planning models for flexible manufacturing systems (see Stecke and Suri, 1986, for 
instance). But, incorporating flexibility in economic evaluation models has continued to be a challenge. 

The definitions assumed in this paper correspond mostly to Browne et al. (1984). For modeling 
purposes, flexibility is viewed as the capability, as well as the ease (i.e., time, cost, or any other resource) 
with which an internally- or externally-induced change can be accommodated by a manufacturing system. 
An elemental capability (like machine flexibility) may be represented by a binary-valued (0/1) parame- 
ter, and a capability considered for introduction, by a binary-valued decision variable. Providing a 
capability, with a certain degree of ease (i.e., speed and cost of response to changes) may involve capital 
costs and/or  recurring operating expenses, which need to be justified in the overall system context. 

Consider machine flexibility, for instance, which is the capability and the ease of change in processing 
a given set of part types. The capabilities are represented by the binary-valued parameters zi'#~ and zi')n, 
and the ease, by the relevant setup times and costs (ST/~ m, ST", SC~j m and SC~). 

Expansion flexibility refers to the ability to add capacity and capability in a modular approach, by 
providing for that possibility in the original design. Apart from the capability of expanding/contracting a 
new system, an incremental implementation of a system is also viewed as the utilization of expansion 
flexibility. 

An incremental implementation may lead to foregoing strategic opportunities, but may also result in 
some key advantages (Jablonowski, 1987; Talavage and Hannam, 1988): 
a) lower capital outlays in each period; 
b) a hedge against several factors of uncertainty: later investments may be made in the light of the 

experience with earlier investments, and a partial resolution of uncertainty in demand and technologi- 
cal factors; modules for which better technology is anticipated, or capital costs expected to decrease, 
can be stalled to later periods, etc.; 

c) a slower transition, providing for a more effective learning (especially in part programming) and 
absorption of CNC technologies within the firm: given the high capital costs of FMSs, there has been 
a tendency to forego learning and experimentation, and flexibility not utilized effectively in several US 
firms (Jaikumar, 1986); 

d) pilot projects: initially implementing modules leading to tangible benefits, in a bottleneck area, for 
instance, may serve to reduce internal resistance and justification problems, apart from 'concept 
verification' (Jablonowski, 1987). 
It must be mentioned however, that a one-time installation of an integrated system may still be 

recommended as an optimal solution by the model. For the given problem, we assume that an 
incremental implementation is feasible, and its worth is reflected in the resulting NPV as a function of 
various implementation paths. 

Volume flexibility refers to the ability to operate profitably at varying overall levels. The volume 
flexibility of a given system may be explored with an output measure such as the NPV, or unit 
manufacturing cost over the planning horizon, in response to various volume-variety scenarios. 
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Routing flexibility is the ability to process a given set of parts on alternate machines, in response to 
unanticipated events like machine breakdowns. Alternate routings are made possible by the redundancy 
within a machine group, as well as the versatility of other machine groups. Additional loads are imposed 
on alternate machines, and a factor 3' may be introduced as a capacity slack to provide for this flexibility 
(as in Azzone and Bertele, 1989). But, it also requires duplications in tooling, adding to the costs of 
providing this flexibility. In the model described below, redundancy in each machine group, as well as 
adequate amounts of machine and process flexibility may be ensured through appropriate constraints. 

Process (mix) flexibility refers to the ability to produce a given set of part types in several ways (i.e., the 
ability to load tooling for a variety of parts in the tool magazines), so that changeovers can be effected 
with little time and cost. This flexibility can be measured by the number of part types that can be 
simultaneously processed without using batches (Browne et al., 1984). A high level of process flexibility 
requires loading tools and fixtures for a broader subset of parts in a system setup, which is restricted by 
the capacities of the tool magazines, fixtures and pallets. Assumptions relating to system setups are 
discussed in a later section. 

Product flexibility refers to the capability and ease in responding to new design requirements 
reactively, or in introducing new designs proactively. The ease is reflected in the engineering lead times, 
developmental costs of design, tooling, and part programs. All these are affected by the configuration 
chosen. Providing a high degree of product flexibility, in excess of current processing requirements, may 
result in higher capital costs and underutilization of capabilities, but it may serve as insurance for the 
future. 

The product flexibility requirements are determined through technological forecasting of the rate of 
new product introduction, the life cycle functions, and the capabilities required for future part family. 
The evolution of the part family and scenarios of products, processes, volumes and variety are best 
handled in lower-level, stochastic and nonlinear models. In higher-level, deterministic approximations, 
the index sets of parts and processes assumed should simply include the product-process domain 
anticipated over the planning horizon. 

For the estimation of various cost parameters, empirical data for CNC equipment has been available 
for several years (e.g., Steffy et al., 1973; Smith and Evans, 1977). As an example, we consider the 
reduction in non-perishable tooling costs (part of product flexibility). Two types of savings are known to 
materialize when switching to CNC equipment: first, since CNC involves computer-guided tool move- 
ments instead of manual operations, the jigs and fixture requirements are reduced; second, for 
operations which do require jigs and fixtures, standardized work holding devices meet the requirements 
in many cases. Steffy et al. (1973), for instance, provide empirical data on the relative magnitude of these 
two types of savings for various applications. In addition, data on part programming costs, savings in the 
downstream assembly operations (due to the consistency of parts manufactured upstream, with CNC 
equipment), and several other costs and benefits have been provided. Various methods for the 
comprehensive identification and estimation of cost parameters are also presented by Klahorst (1983) 
and others. 

5. Model  formulat ion 

The proposed model is formulated as a nonlinear integer programming problem (P1), as shown in 
Table 2. We first discuss the objective function, followed by the various constraints. 

The objective function maximizes the NPV of the after-tax cash flows arising from several sources. 
The NPV is now generally accepted as the proper evaluation criterion for these investments (Kaplan, 
1986; Miltenburg and Krinsky, 1987). The various expressions for the after-tax cash flows to be 
considered in this context are listed below (adapted from Suresh, 1992). 
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T a b l e  2 
P r o b l e m  (P1) 

Maximize NPV= + ~ Y'~ (Pi,t -MCi,t)Di,t(1 - T R t ) r t  
t i 

- ~_~ ~_~(Nn,,- Nn,t_,)C",t(1-1C.,t)r ` 
t n 

+ Y ~ _ ~ ( M  . . . .  1-Mm,t)Sm,trt 
t m 

+ ~"' ( ~ DP"t + y '  DPma)TRtrt 
t - n m - 

--~t [~i ~j ~n 8i~JnYi.in.t+ ~i ~j ~m ~[jmXi,']( 1-wgt)rt 

t ~ [ (  t~. j~. V"' . . . .  + E e [ j m M m t ) ] ( 1 - T R t ) r t  - . . ~ n 6 i j n l Y n , t ~ i ~ j m  ' . j  

- ~t [L'~SC'~N"'+ ~i ~ F-'s'"SC;jml J 

- ~ [ ~ i  ½ ( D i t / L t ) h i , , + g ( L t ) l ( 1 - T R t ) r t  

+ BVTr T 
S.t. Mm, z <_ Mm,t_ l Vrn, t, 

Nn,t >_ Nn,t_ l Vn, t, 

Mm,t = O Vm, t = "r m, 

Yi,t + Xi,t = Di,t Vi, t, 

Yijn,t ~ zi'~nDi,t ~i, j, m, t, 

Yiyn,t = Yia Vi, j, t, 
n 

~_~ ]~_~P';.Yijn,t + LtST"Nn,t < KTN.,t Vn, t, 
i j 

E EP;jmXi,, + E ESTi'jmSi,t<K'Mm,, Vm, t, 
i j i j 

Xi, t < Vv t Vi, t, 

si, t - L  t < V ( 1 - v t )  Vi, t, 

L t - s i ,  t < V ( 1 - v t )  Vi, t, 

DP",t=DP;',t_I+(N.. , -N. , t_ l )C", td '  ~ Vn, t, 

DP' ,  = Mm.tCLd" Vm, t, 

BV T - Y'~ Y'~ (Nn, ' -Nn, t_ , )C", t (1-ICn, t )+ ~ Y'. DP",, = 0. 
t n t n 

(a) 

(b) 

(c) 

(d) 

(e)&(f) 

(g)&(h) 

(i)&(j) 

(k) 

(l) 
(1) 
(2) 
(3) 
(4) 
(5) 

(6) 

(7) 

(8) 

(9) 
(10) 
(11) 
(12) 
(13) 

(14) 

(a) Sales revenue less material costs: 

+ E E (Pi,t  - MCi,t)Di,t(  1 - T R t ) r t .  (a) 
t i 

The above expression, denoted by 4', is constant as per assumption of  the model .  The parameters Pi,t, 
M C i ,  t ,  and Di,  t are the forecasts of  price, material cost and demand, respectively, for part type i for 
period t. TR t is the tax rate and r t is the discounting factor assumed. 
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(b) Capital costs of  new modules: 

- E Y', (Nn,t - Nn,t-1)C",,(1 - ICn,t)rt" (b) 
l n 

The term N,, t - N,, t_ 1 represents the number of new modules of type n installed in time t, and C n r ,  t is 
the capital cost applicable for that period. ICn, t is the investment credit factor, if applicable. 

(c) Salvage value of  current machines: 

+ E E(Mm,t -1-Mm,t )Sm, tr t  • (C) 
t m 

The term Mm, t_ 1 - Mm,t denotes the number of machines of type m disposed of in time t, and Sin, t is 
the salvage value, after adjusting for tax on capital gain/loss. As per the Tax Reform Act of 1986 in the 
US, the tax rate TR t applies to capital gains as well (Canada and Sullivan, 1989, p. 186). All current 
machines of a given type are assumed to have the same salvage value, which requires that the current 
machines be grouped accordingly. 

(d) Depreciation charges: 

+ t ~ ( n  ~ D P ' ' t  + ~DP"t)ZRtrt 'm - (d) 

The depreciation charges for the current and new machine types are computed in constraint sets (12) 
and (13) below. 

(e)-(h) Variable and fixed costs: The variable and fixed costs on new and current machines are given 
by 

- E E E E~'i~'nYijn,t( 1 - T R t ) r t ,  
t i j n 

- E E E E$;~mXi,t( 1 - TRt)rt ,  
t i j m 

- E E E EEi'~nNn,,( 1 - T R t ) r t ,  

(e) 

(0 

(g) 

(h) 
t i j n 

- E E E Ee;ymMm,t( 1 - T R t ) r t .  
t i j m 

(i) & (j) Setup costs: The expressions for setup costs consider the differences in setup activity between 
traditional and CNC equipment. For the new modules, the setup costs depend o n  Lt ,  the number of 
system setups in a period, and the costs of setting up machines of various types in every system setup: 

~ Z t (  Y~ s C : g n t ) ( 1  - W R t ) r  t . ( i )  

t n 

Since both L t and Nn, t are decision variables, this term is nonlinear. Another type of cost which is 
related to the number of system setups is the process flexibility cost, which, for convenience, is considered 
along with inventory costs below. The setup costs for the current machine types, based on traditional 
setups, are given by 

-- ~t (~i ~j ~m SCi~mSi,t) ( 1 - T R t ) r t '  ( J )  

where si, t is the number of lots or setups for part type i on current machines in period t. 
(k) Inventory and process flexibility costs: With mathematical programming models, the dynamics of 

multiproduct production runs cannot be fully captured. Approximations for work-in-process inventory 
are required, with more refined estimates being obtained through queuing network models and 
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simulation. An average lot size of Di,JL t is assumed, and the inventory carrying and process flexibility 
costs are approximated as 

The above expression is nonlinear. The second term, g(Lt), is a real-valued function which represents 
the capital cost of providing process flexibility. With more costly tool magazines, providing higher 
capacity, increased number of pallets and fixtures, etc., the number of system setups (L t) can be reduced. 
System setups are necessitated primarily by the capacity limitations of tool magazines, fixtures and 
pallets, and having to switch between subsets of the part family based on short term demand schedules, 
and efficient loading of the system. They typically occur in intervals of one to three weeks (Stecke, 1986), 
and a tight bound on the value of L t can be arrived at. For instance, with 50 work-weeks in a year, values 
between 12 and 50, corresponding to monthly and weekly setups, respectively, can be reasonably 
assumed. 

(1) Value of the assets at the end of planning horizon: Finally, the value of the assets at the end of the 
planning horizon needs to be included. The book value is assumed when the market value cannot be 
precisely estimated (Miltenburg and Krinsky, 1987): 

+ BVrr r.  (1) 

This is computed in constraint set (14) below. The model constraints are considered next, starting with 
the restrictions on implementation. 

Implementation constraints 

The following two constraint sets specify that the current machines are phased out as the new modules 
are installed. It is assumed that the installation of new modules and the replacement of current 
equipment take place at the beginning of a period. Also, the new modules are not to be replaced during 
the planning horizon. 

Mm,t <_Mm,t_l Vm, t, (1) 

Nn,t>N.,t_l Vn, t. (2) 

Based on design and strategy considerations, relating to a specific problem situation, several other 
constraints may be added. Some of these, gleaned from the literature on implementation of these 
systems, are listed below: 
a) Technological precedence: some modules may have to be installed before certain others to ensure 

technical feasibility. 
b) Useful life of current equipment, denoted by the last period before which a current machine type has 

to be phased out: 

Mm, t ~ -  0 Vm, t = ~',,. (3) 

c) Ensuring adequate amount of machine, product, routing, process and other flexibilities: the selection 
of modules from the candidate set NMT may be constrained by the need to provide adequate 
amounts of each of these flexibilities. For instance, routing flexibility, 'pooling effects', etc. are 
enhanced by limiting the number of modules selected, so that there is redundancy in each machine 
group. Limiting the number of machine groups also reduces maintenance complexity and induces 
standardization in tooling. 

d) Financial constraints: spreading the capital costs and risk, a major consideration in practice, is 
ensured by specifying a capital budget for each period. 
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e) Minimizing disruptions: constraints may be imposed on the number of new modules to be installed in 
a period. 

f) Timing of introduction for part types and modules: some technologies may be anticipated in later 
periods and more expensive modules may be installed only after a certain period; some part types and 
modules may be introduced in the beginning to maximize learning and experimentation; some part 
types may be introduced only in later periods; the selection of part types and modules in the initial 
periods may be geared to achieve immediate and tangible impact on quality and/or  lead time: since, 
achieving a reputation for quality requires some length of time. 
For clarity of presentation, only constraint b) (enforcing the useful life of current equipment) from the 

above set was utilized in this research. Presence of this constraint set in the model delineates the 
'gradual replacement' phenomenon more effectively. Moreover, constraint set b) can result in a 
substantial reduction of the number of feasible states in a dynamic programming solution methodology. 

Assignment o f  operations and production quantities 

First, the annual demand for a part type i(Di, t) is split into the quantity produced completely on 
current machine types (Xi, t) and on new machine types (Yi,t). This assumption stems mainly from 
differences in processing requirements, and assuming a low interchangeability of work-in-process 
between traditional and CNC equipment. Thus the following constraint is introduced: 

Yi,t "~ Xi, t  = Di,t Vi , t .  (4) 

After the transition periods, the X/,t-values are set to zero. The CNC modules are assumed to be 
operated as a system or, a mini-system during transition, and a system setup time, ST", is assumed, 
during which the various tool magazines are loaded. 

We next consider the production assignments on new machine types. Production for an operation 
(i, j) in period t, can be assigned to a machine group only if it is capable of performing the operation: 

< " ~ Vi, j, n, t. (5) Yijn ,t -- Zijn Lli,t 

A given operation (i, j) may be assigned to different machine types, but the total quantity produced 
should equal Yi,t: 

Y'~rij,,, = Yi,, Vi ,  j ,  t. (6) 
n 

The capacity constraint for a new module of type n is given by 

E EPi'~',Yijn,, + L tST"N, , t  < KyN, , t  Vn ,  t. (7) 
i j 

The first term represents the total processing time, and the second the total time lost due to system 
setups on a given machine type. 

Similarly, the following four constraint sets hold for production assignments on current machine types: 

E E P [ j m X i , t  q- E E SWi;mSi,t <-~ g ' M m , ,  
i j i j 

Xi , t  <-~ VI'Pt V i , t ,  

s i , t - L t < V ( 1 - ~ , t )  Vi ,  t,  

L t -- Si, t <_~ V ( 1  - v t) Vi ,  t. 

Vm, t, (8) 

(9) 
(10) 
(11) 

It is assumed that a given operation (i, j) can be performed on only one current machine type, which 
is a reasonable assumption in most cases. With this assumption of limited machine flexibility for current 
machines, Xi, t and Si, t a r e  the production quantity and number of setups for all the operations for a 
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given part type on the appropriate machines. After the transition periods, when Mm, t = 0, both the 
production quantities and setups are set to zero by (8). But, during transition, the number of setups for 
an operation (i, j)  is assumed to equal Z t. Thus, the setups either equal zero or Lt, which is ensured by 
constraint sets (10) and (11), where V is a large positive number and v t is a binary variable. 

Depreciation charges and final value of the assets 

Assuming straight-line depreciation, the depreciation charges for new modules are computed using 
the following constraint: 

DP",, = DP",/_ 1 + (Nn,t-Nn,t_l)C~',td ~ Vn, t. (12) 

It may be noted that the additional depreciation due to the installation of new modules is based on the 
capital costs at the time of installation. For current machine types the depreciation charges are written as 

DPm',t =Mm,tC'd'  ~ Vm, t. (13) 

when Mm, t = 0, DPmr ,t becomes zero. The depreciation reduces when the number of machines is reduced, 
and the term M,~,t_ 1 -Mm, t  in the objective function ensures that the salvage value and tax effects on 
capital gain/loss are taken into account in that period. Finally, the book value of the assets at the end of 
the planning horizon is considered if the market value cannot be estimated: 

BVT-- E E (gn,t-gn,t-1)f~t, t(  1 - ICn. , )  At- E E DP",t = 0. (14) 
t n t n 

A solution procedure for problem (P1) is developed next. 

6. The algorithm 

Problem (P1) has several special characteristics which may be utilized to simplify the formulation. 
They may also be used for developing an efficient solution algorithm. While computational efforts for 
this problem may be easily justified, given the high capital costs and risk of these systems, one is still 
interested in efficient solution procedures to facilitate sensitivity analysis, and interactive decision 
making. 

To begin with, (P1) can be simplified by: 1) writing the after-tax, discounted cash flow from sales less 
material costs as ~b; 2) substituting the depreciation and book values from constraints (12) to (14) into the 
objective function; 3) combining the objective function terms involving decision variable Nn,t; 4) 
combining the objective function terms involving decision variable Mm,t; and 5) eliminating constraint set 
(5). The reduced problem, (P2), is summarized in Table 3. 

The objective function terms involving Nn,t, in (P1), include capital costs (b), depreciation (d), fixed 
costs (g), and book value (1). The depreciation and book value expressions, given by constraints (12) and 
(14), are substituted into the above terms. They can be reduced, as shown in the Appendix, to the 
following form: 

+ E E ° t n , t N n , t  • 
1 n 

Similarly, the terms involving Mm, t include salvage value (c), depreciation (d), and fixed operating 
costs (h) in the objective function, along with constraint set (13). These are reduced to the following 
terms, as shown in the Appendix: 

+~moMmo + ~, E[3m,tMm,t • 
t m 

The values for the parameters, Otn, t and [~m,t, a r e  also provided in the Appendix. 
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Table 3 
Problem (P2) 
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max NPV= ~b- )-'. E a . , N . t +  E EBmtM,., 
t n t m 

- E )-'. E Eo:j.y,,..tn, 
t i j n 

- E E E Es;j.x,,,,, 
t i j m 

-~[ttEzCnant"b~i~mSi'tZC~Jml~tn " 

- ~ t  [ ~ i  ½(Dit / /gt )hi , t+g(nt)]~qt  

s . t .  Mm,t <- Mm,t-1 Vm, t, 

Nn,t>N.,t_ 1 Vn, t, 

Mm,t=O Vm, t = z  m, 

Yi,t "4- Xi, t = Oi, t Vi, t, 

Yq.,t = Yi,, Vi, j ,  t, 
n 

E EPi';nYqn,t + LtST"N., t  < K'Nn,t Vn, t, 
i j 

E Ep: jmXi , t  + E ESTi'jmSi,t<KyMm,' Vm, t, 
i j i j 

Xi, t <~ Vlp t Vi ,  t ,  

si, t - L t < _ V ( 1 - t ' t )  V i ,  j , t ,  

L t - s i ,  t < V ( 1 - v t )  Vi, j , t .  

(a)&(b) 

(c) 

(d) 

(e)&(f) 

(g) 

(~) 

(2) 
(3) 
(4) 

(6) 

(7) 

(8) 

(9) 
(10) 

(11) 

Constraint set (5) of (P1) ensures the assignment of production quantities consistent with the 
operation capabilities of various machine types, as indicated by the parameters zi'~ .. These machine 
flexibility parameters assume a value of one for a capability and a value of zero for an incapability. These 
constraints can be eliminated by assigning large values for the variable cost parameters (8i~. in the 
objective function ('the big M method') corresponding to incapabilities. At the expense of intuitive 
appeal, an incapability is thus treated as a capability with a low degree of ease. Alternatively, a matrix 
generator may be utilized to generate the problem. In this case, the yu.,,-variables corresponding to 
zero-valued zi'~. may be eliminated altogether while generating the problem. 

In (P2), the three nonlinear terms remain, in expressions (e) and (g) of the objective function, and in 
constraint set (7). One approach to remove the nonlinearity is to linearize these terms through suitable 
approximations. One can then solve the linearized problem through a branch and bound procedure. But, 
in the proposed algorithm, the nonlinearity is retained, and the problem is solved as a partitioned, 
two-level problem. The higher-level problem, referred to as the configuration-level sub-problem (CLSP), 
consists of a recursive dynamic programming (DP) equation. The lower-level problem, referred to as the 
operational-level sub-problem (OLSP), is a mixed integer linear program, as shown in Table 4. Values for 
the configuration-related variables (Mm, t and Am, t) are generated by (CLSP), and values for the 
operational variables (Xi,t, si,t, El,t, Yijn,t and L t) determined by (OLSP). 

The configuration-level sub-problem (CLSP) is formulated as a forward-inductive dynamic program- 
ming problem. The stages of the DP denote the time periods in the planning horizon, while the s tates  
represent the number of machines of each type, operating in a period, as shown in Figure 1. This 
multi-dimensional state vector, consisting of { M l , t ,  M2, t . . . .  , MICMTI,t} and {Nl,t, N2, t . . . .  , NI N~erl,t}, is 
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Table 4 
Operational level sub-problem (OLSP) 

395 

Z*([M,,N,],[M,_,,N,_d) 

=max- ~ T'. ~.6"~.Yij.fl7t- ~ ~ ~Si'jr.Xi,dT,-[L,~SC'N.,+ ~i m~Si'tSC~j'] r/' 
i j n i j m 

-[~i l(Dit//Lt)hi,lJrg(Lt)ll~t-~n,tNn,t-I'~m~}m,tMm,t 
s. t .  Yi,t + X i , t  = D i , t  V i ,  

~., Yij.,t = Yi,t Vi, j ,  
n 

~. ~Pi';nYijn,t + LtST"N.., < KyN.,t Vn, 
i y 

E EP'jmXi, t  + E EST/ jmS; , t<g'Mm,t  Vm, 
i j i j 

Xi,t < Vv Vi, 

Si, t --  L t <_ V(1-  v) Vi, j, 

L ~ - s i , t < V ( 1 - v  ) Vi, j ,  

and, any additional side-constraints involving [Mr, Nt ] and [ M t_1, Nt-  ] ]. 

(4) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

denoted by [Mr, Nt]. Let 0, be the set of all possible combinations of [M t, Art]. fit is the resulting state 
space in stage t, and its size can be reduced substantially by considering several design and implementa- 
tion requirements. 

It is particularly useful to apply queuing network approximations at this stage, to narrow the design 
requirements, and screen out states corresponding to poor configurations. Multimachine systems like the 
FMS typically involve only three or four machine groups, with one or more machines in each group. To 
ensure adequate amounts of routing flexibility, the number of machine types selected may be restricted 
to a certain limit, so that there is redundancy of machines of each type. The state space is also reduced 
due to implementation requirements. After the transition period, for instance, the state vector corre- 

t - O  t - 1  t - 2  t - T  

[1~, N,] 

IIIIIIIIIIIIII~ 

~II I I I I I I I I l [ l l l~ 

IIIIIIIIIIIIII 
IIIIIIIIIIIIII 

IIIIIIIIIIIIII 
I I I I I I I I I I I I I I  

Fig. 1. Dynamic programming formulation 



396 V. Lotf~ N.C Suresh / Flexible automation investments 

sponds only to the new machines of various types. A tight upper bound on the number of machines 
required in every period can be established by assessing the capacity required. At every stage, several 
states are infeasible, and so are several transitions from the feasible states of one stage to the next. 

The solution to the operational-level sub-problem (OLSP) yields the optimal (negative) cost of 
utilizing M t current machines and N t new modules in period t, given M t_ 1 current machines and N t_ 
new modules in operation in period t - 1. Let Z * ( [ M ,  Nt], [Mt_l, Nt_l]) be this optimal (negative) 
cost. Further, let ft([Mt, Nt]) be the optimal cost of utilizing M t current machines and N t new modules. 
In dynamic programming, this is the optimal-value function. For the first period, only the transition from 
the current machines to [M 1, N 1] is involved. Hence, 

f l ( [M, ,  N1])=Zl*([M1, N1][M0, No]), [M1, N1] Eli/1- (15) 

For subsequent stages (periods), the following recursion can be applied to calculate the cost: 

(CLSP) 

f,([ M t, N, ]) = max{Z*([ Mt, N t ], [Mt_l, Nt_l] ) + f t - l ( [  M,-1, N,-I])} 

Mt ~ Mt -  x, 

Nt ~ Nt-1, 

M t = 0 :  t >_ ~" m .  

(16) 

(17) 

(18) 

(19) 

The value of [Mr, N t] that maximizes (16), for a given stage t, is denoted by [M t, Nt]* and the optimal 
decision function is denoted by dt([M t, Nt]*). The optimal decision function stores the previous optimal 
state vector. 

The value of f r [ M r ,  Nr], found by applying the recursion, gives the maximum NPV for utilizing 
[ M r , N  r] in the last period T. The value of [M r, N r] that maximizes fr(") ,  denoted by [Mr, Nr]*, yields 
the optimal solution to (CLSP). The decisions corresponding to this solution are found, beginning with 
dr([M r, Nr]*) and back-tracking through the optimal decision function. This yields the optimal number 
of current and new machines in each period. The optimal decisions may then be substituted into (OLSP) 
and the optimal solution of the resulting (OLSP) gives the optimal values of the operational decision 
variables. 

The operational-level sub-problem (OLSP) is a mixed integer linear programming problem (MILP), as 
mentioned earlier, and it can be solved by a standard MILP package. The lower-level problem is 
executed for several feasible states in the higher-level routine. Since Mm, t and N,,.t are passed on as 
parameters, two of the three nonlinear terms are linearized: the term (e) in the objective function of (P2) 
and constraint set (7). In addition, since (OLSP) is executed for various states (periods), the decision 
variables all correspond to a single time period. This eliminates the time subscript, and significantly 
reduces the number of variables and constraints. It is also worth mentioning that (OLSP) has only one 
binary integer variable (v). Consequently, the problem can be reduced to two standard linear programs 
by letting v = 0 once and then v = 1. The better of the two solutions is then passed back to (CLSP) as the 
optimal solution. The only nonlinear term remaining corresponds to inventory and process flexibility-re- 
lated costs: 

- [ ~ i  l ( D i t / g t ) h i , t  + g ( g t ) ] ( 1 -  TR t ) r t  • 

This is replaced by a piecewise linear approximation, involving feasible ranges of values for L t. Values 
between 12 and 50 may be reasonably assumed, for instance, as mentioned earlier. It is also difficult to 
envision the costs associated with process flexibility as a continuous function. We next consider a 
numerical example to illustrate the basic capabilities of the model. 
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Table 5 
Machine-related data 

Current machines: 

Type Mm, o C" "fm 
(000S) 

Salvage values Sm,t (000s) in year 

1 2 3 4 

1 2 500 4 125 100 60 30 
2 1 400 4 100 80 60 25 
3 3 250 3 80 55 20 0 
4 2 250 3 75 65 15 0 
5 2 175 2 90 45 0 0 
6 2 200 3 75 55 25 0 

New modules: 

Type Capital costs (C~,',t) (O00s) !n year 

1 2 3 4 5 6 7 8 

1 1050 1050 1000 1000 950 950 950 950 
2 1100 1050 1050 1000 1000 1000 1000 1000 
3 950 950 950 900 900 900 900 900 
4 1000 1000 975 975 975 975 950 950 
Budget 3300 3300 1100 0 0 0 0 0 

7. A numerical example 

The inputs for the numerical example are presented in Tables 5 to 7. There are six types of current 
machines, with one to three machines of each type to be replaced. The salvage values, initial capital 
costs, the last period before which each current machine type must be replaced are shown in Table 5. 
Four new machine types, or modules, are considered for this limited example. The capital cost for these 
machine types, and the capital budget are also shown. A planning horizon of 8 years, a tax rate of 34%, 
and a discounting factor of 0.12 are assumed. 

The part family consists of 3 part types, having the demand forecasts, prices, and material costs shown 
in Table 6. This scenario is based on assumptions of increasing demand and material costs, but declining 
prices. The three part types require 5, 5, and 4 operations, respectively. The operation capabilities of 
current and new machines are shown in Table 7. For brevity, data on setup and operation times and 
costs have been omitted. 

Table 6 
Part-related data 

Part Year 

i 1 2 3 4 5 6 7 8 

Demand forecasts ( Di, t ): 
1 8000 8250 8500 8750 9000 9250 9500 9500 
2 7000 7500 8000 8500 9000 10000 10000 10500 
3 6000 6000 6500 6500 6500 7000 7000 7000 

Price forecast (PRi,t)." 
1 165.00 160.00 155.00 150.00 145.00 145.00 140.00 140.00 
2 175.00 165.00 157.00 153.00 150.00 147.00 145.00 142.00 
3 175.00 165.00 160.00 160.00 160.00 160.00 160.00 150.00 

Material costs (MCi, t): 
1 95.00 97.85 100.79 103.81 106.92 110.13 113.43 116.84 
2 75.00 78.00 81.12 84.36 87.74 91.25 94.90 98.69 
3 80.00 81.60 83.23 84.90 86.59 88.33 90.09 91.89 
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Table 7 
Machine capabilities 

V. Lotfi, N.C. Suresh / Flexible automation investments 

Capabilities of current machines (z'jm) Capabilities of new modules (zi'~n) 

Operation (i, j )  Machine Module 

i j 1 2 3 4 5 6 1 2 3 4 

1 1 1 0 0 0 0 0 1 0 0 0 
2 0 1 0 0 0 0 1 1 0 0 
3 0 0 0 1 0 0 0 1 0 0 
4 0 0 0 0 1 0 0 1 1 1 
5 0 0 0 0 0 1 0 0 1 1 

2 1 1 0 0 0 0 0 1 0 0 0 
2 0 1 0 0 0 0 1 1 0 0 
3 0 0 1 0 0 0 0 1 0 0 
4 0 0 0 1 0 0 0 1 1 1 
5 0 0 0 0 1 1 0 1 1 1 

3 1 1 0 0 0 0 0 1 1 0 0 
2 0 0 1 0 0 0 1 1 0 0 
3 0 0 0 1 0 0 0 1 1 1 
4 0 0 0 0 0 1 0 1 1 1 

The optimal solution for the numerical example is presented in Tables 8 to 10. The current machines 
are seen to be utilized in period 1 and salvaged at the end of this period. However, due to the overall 
cost-effectiveness, one new module each of types 1, 2 and 4 are obtained at an early stage (period 1). 

Observing the aggregate production schedule (bottom of Table 8) during period 1, it is seen that the 
demands for part types 1 and 2 have been split among current machines and new modules. Table 9 

Table 8 
Optimal replacement and production plan 

m Year 

0 1 2 3 4 5 6 7 8 

Current machines ( Mm,t ) : 
1 2 1 
2 1 1 
3 3 1 
4 2 1 
5 2 1 
6 2 1 

n 

New modules ( Nn, t ) : 
1 1 2 
2 1 1 
4 1 2 

Part i 

Production on current machines ( Xi,t): 
1 5576 - - 
2 790 - - 
3 - - - 

Production on new machines ( Yi,t ): 
1 2424 8250 8500 
2 6210 7500 8000 
3 6000 6000 6500 

8750 
8500 
6500 

9000 
9000 
6500 

9250 
9500 
7000 

9500 
10000 
7000 

9500 
10500 
7000 



l,(. Lotfi, N.C. Suresh / Flexible automation investments 399 

Table 9 

Operat ion assignments 

Assignments  on Assignments on new modules Yijn,t 
on current machines n i : j  Year  

m i : j  Year  1 1 2 3 4 5 6 7 8 

1 1:1 5576 1 1:1 2424 8250 8500 8750 9000 9250 9500 9500 

2:1 790 1:2 2424 8250 8500 8750 9000 9250 9500 9500 

2:1 6210 7500 8000 8500 9000 9500 10000 10500 

2 1 :2  5576 2 :2  528 7500 8000 8433 7400 5367 4333 3800 

2 :2  790 3:1 6000 6000 6500 6500 6500 7000 7000 7000 

3 :2  6000 6000 6500 6500 6500 7000 7000 7000 

3 2 :3  790 
2 1:3 2424 8250 8500 8750 9000 9250 9500 9500 

4 1:3 5576 2 :2  5682 - - 67 1600 4133 5667 6700 

2 :4  790 2 :3  6210 7500 8000 8500 9000 9500 10000 10500 

2:5 6210 4500 3789 3026 9000 9500 10000 10500 

5 1:4 5576 1:4 . . . .  4553 - 5421 3605 

2 :5  790 3 :4  . . . .  6500 - - - 

6 1:5 5576 4 1:4 2424 8250 8500 8750 4447 1408 4079 5895 

1:5 2424 8250 8500 8750 9000 9250 9500 9500 

2 :4  6210 7500 8000 8500 9000 9500 10000 10500 

2:5 - 3000 4211 5474 . . . .  
3 :3  6000 6000 6500 6500 6500 7000 7000 7000 

3 :4  6000 6000 6500 6500 - 7000 7000 7000 

presents the operation assignments on current and new machines. Consider part type 1, for instance, 
which requires five operations. The production has been assigned to current machines 1, 2, 4, 5 and 6 in 
period 1, and new modules 1, 2 and 4. Table 10 shows the cash flows corresponding to the above 
replacement and production plans. It is seen that the NPV amounts to $4.463 million. 

Table 10 

Cash flows for optimal  solution 

Cash flows (000s) in year Book value 

1 2 3 4 5 6 7 8 

Sales less material cost: 
1830.00 1695.64 1601.06 1475.74 1347.67 1325.76 1172.73 1081.48 

Capital costs: 
- 3150.00 - 2050.00 0.00 0.00 - 1000.00 0.00 0.00 0.00 

Depreciation: 
133.88 221.00 221.00 221.00 263.50 263.50 263.50 263.50 

756.25 
Salvage value of  current machines: 

525.00 400.00 0.00 0.00 0.00 0.00 0.00 0.00 
Depreciation: 

75.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Operat ing costs: 

- 219.34 - 87.58 - 122.93 - 155.98 - 79.92 - 124.23 - 139.13 - 183.60 

Total cash flow: 
-805.03  179.05 1699.12 1540.77 531.25 1465.04 1297.09 1161.38 
Present worth: 
- 805.03 159.87 1354.53 1096.69 337.62 831.30 657.15 525.35 305.4 

Net present value (@ 12%) = $4.4629 million. 
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The above problem was solved using a computer implementation of the algorithm. The program was 
developed in FORTRAN IV on an IBM 3084 under CMS environment. The dynamic programming part 
of the algorithm was coded using a forward-inductive approach, emphasizing computational efficiency 
(instead of memory efficiency). That is, the transitions between all current feasible states and potential 
next states were first evaluated. A linear list was utilized to store the end-nodes (corresponding to the 
current and next states) and the associated costs of all feasible arcs. Next, all of the generated arcs were 
scanned to identify optimal current states for feasible next states. The optimal current states were then 
stored in the decision vector. This approach requires additional computer storage (memory) but results 
in a computationally more efficient code. The reason is that once a state becomes infeasible, all arcs 
(next states) emanating from it can be skipped. Whereas, if the next states were evaluated, for optimal 
current states, one at a time, an infeasible current state would be tested many times. 

Initially, there were 648 states, resulting in 17036 feasible arcs (OLSPs). Each OLSP included 40 
variables and 45 constraints. The (OLSP)s associated with feasible arcs were solved using LINDO 
(Schrage, 1984). LINDO was utilized because of its relative ease of use, availability on a mainframe with 
virtual memory technology, and having the capability of being interfaced with the DP code. Overall, the 
case problem had 3314 consistent next states and 34297 feasible arcs. The solution process required 
about 4 hours of execution time. Clearly, the required computational effort is well justified for the 
magnitude of savings achieved. 

8. Conclusions 

In this paper, a multi-period replacement model was developed for flexible automation systems. 
Several types of flexibility were considered concurrently in the economic evaluation. The model was 
aimed at deriving an optimal schedule for the replacement of current machines, implementation of new 
modules, and production plans capitalizing on flexibility during transition and subsequent periods. The 
model was intended to serve as an analytical approximation, along with closed queueing networks, prior 
to detailed analysis of specific system configurations. The formulation was simplified, and a solution 
procedure developed by partitioning into a two-level problem. Dynamic programming methodology was 
utilized at the higher, configuration level, while a mixed integer program was employed at the lower, 
operational level. The objective function involved maximizing the net present value of the cash flows. 

Several extensions of this work are warranted. Further refinements in modeling process flexibility, as 
well as other types of flexibility, are likely to be of significant value. The impact of other production 
planning assumptions, particularly those involving system setups and lot sizes, needs to be investigated. 
On the financial dimension, the influence of accelerated depreciation methods (ACRS) on the invest- 
ment decisions is one area for further investigation. The formulation also needs to be extended into a 
multiple-criteria decision problem, in which the goal of maximizing the net present value has to be 
tempered by the pursuit of other, conflicting strategic goals. The model developed in this paper 
represents an initial step in structuring this critical investment problem. 

Appendix 

Objective function coefficients of N,,,t (an. t )  
The following terms in the objective function of Problem (P1) are combined first: 

-- tr - ~ ,  ~ , ( N , , . t  g n , t - l ) C n , , (  1 - IC, , , , ) r  t 
l n 

q- E E DPn",tTRt r t  f r o m  
t n 

(b) 

(d) 
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- E E E Ee;~ .N. , t ( I  - T R t ) r ,  
t i j n 

+ B V r r  r .  

F rom  constraint  (14), 

BVTrT = E E (N. , t  - N.,,_ ,)  C.',t(1 - IC. , t ) r  T - E • DP",trT. 
t n t n 

(g) 

(1) 

This is substituted in the  above expressions to get 

- E E ( N n , t - N ~ , t _ l ) C ~ ' , t ( 1 - I C n , t ) r t +  EE(Nn,t-Nn,t_lIX.~n,tk'~tr'tt r l  - I C . , , ) r T  
t n t n 

+ E EDP~',tTRtrt - E EDP~',trr - E E E Ee[}.Nn,t( 1 - T R t ) r t -  
t n t n t i j n 

This summarizes  to 

-- E Z ( g n , t - g n , t - 1 ) C ~ ' , t (  1 - I C ~ , t ) ( r t -  rT) + E E D P " , t ( T R t r t -  rr)  
t n t n 

- E E Y'. Ee[}.N.,,(1 -TRt)r  ,. 
t i j n 

Let  (1 - ICn, t) (r t - r r) = at, T R t r  t - r T = b t and (1 - T R  t )  r t = ~lr The above t e r m s  then  reduce  to 

- E  E ( N . , t - N n , t - 1 ) C " , t a , +  E E D P ; ' , t b / - -  E Y'- E Ee;~.N.,t*lt. 
t n t n t i j n 

The  first and third terms can be expanded  as follows, for t = 1 . . . .  , T, for  a given n (with N~, 0 = 0): 

( ) ( ) + - C ~ t , l a l  + C 2 , 2 a 2  + E EEil~nTI1 Nn,1 "4- - C 2 , 2 a 2  + Cn~,3a3 "4- E E E i j n n 2  g n , 2  + " ' "  
i j i j 

( C a  ) ( ) + - . ,r-1 r - ,  + C~[.raT+ E Ee[} . r l r - ,  N. ,T- ,  + --C' ,TaT+ E Ee i i . r l r  N.,r.  
i j i j 

We next expand the second (deprecia t ion)  terms, ~ Y',DP",tb t, using constraint  set (12): 
t n 

Dp", lb  , = (N . ,  1 - N,,,o)d'Cn',,bl, 

DP"2b  2 = ( N~,, - N~,o)d~C",lb 2 + ( N~, 2 - N~,,) d"C '2b  2, 

(A)  

D P "  /" = ( N n ,  1 - N  Xd "r ' '  b " "  n , T - l V T - 1  n,OI n~'~n,1 T - 1  "4- + ( N n , T _  1 - N  ~ , 4 " ( ' "  I~ n , T - 2  lt*n " , - -n ,T-1VT-  l ~ 

DP"~b~=(S . .1 -S . .o )d"C". lb~+  . . .  + ( N . ~  ~ ~ , , r , ,  h , - -  n ,T_ l l t~n , . .~n , tUT.  

Summing the above, we get 

+ ~. E D P " , b t  = +C",ld~(bl  + b2 + "'" +bT) -- C',2d~(b2 + b3 + "'" +br )N . , l  
t n 

+Cn',2d~(b 2 + b 3 + . . .  +bT) -- Cn',3dn(b3 + b 4 + . . .  +bT)gn,  2 

-lt-Cttn,T-ld"tbT-ln~. +bT)  -- C',Tdn(bT)Nn,T-1 + Cn',rd~bTNn,T" ( u )  
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Combining (A) and (B), the coefficients for Nn, t are as follows: 

u..,: ~.,,= -C'ha,  +C;,2a2+ E E';~.~I +C" y ( b ,  +b2+ "'" +b~) 
i y 

-- C",2d,~(b 2 + b  3 + . . .  + b r )  , 

- c "  a N,,,2: an ,z= "'n,2 2+C,~',3a3 + Y'~.,eij,,'Oz+C~,',2d;'(b2+b3+ "'" +bT-) 
i j 

-C ' .3d" (b  3 + b 4 + . . .  +br) , 

N n , T - I  : = - C "  a " + C "  " " " Oln,T-1 n,T-I r - l  +C•',rar + E ~_.eij.~Tr-1 n , r - ldn(br- l  + b r ) - C ~ , r d . ( b r ) ,  
i j 

vv J tt VV N.,r: a. ,T= -Cn' ,rar+ E Ee i j .  + Cn,rd.br~Tr. ! 
i j 

Objective function coefficients of  Mm, t (tim,t) 

The following terms in the objective function are combined: 

+ E E(Mm, , -~-Mm, , )Sm, , r ,  
t m 

+ E E DPm,tTRtrt 
t m 

- E E E Ee'jmMm,t( 1 - T R t ) r t .  
t i j m 

The depreciation term can be substituted from constraint set (13): 

, - -  ? t DP" t - Mm,,Cmd m Vm, t. 

l e t t ing  C~,d'mTRtr , = Cm,,, the above terms reduce to: 

+ ~ ~(Mm, t -1 -Mm, t )Sm, t r t+  ~ ~Mm, tC 'd 'mTRtr t -  ~ Y'~ ~ ~e'jmMm,t*lt. 
t rn t m t i j m 

Expanding the above terms for every period, we get (with Mm, o > 0): 

t = l :  

t = 2 :  

S m , l r l M m , o  - ( S m , l r  1 - Cm, 1 , )  + E Eei~m~l Mm,,, 
i j 

Sm,zrzMm3- ( Sm,zr2-Cm,z + E Eei'jm~71)Mm,z, 
i j 

(c) 

(d) 

(h) 

(13) 

t = T :  
i j 
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Summarizing the above, the coefficients for Mm,t-variables are given by 

Mm,o: [3m,O = Sm,lrl ,  

Mm,l: fin,1 = - S m , l r l  + Sm,2r2 + Cm,x -- E EEijm'l'll, 
i j 

403 

Mm,T-I:  ~m,T-1 = - -Sm,T- lrT-I - I -  Sm,TrT-I -Cm,T-I -  E EEi~rn~T-1, 
i j 

Mm,T: ~m,t = --Sm,TrT-I-Cm,T - E EE~jmq~T • 
i j 
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