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Under weak mathematical assumptions, the distortion due to
B, inhomogeneity is shown to take the form of a characteristic
function, which is the Fourier transform of a probability distri-
bution. A model of the spin echo is proposed that includes a
spline approximation to an arbitrary smooth characteristic
function. The model is applied to spin echoes acquired from
water, water/dioxane, and methanol phantoms, and the fit of
the spline model is compared to that of the traditional Lorentzian
model. Estimation of the spin-spin relaxation time (7,) from
a single spin-echo data set is demonstrated. © 1994 Academic

Press, Inc.

INTRODUCTION

In a perfectly homogeneous magnetic field (By), each
component of the free-induction decay can be represented
by an exponentially decaying complex exponential with de-
cay rate equal to the inverse of the spin-spin relaxation time.
In practice, By inhomogeneity and other distortions change
the rate and form of the decay, and the true T, cannot be
recovered from the FID. The standard method for estimating
T, involves computation of line heights or areas from spin
echoes acquired at various echo times. This paper presents
a flexible mathematical model of the inhomogeneity distor-
tions in spin-echo signals, with applications to improved es-
timation of T>. We point out that 7, can be estimated from
a single spin-echo signal, and we present results on the fea-
sibility of this procedure.

Many authors have suggested fitting NMR signals in
the time or frequency domain by an exponential decay (Lo-
rentzian ) model with a reduced relaxation time denoted by
T% (1-3). These models will lead to biased estimates of am-
plitudes and relaxation times if the true decay is not expo-
nential and the spectral peaks overlap. The HOGWASH (6)
and QUALITY (7) methods convert nonexponential decay
to exponential decay under the assumption that all com-
ponents are distorted by the same multiplicative function.
HOGWASH requires an isolated spectral peak, while
QUALITY requires a high signal-to-noise ratio (SNR) ref-
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erence signal with known (or precisely estimated) frequency,
phase, and decay rate.

Webb et al. (8) proposed mapping the B, inhomogeneity
and using this map to correct observed NMR signals. We
propose an alternative approach that does not require the
additional scans necessary to map the B, field, does not re-
quire the spectrometer to have imaging capability, and that
includes estimation of T, as part of the analysis. Webb et al.
(8) noted limitations of their method in applications to data
with short 7T',; in general, the performance of our method is
improved by short relaxation times.

Instead of trying to eliminate the inhomogeneity distor-
tions, we directly estimate the distortions as part of the model-
fitting procedure. We show that under weak mathematical
assumptions, these distortions must have a particular form,
called a characteristic function. Our model approximates an
arbitrary smooth characteristic function using constrained
regression splines. Applications to simulated spin echoes and
spin echoes acquired from chemical phantoms show that the
model separates true 7, decay from inhomogeneity effects
and reduces bias compared to the conventional Lorentzian
model.

MATHEMATICAL CONSTRAINTS ON
INHOMOGENEITY DISTORTIONS

Let Y () denote the complex-valued FID at time ¢; (j =
l,...,u, with the ¢; equally spaced), and let N(t;) denote a
complex-valued Gaussian white-noise process. Assume that
under B, homogeneity, the digitized FID has the form

K

Y(4) = 2 arexp[—But; + i(wit; + ¢x)] + N(1),
k=1

j=1,...,u, [n
where « is the amplitude of spectral component k, 8¢ is the
decay rate (the inverse of the spin-spin relaxation time), wy
is the frequency, and ¢ is the phase.
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De Graaf et al. (7), Webb ¢t al. (8), and others assumed
that B, inhomogeneity has the same effect on every spectral
component. Under this assumption we may replace w; by
wr + Aw(r), where r = (r|, r2, r3) is a vector of coordinates
in three-dimensional space, and Aw(r) is the deviation of
the true frequency at spatial location r from the average fre-
quency. Then the FID results from integrating over the entire
excited volume (7),

K

Y (4) = (1) 2 axexp[—Bul; + i(wil; + )] + N(1p), [2]
k=1

where, with V" denoting the excited volume,

Wt) = J;,exp[iAw(r)t]dndrzdr;. [3]

Webb ef al. (8) proposed measuring a discretized version of
Aw(r) and thus computing an approximation to ().

Although Eq. [3] seems to suggest that Y(¢) can be any
complex-valued function, we show that it must be propor-
tional to a “characteristic function,” which is the Fourier
transform of a probability-density function (9). A sufficient
but not necessary condition for this representation is that
Aw(r) is piecewise constant, that is, that the volume V can
be partitioned into an arbitrarily large finite number P of
subvolumes ¥, of arbitrary shape and size, such that Aw(r)
takes on the constant value ¢, forr € V,. Let c = | V| =
[, dridridry and ¢, = (1/¢)|V,|. Since ¢, = 0 for p = 1,
..., Pand 2 ¢, = 1, we can define a discrete random variable
¢ that takes on value ¢, with probability ¢,. Aw(r) is defined
to be the deviation from the average value, so that the average
of Aw(r) over the entire volume is zero. This implies that
the random variable ¢ has expectation zero,

' dridrydry

Yp

E(e)=2 ¢, =(1/0) 2 ¢

= (l/C)f Aw(r)di‘,drzdr3 = 0, [4]
v

where E(-) denotes expectation. Furthermore,

1

Wy =2 f explie,t)dridradrs = ¢ 2 c,explieyt)
p V¥ P

‘]
.
where F(e) is the cumulative distribution function of the
random variable ¢, and the last integral is the definition of
a characteristic function (9).

Although Aw(r) is assumed piecewise constant, at least
some functions Aw(r) that are not piecewise constant allow

exp(iet)dF(¢), (5]
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Y(t) to be represented as a characteristic function. We suggest
modeling y( ) as proportional to the characteristic function
of some mean zero probability distribution F without nec-
essarily requiring that F be discrete or that Aw(r) be piecewise
constant,

If ¥(t) is proportional to the characteristic function of a
mean zero distribution, then it satisfies the following con-
ditions (9):

1. It is nonnegative definite; that is, for any positive integer
n and any real numbers ¢, . . ., 1,, and any complex numbers
s ...y 6, the sum

n

2 Wl — ) Euls [6]
b=t

a=1

is real and nonnegative, where { denotes the complex con-
jugate of {. All nonnegative definite functions are Hermitian.
2. The first derivative vanishes at ¢ = (; that is,

¥'(0)=0.

Following are examples of the characteristic-function rep-
resentation of Y(¢). The constant ¢ is suppressed, since it
can be absorbed into the amplitudes ¢y in Eq. [2].

Example 1. 1If Fis a Normal (Gaussian) distribution,
then

V(1) = exp(—yi*), v >0, [7]
leading to a model suggested by Barkhuijsen, de Beer, and
van Ormondt (10).

Example 2. If Fis a Cauchy distribution, then
y>0. (8]

If we let 85 = B« + v and T3 = 1/8F, then Eq. [2] with ¢
defined by Eq. [8] becomes

(1) = exp(—vlt]),

K

Y(1;) = 2 oxexp[—4/ Tox + i(wit; + éx)] + N(1)).
k=1

(9]

Strictly speaking, this example, which is the conventional
Lorentzian model, contradicts the assumption that F has
mean zero, since the Cauchy distribution does not have a
mean.

Example 3. 1If Fis a stable distribution (9), which in-
cludes the Cauchy and Normal as special cases, then

W) =exp(—vit]®), v>0,0<6<2, [10]

which corresponds to a mean zero distribution for | <
o<2.

Example 4.
then

If F is a mixture of two stable distributions,
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Y1) = kexp{i[(1 — k)/k]vt — v, |1]%}
+ (1 = x)exp(ivt — v2|1]%),

7],72>0,0<5|,62<2,0<K<I,VER. [11]

where the mixture distribution has mean zero for 1 < §;,
6, < 2.

If Y (1;) is a spin-echo signal, rather than an FID, then the
model defined by Eq. [2] becomes

K
Y(4) =W — 1) 2 owexp{ —Bu;
k=1

+ilww(y; — 7) + $i]} + N(), [12]

where 7 is the echo time. Combining Eq. [12] and Eq. [8],
the Lorentzian model of the spin echo has the form

f K’
exp(v7) 2 axexp[—(Bx + 7)Y
k=1
+ i(wklj + ¢k)] + N(tj),
Y1) = K

exp(—v7) 2 axexp[—(Bx — ¥)4
k=1

=T

[13]

| il + @)+ N, <7

Thus. 7% cannot be defined for a spin echo.

Since ¢ is a Hermitian function centered at ¢ = 1, while
the true spin-spin relaxation is centered at 7 = 0, it is theo-
retically possible to estimate the decay rates 83y, . . . , B¢ from
a single spin echo. Short 7', values (large decay rates) facil-
itate separation of decay due to spin—spin relaxation from
decay due to inhomogeneity, since the asymmetry of the
echo is more pronounced when the 7 is short.

When multiple spin-echo data sets are acquired at distinct
echo times, each using a single excitation pulse and single
refocusing pulse, we assume a model of the form

K
Yi(t) = (i — 1) 2. awexp{ — Bl

k=1
+ oty — 1) + dul} + Ni(50),

[=1,...,L.j=1,...,u, [14]

where Y,(¢;) is the complex-valued signal acquired at times
t;(j = 1....,u)in spin-echo data set /, 7, is the echo time
in data set /, ¢4 ts the phase for spectral component k in
data set /, N(?) is the noise process, and L is the number of
spin-echo data sets.
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A HERMITIAN SPLINE APPROXIMATION
TO A CHARACTERISTIC FUNCTION

The characteristic function representation of Y suggests a
wide range of parametric models, such as the examples in
the previous section. However, the functional form of ¢ is
typically unknown, and it will vary with the spectrometer
configuration and the sample characteristics, including the
spatial distribution of spins within the bore, the quality of
the shim, and the magnetic susceptibility of the object. This
suggests that we should develop a flexible and parsimonious
representation of an arbitrary characteristic function, insert
this representation for ¢ in model [12], and fit this model
to spin-echo data. Unfortunately, any general model of a
characteristic function must be nonlinear or involve in-
equality constraints or both (9). For example, Eq. [11] is
fairly flexible, but it is a highly nonlinear function with in-
equality constraints.

Since fitting Eq. [12] is already a difficult nonlinear op-
timization problem, we developed a simple approach for ap-
proximating ¥{¢) by a regression spline (//) that is con-
strained, like the characteristic function of a mean zero dis-
tribution, to be Hermitian and to have a derivative that
vanishes at ¢ = 0. The spline is linear in the unknown regres-
sion coeflicients, and it is a smooth function of time. The
smoothness helps exclude noise effects, since under the as-
sumption of Gaussian white noise, the noise process is in-
herently rough. The disadvantage of the spline function is
that it satisfies only the Hermitian condition and not nec-
essarily the stricter nonnegative definite constraint, so that
the spline model is less parsimonious than a model that takes
advantage of the stricter constraint.

Regression splines are defined by a set of functions that
form a basis for the space of piecewise polynomials satisfying
certain continuity constraints at the join points (“knots™)
(11). One standard form of a regression spline, which is
easily modified to satisfy the Hermitian and zero derivative
constraints, is defined by the “+”-function basis,

q s
gl = Z Al ™ + Z Agrm(t — En),

m=0 m=1

[15]

where the positive integer ¢ is the order of the spline, X\,
.., Ag+s are regression coefficients, the knots £, . . ., £, are
specified real constants satisfying £, < - -+ < £, and the +-
function is defined by (1)1 =19, 12 0; (1)1 =0, 1 < 0. The
function g has ¢ — | continuous derivatives with respect to
t and the regression coefficients.
A real-valued spline gy that is constrained to be an even
function can be obtained from

q s
()= 2 Mmt®™ + 2 Ngeam([t] — E)39. [16]

m=0 m=1
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where g is a positive integer and Ao, Az, ..., Ay2s are
regression coefficients. Regardless of the values of the regres-
sion coefficients, go(0) = 0. A real-valued spline g, that is
constrained to be an odd function and to have derivative
zero at ¢ = 0 can be obtained from

q
gi(t) = 2 Agmit?™!

m=2

+ Sgn(t) Z >‘2q+2mfl(.z| - Em itrl’ [17]

m=1

where A3, As, ..., Aygu2,— 1 are regression coefficients.

Let ) T ()\0, )\2, )\3, ) VR >\2q+25)T be the (2q + 25)
X 1 vector of parameters needed to define both an even and
an odd spline (where T denotes transpose), so that A(¢; ;)
= go(1) + ig, (1) is a smooth Hermitian function that is linear
in the 2¢g + 2s regression parameters. Note that we force the
derivative of 4 at zero to be zero simply by excluding the m
= 1 term 1in the first sum of Eq. [17]. We fix ¢ = 2, so that
h(t; n,) has at least two continuous derivatives at every value
of 1. Choice of the number of knots s and the knot positions
£, ..., & is discussed below. We refer to model [12] or
model [14] with ¢(¢) defined to be the Hermitian spline
function A(¢; i, ) as the Hermitian spline model of the spin
echo.

MAXIMUM-LIKELIHOOD ESTIMATION
OF MODEL PARAMETERS

Given known values of the echo time 7 and the knots £,
..., &, the Hermitian spline model is a fully specified para-
metric model in terms of the spline parameter vector i, and
the NMR parameter vector q; = (a2, ..., ek, 81, - - ., Bk,
@1y ... WK, 1, . . ., dx) . For identifiability of the model,
we set a, to be a constant equal to one, and we deliberately
omit «; from the vector of unknown parameters n,. Under
the assumption that the noise process N(¢) is Gaussian white
noise, the maximum-likelihood estimators are the values that
minimize the objective function

O(my,m) =2 1Y) — p(m, ma)|?, [18]

J=1

where

K

;M) 2 oxexpf — Bt
k=1

+ l'[wk(tj - T) + ¢k]}

pin, m2) = At —
[19]

We minimized O(n,, n;) by a modification of the Leven-
berg-Marquardt algorithm that exploits the linear structure
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of the spline function. The algorithm is closely related to the
variable projection algorithm (2, 3, 12) and other algorithms
described in (12).

Lety = [Y(#)), ..., Y(&)]" and m(n;, m2) = [p(m,,
n2). ... uu(m. M2)]". Note that p(n,, mz) = Xnm,, where
Xisau X (2g + 2s) matrix with element (j, m) equal to
the product of Z &, ayexp{ —Bu; + flwg(t;— 1)+ ¢4] } and
the mth of the values

L — 1) i — 1) (4 — 7)°,
=71l =g, (g — 711 — &), ...,
=7l = &)1, (g — 7] —£)5. [20]

I sgn(t —

1sgn(f; —

Thus, the least-squares estimate of iy, , given a fixed value of
. Is

A = (XTX)'XTy. [21]
Letn = (n7,n)T and D = d/dn". The modified Leven-
berg-Marquardt algorithm is defined by the following steps.

Step 1. Set n = 0. Set the Levenberg—Marquardt parameter

w to a some small starting value. Compute starting values

ny"”. Compute starting values n|” using Eq. [21] with

né") substituted for i, in the definition of X. Compute
Olni". mz"].
Step 2. Compute the matrix D evaluated at n =

('), (n$")T]7, and the update vector

8 = (DD + ul) D[y — m(n{”. n¥")].  [22]

where | is the identity matrix. Compute g3 = 05" + &,
where 8, is the subvector of & corresponding to ;.

Step 3. Compute n\""" using Eq. [21] with """ substi-
tuted for n, in the definition of X.

Step 4. Compute the objective function O[qﬁ"ﬂ),
ng"ﬂ)]. If the objective function has decreased by only a
negligible amount, stop. Otherwise, if the objective function
has increased, substitute 10w for w and go to Step 2; if the
objective function has decreased, substitute v/ 10 for w, in-
crement #, and go to Step 2.

In the actual implementation, the computations of & and
q(.") are performed using a numerically stable least-squares
algorithm,

We also implemented an algorithm that fits the Lorentzian
model { /3] to a time-domain spin-echo signal. This algo-
rithm is the same as the algorithm for the Hermitian spline
model, except that Step 3 and all references to n; are omitted,
and n, is defined to include «; and the parameter vy that
appears in Eq. [8].

We generalized these algorithms in order to fit model [14]
to multiple spin-echo data sets acquired at distinct echo
times. The fitting algorithm was the same as that described
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for single-echo data sets, except that separate phase param-
eters ¢y were estimated for each echo.

DETAILS OF THE MODEL AND ALGORITHMS

Based on applications to simulated and real data, we rec-
ommend that the number of knots s be 3, 4, 5, or 6, since
the NMR parameter estimates can be extremely biased when
5 < 3 and highly unstable when s > 6. The number and
placement of knots can be selected using the Akaiki infor-
mation criterion (AIC), the Bayesian—-Schwartz criterion
(SBC), or the Hannan-Quinn criterion (HQC) (13-15),
which attempt to balance maximization of the likelihood
against minimization of the number of model parameters.
For related applications of these methods, see (16, /7). As
described below, all three criteria performed well in appli-
cations to simulated data.

The model-selection criteria also could be used to choose
the location of the knots, but this procedure would require
refitting the model with many different sets of knot locations.
As an alternative, we suggest a generally applicable formula
for knot placement. Since the time points are equally spaced,
it might seem natural to use equally spaced knots in defining
the spline function. A better approach is to equally space the
knots on a logarithmic scale, under the assumption that ¢(¢)
exhibits roughly exponential changes, which leads to the def-
inition

Em = expllog[(s, —1,)/2 + llm/(s+ 1)} — 1,

m=1...,s. [23]
In applications to real data sets with high SNR, logarithmic
knot placement consistently yielded better fits than did linear
placement of the knots.

The set of spline basis vectors defined by expression [20]
evaluated at j = 1, . . ., u are highly collinear. One alternative
would be to use the B-spline basis (/7), but we prefer the
intuitive simplicity of the even and odd splines when ex-
pressed in the +-function basis. To avoid numerical prob-
lems, we applied the modified Gram-Schmidt algorithm (/8)
to the basis vectors before computation of the maximum-
likelihood estimators. Thus, the matrix X was computed in
terms of orthogonalized spline vectors, as were the various
guantities computed in Step 2 of the modified Levenberg-
Marquardt algorithm. The orthogonalization has no effect
on the interpretation of the NMR parameter estimates.

Starting values for the frequencies wy, ..., wg were the
peak frequencies in the magnitude spectrum (modulus of
the Fourier transform of the data). Starting values for the
phase parameters ¢, . ... ¢x were computed from the ar-
gument of the complex demodulate ( /9) of the data at the
peak frequencies. For k = 1, ..., K, a starting value for the
decay parameter 3, was obtained by a weighted least-squares
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fit of — Bt — v |t — 7| to the logarithm of the magnitude of
the kth demodulate. We defined a preliminary estimate of
¥(1) to be equal to exp(—+v|7 — 7|) for the estimate of ¥
computed from the demodulate of the highest peak, and
then computed starting values for the amplitude parameters
ay, ..., o by ordinary least squares (/-3). As described in
the previous section, a refined estimate of (1) was computed
using Eq. [21] before the first Levenberg-Marquardt itera-
tion. When fitting the Hermitian spline model to multiple
spin-echo data sets, we obtained starting values for the decay
parameters 3, from the peak heights of the Fourier transforms
of the signals.

In the fitting of model [12] to a single spin echo, very
small changes in the value of 7 can lead to large changes in
the estimates of the decay times T = 1/8,, but estimating
7 in the modified Levenberg-Marquardt procedure compli-
cates estimation of the spline coefhicients and can lead to
numerical instability. As an alternative, a nearly correct value
of 7 was computed from the exact timing of the pulse se-
quence, and then improved by fitting model [12] to each
value in a grid around this preliminary estimate and choosing
the fit that minimized the objective function.

APPLICATION TO PHANTOM DATA

We compared the fit of the Hermitian spline model to
that of the Lorentzian model in applications to proton spin
echoes acquired from six different chemical phantoms: dis-
tilled water with a 50, 100, or 200 micromolar (uM) con-
centration of manganese chloride (MnCl, ) in solution; diox-
ane (C4HgO,) mixed with a solution of 50 or 100 A MnCl,
in distilled water; and pure methanol (CH;OH). These
phantoms are designated W5, W10, W20, D5, D10, and
MeOH; echoes acquired from W5, W10, and W20 have one
spectral component (K = 1), while echoes acquired from
D5, D10, and MeOH have two components (K = 2). The
W and D sets of water/manganese solutions were prepared
at different times, so that two phantoms with the same nom-
inal molar concentrations of manganese probably had slightly
different true concentrations.

Spin echoes were acquired on a 2 T/31 ¢m Omega CSI
spectrometer ( Bruker Instruments; formerly GE NMR In-
struments, Fremont, California), using a 14 ¢cm birdcage-
design transmit and receive RF coil. The pulse sequence was
a 90°-180° acquisition of ¥ = 1024 time points digitized at
40,000 Hz (for the W5 phantom) and 20,000 Hz (for the
other five phantoms). Single-echo spin echoes were acquired
at nominal echo times + = 50, 100, 200 ms (for the W5
phantom) or 7 = 50, 100, 200, 300 ms (for the other five
phantoms). All acquisitions were performed with only partial
optimization of the shimming, so that considerable inho-
mogeneity was present. The signals were averages of 32 phase-
cycled (20) acquisitions following eight dummy scans, giving
spin echoes with very high SNR. The phase cycling is essential
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Modulus of Echo with Fitted Lorentzian Model and Residuals
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FIG. 1. Comparison of fitted spline and Lorentzian models with spin-echo data acquired from a phantom containing a 100 pM solution of MnCl,

in distilled water. The modulus and real part of the time-domain data and fitted models are displayed, as well as the modulus of the Fourier transforms.
In all plots, the solid line indicates the data, the dashed line the model, and the dotted line the difference between the data and the model (residual). The
spline model nearly interpolates the data, while the Lorentzian model exhibits serious bias. The Hermitian spline function had six knots equally spaced

on a logarithmic scale.

for estimation of T, from a single spin echo, since the effects
of an imperfect refocusing pulse can obscure the subtle 7,
effects.

We selected six knots (s = 6) for the Hermitian spline
model, because fewer than six produced noticeably poorer
fits to the data, while more led to only small improvements
in goodness of fit and resulted in only small changes in the
estimates of the NMR parameters.

We fitted the Hermitian spline and Lorentzian models to
each of the spin echoes using values of 7 that were —0.12,
-0.10,...,0,...,0.10,0.12 ms from the 7 computed using
the known timing of the acquisitions. For each model, the
value that minimized the objective function was used as the
“true” 1.

Multiecho 7', estimates for use as “gold standards” were
computed by fitting model [14] to multiple spin-echo data
sets comprising signals acquired at all available values of =
(three values for the W5 phantom, and four for the other
five phantoms).

Figures 1, 2, and 3 compare the fitted model to the time-
domain signal and to the Fourier transform of three selected
spin echoes. Results for the other echoes are qualitatively
similar. The spline fit seems nearly perfect, while the Lo-
rentzian model shows noticeable departures from the data.
To quantify the fit of the models, we computed the residual
sum of squares, which is the objective function (Eq. [18])
evaluated at the maximum-likelihood estimates, and we ex-
pressed the residual sum of squares as a percentage of the
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Modulus of Echo with Fitted Lorentzian Model and Residuals
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FIG. 2. Comparison of fitted spline and Lorentzian models with echo acquired from a phantom containing dioxane mixed with a 100 xM solution

of MnCl, in distilled water.

total sum of squares 2}, | Y (4)|?. For the spline fits, the
median of this measure was 0.012% with a range of 0.0015
to 0.070%, while for Lorentzian fits, the median was 9.1%
with a range of 1.3 to 13.3%.

Table | shows the estimated 7, values (computed as the
reciprocal of the estimated 3, values) of the W20, W10, and
W5 phantoms. The multiecho estimates based on the two
models are nearly the same. The Hermitian spline single-
echo estimates are consistently within 10% of the multiecho
estimates, while the Lorentzian estimates are within 20%.
The error in the single-echo estimates increases with the re-
laxation time, apparently because the single-echo estimates
are based on small departures from symmetry, and the sym-
metry of the echo increases with the 7.

Based on estimated standard errors computed from the
Cramer-Rao lower bound (which should approximately hold

for these maximumd-likelihood estimators ), and on the results
of the simulation study, we conclude that much of the error
in the single-echo T estimates can not be explained by the
noise in the data. Some of the error may be due to artifacts
caused by imperfections in the refocusing pulse that were
not removed by phase cycling, and possibly by diffusion dur-
ing the acquisition period. A more sophisticated version of
the spline model might be able to adjust for these artifacts.
In the case of the Lorentzian model, serious misspecification
of the function ¢ also seems to contribute to the error.
Table 2 shows the estimated 7', values of the D10, DS,
and MeOH phantoms. For the D10 and D5 phantoms, the
T, estimates are given for water first and then dioxane, while
for the MeOH phantom, the estimates are given for hydroxyl
and then methyl. The multiecho estimates for the two models
disagree, indicating that the form of the inhomogeneity
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Modulus of Echo with Fitted Spline Model and Residuals
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Modulus of Echo with Fitted Lorentzian Model and Residuals
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FIG. 3. Comparison of fitted spline and Lorentzian models

maodel is important for correct separation of spectral com-
ponents. Since the fit of the Hermitian spline model is much
better, we expect that the spline 7', estimates are closer to
the true relaxation times.

The single-echo estimates of the long dioxane relaxation
time, particularly the spline estimates, are surprisingly good,
while both models give erroneous single-echo estimates of
T, for MeOH. Analysis of simulated data that was designed
to resemble the 7 = 100 MeOH signals produced much
smaller errors, indicating that the errors in the analysis of
the phantom may be due to the type of data artifacts discussed
above. The relative magnitude of the Lorentzian estimates
computed from the 7 = 100 MeOH echo does not even reflect
the correct ordering of the T, values, against suggesting that
the Lorentzian model is not able to correctly separate decay
due to the two spectral components. The spline single-echo
estimates are correctly ordered, but they are considerably

with echo acquired from a phantom containing methanol.

greater than the multiecho estimates, except for the r = 300
echo.

To quantify the agreement between the single-echo and
the multiecho 7', estimates, we computed a statistic defined
by

Za(xa— v !

=1+
g A (xg— x)?

[24]

>

where x|, ..., x4 are the logarithms of the multiecho gold-
standard T, estimates, x. = (1/4) 2 x,,and y,, ..., y,are
the logarithms of the single-echo estimates. The statistic p is
zero when there is no agreement and one when there is perfect
agreement; this form of p was recently proposed by Roy St.
Laurent (personal communication) and is similar to the
“concordance correlation coefficient” of Lin (2/). When p
is computed from the logarithms of the T, estimates, it is
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TABLE 1
Estimated Spin-Spin Relaxation Time (in Milliseconds)
of Protons in Three Water Phantoms for Two Inhomogeneity
Models®

Inhomogeneity model

Phantom T Lorentz Spline

W20 All 55 55
50 51 55

100 Si 55

200 51 55

w10 All 94 94
50 78 97

100 77 96

200 79 98

300 85 98

W5 All 198 196
50 172 212

100 167 214

200 171 212

300 184 215

2In the column headed r, the numerical values are for the single-echo
estimates, while ““All” indicates the gold-standard estimates based on all
available echoes. These gold-standard estimates are italicized.

identical to p computed from the logarithms of the g3, esti-
mates.

Based on the logarithms of the estimates in Tables 1 and
2, p = 0.97 for the single-echo Hermitian spline model using
either the spline or Lorentzian multiecho estimates as the
gold standard, p = 0.95 for the single-echo Lorentzian model
using the Lorentzian multiecho gold standard, but p = 0.89
for the single-echo Lorentzian model using the spline mul-
tiecho gold standard. Thus, if we believe that the spline mul-
tiecho estimates are closer to the true relaxation times, then
the spline single-echo estimates are a substantial improve-
ment over the Lorentzian estimates. This conclusion is sub-
stantiated by the simulation study.

APPLICATIONS TO COMPUTER-SIMULATED DATA

Simulated spin-echo data were generated to further com-
pare the Lorentzian and Hermitian spline models, to inves-
tigate the effects of noise on the single-echo decay rate and
amplitude estimates, and to evaluate the model-selection
criteria. While the Hermitian spline model gives a much
better fit to the real data, it requires many additional param-
eters, making it more susceptible to noise effects. We expected
that the Hermitian spline model would lead to lower bias of
the amplitude and decay-rate estimators, while the Lorentz-
ian model would lead to lower variance, so that the mean-
square error (squared bias plus variance) would favor the
Hermitian spline model at high SNRs and the Lorentzian
model at low SNRs.
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We simulated a spin echo by generating a signal from Eq.
[12], with N(¢;) representing pseudo-random complex-val-
ued Gaussian white noise. The parameters «y, 8, wi, and
¢ were set equal to the estimates of these parameters ob-
tained from (i) the 7 = 100 spin echo acquired from the
MeOH phantom and (ii) the = 100 spin echo acquired
from the D10 phantom. The actual parameter values are
given in the notes to Tables 3 and 4; the MeOH data contain
spectral components with decay rates that differ by a factor
of 2, while the D10 data contain spectral components with
decay rates that differ by more than an order of magnitude.
The simulated function y was defined by Eq. {11], with« =
0.6, v = 0.12, v, = 0.013, v, = 0.15, 6, = 4, = 1.5, which
give a spectral peak that is intermediate between a Gaussian
and Lorentzian, but somewhat asymmetrical. This particular
function was chosen because it qualitatively resembles the
¢ functions estimated from the real data and because this
simulated ¢ does not conform perfectly to either the Lo-
rentzian or the Hermitian spline models.

The signal amplitude was defined to be equal to the max-
imum magnitude of the simulated time-domain signal in the
absence of noise, the noise amplitude to be the standard
deviation of the complex-valued simulated white noise, and
the SNR to be the ratio of these amplitudes.

TABLE 2
Estimated Spin-Spin Relaxation Time (in Milliseconds) of
Protons in Two Water/Dioxane Phantoms and the Methanol
Phantom for Two Inhomogeneity Models®

Inhomogeneity model

Phantom T Lorentz Spline
Di0 All 118, 2087 107, 1765
50 117, 3157 111, 1706
100 115, 2017 108, 1634
200 138, 2795 101, 1954
300 195, 2550 110, 2153
D35 All 200, 2193 188, 1826
50 209, 4734 195, 2022
100 191, 1891 190, 1568
200 217, 2429 203, 2231
300 215, 3520 183, 3201
MeOH All 184, 382 123, 370
50 252, 466 208, 598
100 351, 305 208, 451
200 270, 273 162, 423
300 254, 297 124, 414

%In the column headed 7, the numerical values are for the single-echo
estimates, while “All" indicates the gold-standard estimates based on all
available echoes. These gold-standard estimates are italicized. For the D10
and DS phantoms, the first estimate in each pair corresponds to the water
component, and the second to the dioxane component. For the MeOH
phantom, the first estimate corresponds to the hydroxyl component, and
the second to the methyl component.
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TABLE 3
Results of Simulation Study Based on Methanol Data: Esti-
mated Root-Mean-Square Error of Estimators (as Percentage
of True Parameter Value) of Amplitudes («,) and Decay Rates
(8:) for Each Signal-to-Noise Ratio (SNR) and Inhomogeneity
Model

Inhomogeneity model

Spline, Spline, Spline,
SNR Estimator 2 knots 4 knots 6 knots Lorentz

% @) 5.5 0.8 0.6 1.1
@ 7.5 1.1 0.5 3.3
8, 18.3 0.1 0.2 15.9
B 2.1 0.0 0.0 8.7
100 & 5.8 2.7 2.7 2.4
@z 7.7 1.4 1.0 3.5
B 18.7 5.6 5.5 16.3
B2 4.3 3.8 3.8 9.5
30 & 7.9 9.2 9.4 7.7
@ 8.0 34 3.3 4.7
B 21.4 19.0 19.0 20.4
B 14.3 13.8 13.9 17.5
10 & 21.8 23.9 28.6 20.1
s 10.8 8.1 8.9 9.1
B8 69.9 50.8 a 472
B 26.2 355 35.6 38.8

2 &l a a a a
by 57.7 70.4 68.9 86.2

6] a a a a

4, a a a a

Note. The true parameter values used to generate the simulated data were
set equal to the estimates obtained from the spline analysis of the 7 = 100
echo acquired from the methanol phantom. The true parameters are o, =
0.2981, a; = 0.8054, 3, = 0.004802 ms™', 3, = 0.002216 ms™', w, = 5.7301
rad/ms = 10.666 ppm, w, = 4.8889 rad/ms = 9.100 ppm, ¢, = 0.03502
rad, ¢, = 0.03992 rad. The amplitudes are in arbitrary units depending on
the scaling of the spline function used to estimate ¥(r).

2 RMSE exceeded 100% of true parameter value,

To compare the spline and Lorentzian models and to
evaluate the effects of the SNR on the amplitude and decay-
rate estimates, we simulated data at five SNRs: oo (no noise),
100, 30, 10, and 2. Figure 4 shows the spectrum of the infinite
SNR simulated spin echo and a typical simulated spin echo
at the lowest SNR. For each of the two parameter sets (that
1s, the parameters obtained from the analyses of the real
MeOH and D10 phantoms ) and each of the four finite SNRs,
100 data sets were simulated and each data set was analyzed
using the Lorentzian model and the Hermitian spline model
with s = 2, 4, and 6 knots.

We estimated the root-mean-square error (RMSE) of the
estimators of a and 3, for k = 1, 2. When the SNR is infinite,
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the RMSE is simply the absolute bias, since the variance is
zero, while the estimated RMSE for the finite SNR simu-
lations is the square root of the mean of squared differences
between estimated and true parameters. Table 3 gives the
estimated RMSE as a percentage of the true parameter value
for the simulations based on the analysis of the MeOH data,
and Table 4 gives the results for the simulations based on
the analysis of the D10 data.

As indicated by the RMSE for the SNR = oo simulations,
the 4- and 6-knot Hermitian spline models lead to very little
bias. while the Lorentzian model gives seriously biased es-
timates, except for «, in the simulated methanol data. The
Hermitian spline model appears to give good estimates of

TABLE 4
Results of Simulation Study Based on Water/Dioxane Data:
Estimated Root-Mean-Square Error of Estimators (as Percent-
age of True Parameter Value) of Amplitudes (ax) and Decay
Rates (3:) for Each Signal-to-Noise Ratio (SNR) and Inho-
mogeneity Model

Inhomogeneity model

Spline. Spline, Spline,
SNR Estimator 2 knots 4 knots 6 knots Lorentz

o @ 5.4 1.0 0.5 5.2
z 1.4 1.0 0.6 6.5
B 5.9 0.2 0.1 1.3
B 17.6 0.1 0.1 14.3
100 @ 5.6 1.6 1.4 5.4
& 1.8 1.5 1.3 6.5
B 6.2 1.4 1.4 11.3
B 27.4 20.3 20.6 27.6
30 @ 7.1 49 49 6.8
@ 47 4.5 4.3 8.2
8 8.2 5.3 5.3 11.8
B2 69.7 69.7 69.6 76.2
10 &, 13.5 13.5 26.0 1.5
@ 12.3 12.4 a 14.6
8 16.8 14.4 20.4 14.6

BZ a a a a

2 &l a a a a
é a a a 84.5
B 94.8 85.9 81.6 76.8

Bz a a a a

Note. The true parameter values used to generate the simulated data were
set equal to the estimates obtained from the spline analysis of the + = 100
echo acquired from the D10 phantom. The true parameters are o, = 0.8607,
a; = 0.465, 8, = 0.009277 ms™!, B, = 0.0006119 ms™", w, = —5.8742 rad/
ms = —10.935 ppm, w; = —6.3240 rad/ms = —11.772 ppm, ¢; = 0.08708
rad, ¢, = 0.09189 rad. The amplitudes are in arbitrary units depending on
the scaling of the spline function used to estimate ¥(r).

“ RMSE exceeded 100% of true parameter value.
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Spectrum of Simulated Methanol Data with Infinite SNR
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Spectrum of Simulated Water/Dioxane Data with Infinite SNR
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FIG. 4. Spectra (moduli of Fourier transforms) of simulated spin echoes with infinite SNR and with SNR = 2, where SNR is defined as the maximum
amplitude of the modulus of the time-domain signal divided by the noise standard deviation.

T, from a single echo when the SNR is 30 or above, although
the errors can be large for long 7’5 values, such as that of the
simulated dioxane component.

Despite our expectations, the Lorentzian model does not
have a clear advantage at lower SNRs, suggesting that the
bias in this model is an important factor for all SNRs in the
range considered in our study. The results might have been
different if, like Webb er a/. (8), we had assumed that all of
the NMR parameters except the amplitudes were known
from prior information. When such prior information is
available, the amplitudes can be estimated at much lower
SNRs, and we would expect that the parsimony of the Lo-
rentzian model would be a more substantial advantage.

We evaluated the performance of the AIC, SBC, and HQC
methods for selecting the number of knots s by analyzing
simulated spin echoes with SNR equal to 100, 30, and 10
using spline models with s = 2, 3, 4, 5, and 6 knots. For

each value of the SNR and each of the two parameter sets
(based on the analyses of the real MeOH and D10 data sets),
we simulated 50 spin-echo data sets. For each simulated data
set, the three model-selection criteria were used to choose
among the five values of s.

These model-selection criteria are designed to minimize
the Kullback-Leibler distance between the fitted and the true
models (/3). In NMR applications, however, we primarily
are interested in estimating specific parameters, usually the
amplitudes and/or decay rates. Therefore, we evaluated the
criteria in terms of their ability to select the model that gave
the best estimates of amplitudes and decay rates, not the best
model in terms of an overall measure such as Kullback-
Leibler distance.

For each simulated data set, we computed the “best” value
of s for estimating the amplitude ( or decay-rate ) parameters,
which was defined to be the value that minimized the Ma-
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halanobis distance between the true vector of amplitude (de-
cay-rate) parameters and the maximume-likelihood estimate,
where the distance was defined in terms of the asymptotic
covariance matrix of the maximum-likelihood estimators,
assuming the true model from which the data were simulated.
We used the covariance matrix for the true model, so that
the best estimate was defined without reference to the five
Hermitian spline models that were fit to the data. After de-
termining the best estimates and the estimates selected by
AIC, SBC, and HQC, we computed the ratio of the mean
Mahalanobis distance of the selected estimates to the mean
Mahalanobis distance of the best estimates, where the mean
was computed over the 50 simulated replications (Table 5).
The median of the selected values of s was also computed
(Table 6).

The three model-selection criteria were very similar in
their performance, with AIC showing a slight tendency, when
compared with the other two criteria, to choose models with
a greater number of parameters. This property of AIC is
well-known (17), but AIC seemed to be at no disadvantage
in choosing models that give good estimates of the amplitude
and decay-rate parameters. The mean distance of the selected
estimates from the true values was between 7 and 51% of
the mean distance of the best estimates (Table 5).

The median selected value of s, especially when selected
by AIC, agreed well with the median of the best values when
the best value was selected by the distance of the estimated
amplitudes from the true amplitudes. As expected, the se-
lected value of s decreased with the SNR. Surprisingly, the
median best value of s, when selected by the distance of the
estimated decay rates from the true values, was 3 (except

TABLE 5
Results of Simulation Study of Model-Selection Criteria: Ratio
of Mean Distance of Selected Estimates to Mean Distance of
“Best’” Estimates for Simulated Methanol (MeOH) and Water/
Dioxane (D10) Data at Three Signal-to-Noise Ratios (SNR)

Selection criterion

Parameters Data SNR AIC SBC HQC
(ay, a3) MeOH 100 1.07 1.26 1.11
30 1.29 1.35 1.32

10 1.27 1.30 1.27

D10 100 1.11 1.20 1.11

30 1.47 1.51 1.45

10 1.21 1.19 1.18

(Br, B2} MeOH 100 1.17 1.17 1.17
30 1.33 1.32 1.32

10 1.1 1.16 1.16

D10 100 1.47 1.47 1.47

30 1.40 1.40 1.41

10 1.13 1.15 1.14
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TABLE 6
Results of Simulation Study of Model-Selection Criteria: Me-
dian Number of Knots (s) in Selected and Best Spline Models
for Simulated Methanol (MeOH) and Water/Dioxane (D10)
Data at Three Signal-to-Noise Ratios (SNR)

“Best™

Selection criterion based on

SNR AlC SBC HQC a Io]

MeOH 100 6 5 6 6 3
30 4.5 4 4 5 3

10 4 3 3 4 2

D10 100 6 6 6 6 3
30 4 4 4 4 3

10 3 3 3 4 3

for a value of 2 for the simulated MeOH data at the lowest
SNR), regardless of SNR. Closer examination revealed that
the error in the decay-rate estimates at SNR = 100 or SNR
= 30 is not very sensitive to the choice of s when s = 3, 4,
S, or 6, which also can be seen in the columns labeled “4
knots” and “6 knots” in Tables 3 and 4.

DISCUSSION

We have derived a representation of inhomogeneity dis-
tortions as characteristic functions, and we have approxi-
mated these distorting functions by a Hermitian regression
spline. A comparison of the Hermitian spline and Lorentzian
models in applications to phantom and simulated spin-
echoes showed that the spline model gave much better fits
to the data and better 7', estimates. Estimation of T, from
a single spin-echo data set was successfully demonstrated.

The accuracy and precision of single-echo T, estimates
depends on the following conditions: high SNR; phase cycling
to remove artifacts caused by an imperfect refocusing pulse;
relatively short T, times; and careful measurement of the
echo time (7). Consistently good single-echo 7', estimates
were obtained when the Hermitian spline model with 4 or
6 knots was applied to high SNR data.

Following previous authors (6-8), we have assumed that
inhomogeneity has the same effect on all spectral compo-
nents. When this assumption is violated, QUALITY and the
method of Webb er a/. (8) will give biased estimates, because
both methods assume a single inhomogeneity function com-
puted from a signal or image acquired at the water resonant
frequency. In contrast, the Hermitian spline model is easily
generalized to handle separate inhomogeneity effects on sep-
arate sets of spectral components. As a simple example, sup-
pose that the K components divide into two subsets, indexed
byk=1,...,Kiand k = K, + 1, ..., K, and that all
components experience the same inhomogeneity effect
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within a subset. Subsets of components can be defined when
multiple signal components arise from the same molecule
(as in the case of the two components of methanol) and
when they are known to arise from two compounds that are
well mixed with the same spatial distribution (as in the case
of our water and dioxane phantom). Then the Hermitian
spline model would have the form

Ky

Y() =i, —7) > arexp{ —But; + flwe(t; — 7) + ¢}
k=1

K
2t — 1) 2 aexp{—B
k=K+1

where ¥, and y, are approximated by two different Hermitian
spline functions.

Inhomogeneity effects are of primary concern in analysis
of in vivo spectra. While our present model and algorithms
may be inadequate for analysis of typical in vivo data sets,
the spline approach could be combined with sophisticated
algorithms such as PIQABLE (5), which presently are struc-
tured around the Lorentzian model.
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