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This paper is a sequel to [18] in which the author proved several
Briangon-Skoda-type theorems using Hochster and Huneke’s theory of
tight closure for rings of prime characteristic. By “Briangon-Skoda theo-
rem” we mean any result of the type " C (1" %)*, where [ is an ideal,
n > k are integers, and where * stands for any operator on ideals (such as
identity, tight closure, or plus closure). We also mean any corresponding
results for several ideals and their joint reductions. Examples of
Briancon-Skoda theorems can be found in {16, 12, 13, 15, 8, 2]. For a
review of history of the Briangon-Skoda theorems see [13].

Here we adopt the definitions and notation from [18], in particular we
assume the definition of tight closure in prime characteristic p, the
definition of joint reductions, and the definition of the analytic spread
(denoted /{(_)). As in [18], an important theme here is uniformity: the
integer k for which 77c (" *)* for all n = k (or the corresponding
integers for several ideals and joint reductions) can often be chosen
independently of the ideal /., and sometimes independently of the ring R.
For example, kK may be the number of generators of I, the analytic spread
of 1, or the dimension of R. This uniform theme was developed further by
Huneke in [10] in proving the uniform Artin-Rees lemma. We use some
of the techniques of [10]. We also use the main theorem of [18]:

(x) Let R be a Noetherian ring of characteristic p. Let 1,,...,1, be
ideals in R. Let I, ....1, be positive integers and let a; € 1; for 1 <j <1,

Suppose that (a,,,....2ay,.... 8y, ....dy ) is a joint reduction of
(ot [k....,lk).
_ N
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568 IRENA SWANSON
Then for any integers n, > 0, i =1,...,k,

T v, .. jl+n nyp+1 ng+ 1«
I T ((ay @) (A ag,) .

We point out that it was not necessary in [18] to assume in any of the
results that certain elements do not lie in any minimal prime ideal of the
ring. This is because an element is in the tight closure of an ideal if and
only if it is in the tight closure of that ideal modulo every minimal prime
(see Proposition 6.25 in [8]). So the proof of (*), as given in [18], only needs
to be applied to domains.

In this paper we prove a version of the Briangon—Skoda theorem for
F-rational rings, two versions for regular rings (Section 1), a version for
plus closure (Section 3), and a few versions with “multipliers” (Section 2).
An example of a version with multiplicrs is Lemma 7 which proves that for
some fixed ¢ € R, cI7c 1" 95K for all ideals I and all n > dim(R).
Because of this “multiplier” ¢, we call theorems of Section 2 “almost
Briangon-Skoda”. If for an tdeal its plus closure equals its tight closure,
the result of Section 3 is an immediate consequence of (*).

1. BrRIANGON-SkoDA THEOREM FOR F-RATIONAL
AND REGuLAR RINGS

In [18] we used the definition of tight closure only for rings of character-
istic p. Hochster and Huneke defined several notions of tight closure for
Noetherian rings containing a field of characteristic zero. The definitions
are quite involved, so we do not give them here. For equal characteristic
zero case we use the notion which Hochster and Huneke label *¢7 (see
(2.2.3), (3.2.1) in [7]). We mention that reduction to positive characteristic
plays a major role in the definition of this notion of tight closure.

If R is any ring in which tight closure is defined and [ is any ideal of R
such that I = I'*, we say that [ is tightly closed. If the ideal (a,,...,a})
has height at least k (could be the whole ring), we call a,,...,a,
parameters. Rings in which every ideal generated by parameters is tightly
closed are called F-rational. Hochster and Huneke proved that in a
regular ring every ideal is tightly closed.

Now we prove a version of the Briancon-Skoda theorem for F-rational
rings using reduction to characteristic p if the characteristic of the ring is
zero. This reduction procedure also justifies the definition of tight closure
for rings of characteristic zero.

THEOREM 1. Let R be a Noetherian algebra over a field K. Assume that
R is F-rational. Let I,...,1, be ideals of R and (a,,...,a,) a joint
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reduction of (1, ..., 1,). Assume that {a,. ..., a,} are parameters of R and
that no a, is contained in any minimal prime of R. Then

T T c (al, ..., al%).

Proof. 1If R is of positive prime characteristic, this follows from (*).
Thus we may assume that K has characteristic zero.

Suppose that the theorem is false for some k-tuple n. So n,...,n, > 0.
It is easy to see that (a,, ....a;) is a joint reduction of (/,,..., I,) if and
only if (a}',...,af*) is a ]omt reduction of ([, ..., I['}), so by replacing
each I, by I"' and each a, by a~ we may assume that I, - 1, ¢
(a,...,a;).

Let x eI, - I, \(a,,...,a,). We may also assume that x is not in
any minimal prime of R, for if I, --- [, is contained in the union of
(a,,...,a,) and all the minimal primes of R, then by prime avoidance
I, - I, must be contained in (a,...,a;).

Fix a set of generators for /,,..., I,. Write each a, as a linear combina-
tion of the chosen generators for /; and call these equations G,,...,G,.
For each k-fold product of the chosen generators which is contained
in 7, --- I, write an equation of integral dependence over the ideal
al, - Ik <o tapd, - I._,. Let Fy,..., F, be all these equations
and let L be the largest degree of these F,. Let F be an equation showing
integral dependence of x over /, --- I, and let L’ be the degree of F. Set

=al~' - al"'x". So ceR"

Now let § be a finitely gencrated K-algebra such that there exists and
algebra homomorphism h: § — R such that a,,...,a,,c, x, the chosen
generators of the 1, and the G,, F,, and F are all elements of A(S). Let _’
stand for a fixed preimage of _ in S. By modifying S further we may

assume that (a),...,a}) is a joint reduction of (/{,...,[;), that x' is
integral over /] -+ I;, and that 4, ..., a}; and x' are all in S$°. If we can
show that x’ € (a),...,a})* then x € (a,...,a,)* =(a,...,a,) (as R

is F-rational), which proves the theorem. Thus it is enough to prove:

LemMma 2. Let R be a finitely generated algebra over a field K of
characteristic zero. Let I,,...,1, be ideals of R and (a,,...,a,) a joint
reduction of (I,,...,1,). Assume that no a; is contained in any minimal
prime of R. Then

I, - [, C(a,....a,)".

Proof. We use the set-up from the proof of Theorem 1.

Write R = K[X,,..., X, ]/J. Lift a|, ..., a,, ¢, x, the chosen generators
of the [, and the G,, F,, and F to K[ X,,..., X,,]. In this way we obtain
polynomials in X,..., X, with coefficients in K. Let u,,...,u, be all
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these cocflicients. Let D = Z[u,,...,u,] € K. Let R,, be the canonical
image of D[ X,,..., X,,]in R. By construction all of the relevant elements
and ideals live in this subring R,, of R, a, € [R,,, x €I, --- [, R,, and
x & (a,,...,a,)R,, for otherwise x € (a,..., a,). By generic freeness (cf.
(14, Theorem 24.1]) we may add another clement to D to obtain that
(a,,...,a.)R, and R, /(a,,...,a )R, are free D-modules.

As in the proof of (*) in [18], ex¥ € (af,..., a{)}R,, for all sufficiently
large integers g. So a fortiori ¢x? € (a{,...,a{)R,/mR,, for any maximal
ideal m of D. But D is finitely generated over Z, hence m N Z is a
maximal ideal of Z and so R,,/mR,, has positive prime characteristic p.
So

o’ € (ay,...,a.)"R,/mR,,  forall g = p° > 0.

This is true for every m € Max(D). But (D, R, (a,....a,)R,) are
descent data for R, (a,...,a,)R, x, and ¢,s0 x € (a,...,a,)R*. |}

A similar, but a more involved procedure is used in the proof of

THEOREM 3. Let R be a regular ring containing a field (of arbitrary
characteristic). If 1,,..., 1, are ideals of R, then

Li+ny . phitn ny+l e+ 1
e e (ay,.ooay) + tag. . dyy,)

for any joint reduction (a,,...,ay,..., 8 ....a;,) of

(Il,...,ll,...,1,(‘...,1,()

e e— —
/ | times I , limes
and for any integers n; > 0, i = 1,.. ., k.

Proof. The case of positive characteristic follows from (*) and the fact
that in regular rings every ideal is tightly closed. So we may assume that R
contains the field of rational numbers.

Let J = 1h*m .. pl*m and K = (a,,...,a ,r)"'”
+ o Hayy, .. ay, yurl If Jg K, then J¢ K after localizing at some
prime of R, so we may assume that R is local. Let R be the completion of
R. After extending all the relevant ideals and elements to R all the
hypotheses are still satisfied. If the conclusion holds in R, then

JCIR "NRCKRNR=K,

which contradicts the assumption. So the theorem is also false in R and
we may assume that R is a complete Noetherian regular local ring
containing a field. By Cohen’s Structure theorem R is of the form
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kI[X,,..., X,1I, a power series ring in d variables over a field k. Let % be
the algebraic closure of k. We extend all the relevant ideals and elements
to k[ X,...., X, ]I and still have a counterexample to the theorem as the
extension is faithfully flat. So we may assume that R is a power series ring
in d variables X,,..., X, over an algebraically closed ficld .

Let X, i=i=1,...,k, j=1,...,1, be indeterminates over R, one
for each one of the a,;. Let [, = (b;,...,b,,), and let Y,; be indetermi-
nates, one for each one of the b,,. For each monomial in the b,; which is
an element of I, --- I, write an equation of integral dependence over
layy,...;ay )y - I+ - +lay,,...,a ), - I,_,. Replace the a,;
in these equations by the X, the b, by the Y,;, and the coefficients of
these polynomials which are not equal to 1 by distinct indeterminates Y,.
We then obtain a polynomial in the X, Y, and Y, with coefficients in Z.
Let u be an element of J which is not contained in K. In an equation of
integral dependence of u on J replace u by an indeterminate U, the b,; by
the Y,;, and the coefficients which are not equal to 1 by additional distinct
indeterminates Y,. We thus obtain a polynomial in the Y, , ¥, and U. Also
consider the polynomials X, — X"- R, Y, in the variables X, Y;;, and
R, ;. Let X be the collection of all these polynomials in the X, Y, Y,
R, ,, and U with coefficients in Z. By construction R = k[[X,,..., X,]]
contains a solution (a,,, b, y,. r;;, u) of {F = 0|F € X}.

By the Artin Approximation theorem we may find a zero set
(d,. b, ¥, F,,@)of $in H=k[X, ..., X,y  x, the Hensclization
of k[Xl,...,Xd](Xl v, (see [3]). Moreover, for any integer { we may

find a solution which also satisfies
a; —d,€(X,,...,X,)'R,

b, —b,€(X,....,X,)'R,

u-iae(X,....,X,)R.
We choose ¢ such that u & K + (X,..., X,)'R.
Let [, =(b,,..., l;,-m‘)H and let J and K be ideals in H generated by

the corresponding e¢lements and ideals with ~ on top. By the Artin
Approximation theorem all of the hypotheses still hold for H and for
these new ideals and elements. Also, & is contained in the integral closure
of J. If the conclusion of the theorem holds in H, we get

u=(u-d)+iae(X,..,.X,))R+KRc(X,,....X;)'R + KR,

which contradicts the choice of ¢. Thus we still have a counterexample
in H.
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Now let B be the integral closure of k[ X,..., X, a,,, 5,-,, Vi Pl g
We will show that the theorem is still false for B. As affine rings are
excellent, B is a finitely generated k-algebra (for the definition of excel-
lence see [14, p. 260]). Write B as k[Z,,...,Z,1/(F,..., F). Let n =
(X,,..., X, )R N B. Since B is wedged between k[ X,..., X,] and R, it
follows that n is a maximal ideal of B. As k is algebraically closed, by
Hilbert’s Nullstellensatz » is of the form (Z, —r,..., Z, — r,), where
F(r) = 0 for all i. We may change variables so that n = (Z,,..., Z,) and
F(0) = 0 for all i. Each element 4, [;U—, Vis P 4 of H and each ideal I,
J, and K of H also live in B.

By the Artin Approximation theorem B, is a localization of a flat
integral extension of k[X,,..., X,lx,  x, By integrality dim(B,) <d
and by flatness dim(B,) is at least the height of the maximal ideal of
KXy, Xykx,  x, So dim(B,) =d. As k[Xl,...,Xd](Xl ______ ¥,
B, c R =kllX,,..., X,;Il the completion B, of B, maps onto R. By
considering the dimensions the kernel of this map is necessarily a r’n\inimal
prime of 73: of dimension 4. But B, is normal and excellent, so B, is an
integrally closed domain. Thus E:= R. It follows that B, is a regular local
ring.

If the theorem holds in B,, then it also holds in H. To prove this we
need to use Lemma 2.4 and Examples (iv) and (v) on page 800 of [11]

which say that if S is an excellent Noetherian local ring, then ﬁf = pf for
any ideal p of S. Hence

JH=JHRNH
=JRNH
—JB,RNH
- J/BRNH
CKB,RNH
= KH,

contradicting the assumption on H. So we still have a counterexample in
B, and hence also in B.

Consider the ideal of k[Z|, ..., Z,] which is generated by all the minors
of rank r = ht(Fy,..., F)) of the A by I matrix (8F,/4Z)) (i.e., consider the
Jacobian ideal). As B, is a regular local ring, by the Jacobian criterion
(see [14, Theorem 30.4]) there exists an r-minor A such that 4(0) # 0.

Now lift the elements a;;, b;; ¥,, F,;;, and & to polynomials in Z,,..., Z,
over k and collect the coefficients of these and of the F, into a (finite) set
A. Also lift all of the polynomials in X evaluated at 4,;, b,; §,, 7, and &
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to eclements of the ideal (F,..., F)). Add to A all the coeflicients
appearing in these equations. Also add A(0)™' to A. Then A is a finite
set. Later we may need to add one more element of Xk to A. Let
L =Q(A) and D = Z[A]. So D is a finitely generated Z-algebra and
DcL.

The preimages of the elements d,, b,. §. 7. @, F, and A in
k[Z,....,Z,] by construction actually live in D[Z,, ..., Z,]. Define C;, =
Dlz,....,2)/(F,...,F) and N,=(Z,,...,Z,)C,. Let the subscript
_,, denote the images of i, K, and J in C,. By construction u,, € K,, +
N

By the theorem on generic freeness (see [14, Theorem 24.1]) C,, and
C,/K,, + NS become free D-modules after inverting a single element of
D. So we add the inverse of this element to A and assume that C,, and
C,/Kp + Nj, are free D-modules.

Let m be a maximal ideal of D. As 7 is a Jacobson ring and D is finitely
generated over Z, m N Z is a maximal ideal in Z (see [4, Exercise 5.25]).
Also, D/m is a finitely generated extension field of Z/m N Z, so it is a
finite field and hence perfect. Thus we may apply the Jacobian criterion
(14, Theorem 304 to C,,, =(C,/mCp)y. As A(0) is a unit in
DIZ,,....Z,) it follows that C, ,, is a regular ring. We mark all
elements and ideals in Cp, ,,,, by the subscript _;, ,,,,. So C), ,,,, has positive
characteristic and so the theorem is true for Cj, .. So J,, ,, < K, ,,, and
Up;m € Kp - By assumption u;, & K, + Npjy. So as Cp /Ky, + Ny is a
free D-module, we write C,,/K;, + Nj = L, D,, where each D, equals
D. Then we may write u,, as L,r, € L,D,, where r, is zero for all but
finitely many « and is nonzero for some «. Hence uy, ,,, equals £ .r, 5 .-
But u;,,, € Ky /)y, 50 1,D/m = 0 for all « and all maximal ideals m of
D.So r, € NN, Maxpy- But this intersection is zero as D is a Jacobson
domain. Hence u,, € K, + Nj, a contradiction. |

A corollary of this is Hochster and Huneke’s version for regular local
rings containing a ficld, saying that /" *“’c I" for all ideals I and for all
integers n. Aberbach and Huneke improved this to:

THEOREM 4 (Aberbach and Huneke [2]). Ler (R, m) be a regular local
ring containing a field. Let I C R be any ideal having analytic spread I, and
let J be any reduction of 1. Set h = bight(I). Then for all n > 0 we have that

un

'I—I—ﬁger»l(Jl»h) ,

where the superscript " denotes the intersection of the isolated primary
components of an ideal.
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The methods of the proof of Aberbach and Huneke’s result combined
with the methods from [18] give the following generalization for several
ideals and joint reductions:

TueoreM 5. Let (R, m) be a regular local ring containing a field, the I,
and a,; as in (*). Then for all n we have that

'

1
e c Z(a,,,...,ai,‘)" ((a,l,...,a,-,
-

2. Two ALMOST BRIANGON—SKODA THEOREMS

Here we show how in some rings certain elements and ideals multiply
integral closures into reductions and joint reductions. In general we
cannot omit these multipliers, so we call these results ‘“almost
Briangon—Skoda.”” Corollary 10 is a “true” Briancon-Skoda theorem.

We will need the following theorem of Lipman and Sathaye:

THEOREM 6 [12, Theorem 2). Let R be a Noetherian regular domain
and S a finitely generated R-algebra containing § which is also a domain.
Suppose that the quotient field of S is a finite separable field extension of the
quotient field of R. Then the Oth Fitting ideal J; ,  of the S-module of Kihler
differentials (1 , , multiplies the integral closure of S into S.

We use this result, Rees and Sally’s constructions from {15], and
Huneke's constructions from [10]:

Lemma 7. Let (R, m) be a complete Noetherian local domain contain-
ing the field of rational numbers. Let ¢ € R such that R, is regular. Then
there exists an integer h such that ¢"T"C I" 7' for all ideals I in R and all
n > I(I), I(I) being the analytic spread of I. Hence c"T" c 1" ~4™R) for qll
ideals I in R and all n > dim(R).

Proof. let d = dim(R) and n = p(m). Choose a minimal set of gener-
ators x,,...,x, of m in the foliowing way. Let x, € m \ m”. After we
have chosen x,..., x;,_, let x, €m \ m? U W, where W is the union of
the primes minimal over R/(x,,..., x; ), where k <d and the i, vary
between 1 and i — 1. If i < n, x, exists by prime avoidance. In this way we
obtain x,,..., x, such that m = (x,,..., x,) and such that (x,,..., x; ) is
m-primary whenever 1 < i, <i, < -+ <iy<n.

By Cohen’s Structure theorem R = k{[Y),..., Y, ]l/P for some prime P
in k[[Y,,...,Y,]], where k is the coefficient field of R and each Y, maps to
x,;. Note that the height of P equals dim(k[[Y},...,Y,]]) — dim(R) = n —
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d. Let J be the ideal which is generated by ht( P)-minors of the Jacobian
matrix (3(f,,..., f,) /Y, ....Y,)), where P = (f,....,f,). As R_is regu-
lar, by the Jacobian criterion for power series rings over a field of
characteristic 0, ¢ is contained in the radical of J (see [14, p. 240)]). So
there exists an integer # such that ¢’ lies in J. Thus it suffices to show that
JITC 1" "D for all ideals / in R and all n > I(1).

lLet A be an (n — d)-minor of the Jacobian matrix coming from
the columns for Y,,...,Y, . As J is generated by such minors, it is
enough to prove that A[" 1" i1 for all ideals 7 in R and all n > I(]).
Let j,,...,Jj, be positive integers such that {i,....i,_Ju{j,....Jj} =
{1, ..., n}. By Cohen’s Structure theorem R is finite over the power series
ring A = k[[x cea Xy, 1l in d variables over k.

Let / be an 1dea| of Rand ! = I(I). As the residue field of R is infinite
there exists a reduction (a,,...,a,) of I. Let § = R[t,a,t™',...,a;07"]
where t is an indeterminate over R. Then § is a finitely generated
Alt]-algebra, and the quotient field of § is a finite separable extension of
the quotient field of A[r]. As A[r] is a regular domain, by Lipman
and Sathaye’s theorem KS c S, where K is the Oth Fitting ideal of
the S-module Of Kéhler differentials 2, 4, Write § as
Ay, .. Yo ...+ Z,1/Q, where Z, maps to a;t~ " and Y, maps to
X, . Let each a, be the image of some A, EA[t][Y,..., ] Then
F.=Z;t — A, is an element of Q. So a representatlon of .QS/A[,] (obtained
from the second fundamental sequence for modules of differentials) is of

the form

oo o
W, W,
: 0
i, o,
aY, ay,
n LR
F, aF,
— t 0
W, W, _,
IF, F,
L ayfl ayfn—d

with possibly more rows. So one of the elements of K is the determinant
of the displayed matrix, namely At! € K. By Lipman and Sathaye’s theo-
rem then At/ multiplies the integral closure of § into S. But the integral
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closure of S contains R & (a,,....a,)t ® (a,,....a;)’t> ® -+ . Thus A
multiplies "= (a,,...,a;)" into (a,,...,a,)" " for all n>1 and any
reduction (a,, ..., a;) of I.So AT"C I""! for all n > [. But [ was arbitrary
and [ is bounded by d for all ideals /. ||

Note that the proof shows that A can be chosen so that it works for all
such ¢. Namely any such ¢ lies in V7 . Let h be such that vJ" c J. Then
this £ clearly works.

THEOREM 8. Let R be an excellent reduced Noetherian local ring con-
taining the field of rational numbers. Let ¢ € R such that R is regular. Then
there exists an integer h such that "T"C 1" "D for all ideals I in R and all
n > 1(1). Hence ¢"TTC I"~9™R for all ideals [ in R and all n = dim(R).

Moreover, h can be chosen to be independent of c.

Proof. As R is excellent, the completion R of R is reduced and R is
regular. Let Min(R) = {P,.. 1’} Then (R/P) is regular (or 0) for each
i. Let I be an ideal of R. As l(IR + P/P) < IUIR) = I(1) for each i, by
Lemma 7 there exists an integer /4 such that

TR (1R + P).

i1

By the remark following Lemma 7, #' may be chosen to be independent
of c.

As R embeds into the finitely generated R- modu]e Ié/Pl X e X ii/P‘,
and equality holds after localization at {1,c, ( b there exists an integer
K" such that ¢ multiplies R/P X oo X R/P into R. This h" ‘may also
be chosen to be independent of ¢. Let J be R: (R/P X -+ X R/P) (an
ideal in R). Then A" such that J" CJ works.

Now let h = h' + K”. Then

Cthfé c (.11" n (["/[(I)Ié + P[)
i—1
_ C/z”(]n*/([)(é/[)l X o X R/Ps) N RA]
C In—l(l)RA_

Hence c"[" "'CrT"RARCITMR AR = [, |
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TueorReM 9. Let (R, m) be a complete Noetherian local domain. Let
d = dim(R). Assume that R contains 3, has isolated singularity, and is
Cohen—Macauday. Then there exists an m-primary ideal J such that for any d
m-primary ideals I,,.... 1,

JI, - I, < any joint reduction of (1,,...,1,).

¢

Proof. Let I, = (a;,...,a;,), ecach a, regular. Let R, =

!
RIY, ... Yy)ury, v for N sufficiently large (the subscript _, is RZ:es'
and stands for “general” extension). Let x;, =a,Y+ --- +a,Y., where
the Y. are all distinct. As R (and hence R, ) is Cohen—Macaulay, by using
prime avoidance we may assume in addition that each a,, is a regular
element in R, /(x,...,x, )
Now let ¢: {1,...,d — 1} = N be a function such that 1 < ¢(i) < /,.
Fori<d-—1let

X, — a,w,Y,

y, = ————— €& quotient field of R

g
a

(i)

oY, isasummand of x. Let § = Rg[yl, ces Yyl
the x, form a regular sequence, so

where Y issuch that a
By the choice of the a

[IK

R[X.....X, ]

E ’
(aw(l)Xl T Y Ay yd - I)Xd—l T Ay ed- l)-"zl—l)

S

where X, is identified with y, for each i. Thus § is isomorphic to
R, /(x,...,x,_ ), where this new R, is formed by adjoining N + d ~ |
indeterminates to R. Hence § is independent of ¢.

By Cohen’s Structure theorem there exists a regular local ring 4 C R
such that R is finite over A4 and A4 = k[[Z,,..., Z,]], a power series ring
in d wvariables over the coefficient field & of R. Write R =
ATy, ....T1/(fy,.... f,). As ht(f,,..., f,) = dim(A[T]) — dim(R) = n,
by Krull’s Principal Ideal theorem we get that m > n. We also have a
finite extension

A ZA[YH'"‘VKN](Z)A[YI ..... v & R

4

A, is a regular local ring and R, = A [T,,....T,1/(f,..., f,). Let 4,

4

be a lifting of a,,,, and £, a lifting of x, to A,[7,,...,T,]. The Jacobian
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matrix for § over A, has the form

[ af ar ]
(”Tl (’,7;1
: N 0
()fIYI (‘)ffll
aTl HTM
ﬁ,w[) 0
ﬁ(aupu)X: - )Z,)
('ITI.
() a~c171¢((1<1)J

Hence as m > n, Jg, 4 =Jg ,4Js,r, By the Lipman-Sathaye theorem,
Js,uSCS As Jg p = (dyyy, - ay ,W,,,\,) and ']RL,/AK =Jr,aR, it
follows that

Aoy " Ay tgd-1lw,a €SS,

As S is independent of ¢, we let ¢ vary toobtain I, -+ [, Jg, 4 CS: S.

The regular local ring A above is any power series ring contained in R
such that R is finite over 4. Now we will choose several such A4 so that
the resulting J , o's will generate an m-primary ideal. As in the proof of
the previous theorem choose x,...,. X, .4 Such that m = (x,,... x,. )
and such that (x,, ..., x; ) is m-primary whenever 1 <, < --- <i,<n
+d. Write R = k[[T,,..., T, 1/(f,...,f,), where the image of 7, in R
is x, This is possible by Cohen’s Structure theorem. Note that
ht(f,,..., f,,) = n. By the Jacobian criterion for power series rings over a
field of characteristic 0 (see [14, p. 240]) and the fact that R has isolated
singularity, the » by » minors of the (n +d) by m matrix (3f,/3T))
generate an m-primary ideal J. Now let I be the d-tuple (i,....,i,),
where 1 </, < --+ <i; <n +d. Then by Cohen’s Structure theorem
A; = kllx;,..., x; ]l is a power series ring contained in R such that R is
finite over A,. As J, , , is the ideal generated by the n by n minors of the
n by m matrix (3f./dT}), ., . wesecthat J =3¥J, , as I varies over
admissible d-tuples.

Therefore I, --+ I, ,J €5:§ and J is an m-primary ideal. It follows
by Theorems 2.6 and 3.5 of [I5] that [, -+ [,_,I,J is contained in every
joint reduction of (/,, ..., I,) extended to R,. But R, is faithfully flat over
R,sol, --- I, _|1,] is contained in every joint reduction of (/,..., 1,).
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We assumed in this theorem that the ring R be Cohen—Macaulay. This
was first used in showing that § =R [y,,....y, ] is isomorphic to
RIX, ....X,_,] modulo a (d — 1)-generated ideal. Because of this we
may use Theorem 3.5 of {15] to obtain that

[‘1](Si§) n Rl XXy nanly + o tag,Zy)

S[le e Z(I]mS[ZI‘

where Z,...., Z, are indeterminates over R,. By Theorem 1.6 of [15] the
intersection of the latter module with R is contained in “almost every”
joint reduction of (/,,..., I,) (we do not define “almost every” here as we
do not use it). Rees and Sally gave an example in [15, Sect. 2] showing that
this intersection need not be contained in every joint reduction. However,
if R is Cohen—Macaulay, the intersection is contained in every joint
reduction (sce Theorem 2.6 of [15]). So the Cohen-Macaulay assumption
appears to be necessary in the previous theorem, at least for this line of
proof.

Cororrary 10. Let (R,m) be as in Theorem 9. Then there exist
integers k., ... . k, such that foralln >k, ...,n, =z k,, for all m-primary
ideals 1,,...,1,, and for every joint reduction (a,,....ay) of (I,... 1,),

F T 1] ny—k ny—k,
KR e (af ™, ape R,

Proof. Let J be as in Theorem 9. Let & be any non-negative integer
such that m* C J. As in the proof of Theorem 1 we see that (af', ..., a})
is a joint reduction of (g7"...., g4). So we may apply the theorem for any

non-negative integers k,,...,k, such that k, + --- +k, 2 k. |

A similar argument as in Theorem 8 extending Lemma 7 extends
Theorem 9 to the following:

CoroLLary 11. Let (R,m) be a d-dimensional excellent, local,
Cohen—Macaulay, reduced ring containing the rationals and with isolated
singularity. Then there exists an integer h such that for each ¢ € m and for
any m-primary ideals 1,, ..., 1,,

"I, T, C any joint reduction of (1,,...,1,).

Thus there exists an m-primary idea! J such that JI, - I, Is contained in
the ideal generated by any joint reduction of (I,,...,1,).
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3. BriangoN-Skopa THEOREM aND PrLus CLOSURE

Let (R, m) be a Noetherian local domain of positive characteristic.
Hochster and Huneke denoted by R™ (read “R plus”) the integral closure
of R in an algebraic closure of the quotient field of R. In [6, Lemma 6.25],
they proved that for every ideal I in R, IR*N R c I*. This ideal IR*N R
is called the plus closure of 1 and is denoted I*. For R™*, the context will
determine whether R is thought of as an ideal or as a ring. It is an open
question whether [*= I'* for all ideals I. Hochster and Huneke proved in
[5) that if [ is generated by at most 3 parameters in a domain with test
elements, then I™= [*. Smith proved in [17] that [*= [* if I is generated
by part of a system of paramecters of any length in a locally excellent
domain. This was extended further by Aberbach in [1].

In general, however, all that is known is that I'cI*. So a
Briangon-Skoda-type theorem, such as (*}), with tight closure replaced by
plus closure, is an improvement. See Section 7 of (5] for some examples of
such Briangon-Skoda theorems. Below we give a version for joint reduc-
tions.,

THeorem 12, Let (R, m) be a complete Noetherian local domain of
dimension 2. Assume that R has positive characteristic and an infinite
residue field. Let I and J be ideals of R and (a, b) a joint reduction of (1,J)
such that one of the following conditions is satisfied:

(i) (a, b) is m-primary,
(ii) the analytic spread of either [ or of J is 0 or 1,

(iii) a is part of a minimal reduction of I and b is part of a minimal
reduction of J.

Then 157'c (4%, b')* for all integers k., .

Proof. Note that it is enough to prove the theorem for k =/ = 1.

(i) By (*), TJc (a, b)*. Thus by Smith’s result quoted earlier, as
(a, b) is m-primary, < (a, b)".

(ii) Let S be the integral closure of R in the quotient field of R. As
R is complete, S is a finite R-module and hence a complete Noetherian
local domain of dimension two. It is still true that (a,b) is a joint
reduction of (IS, JS). If IJS is contained in (a, b)S*, then JC IJSNR C
(a,P)STMR=(a,b)RTNR =(a,b)r as R*=S™".
But does assumption (ii) remain true in S If /(I) is zero, there is
nothing to show. So we assume that /(/) = 1. Then there exists a nonzero
element f e I such that (f)= 1. Then by considering the valuations of
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the quotient field of R which contain R we obtain that fS = IS = IS,
Hence /(IS) = 1. So (ii) remains true after passing to S.

Thus we may rename S as R and assume that R is integrally closed so
that all principal ideals are integrally closed. It follows that I = (f), so
a = rf for some r € R.If r is a unit in R, then U= fIc (f) = (f) = (a),
which is contained in (a,b)" and so we are done. Now suppose that
r € m. Then

(HI=7
=1
=al b1
rfI +(bf)
= (/)W + (b))
< (f)(mI +(P))
c ().
SoJ= mJ + (b) and J is integral over m/ + (b), which by Nakayama’s

lemma means that J is integral over (b). Thus (b) € J = (b) = (b) and
U=Tb=bl c(b) c(a,b)".

(iii) By assumption there exist a, € [ and b, € J such that (a, a,) =1
and (b, b,)=1J. Then (a,b) is a joint reduction of ((a, a,),(b,b,)). As
IJ= (a,a,)(b,b,), we may assume that I = (a, a,) and J = (b, b,).

Let xe J=aJ +bl. Write x'+a,x'"'+ -+ +a,=0 with a, €
(aJ + bI)'. Let

F=X'+p X'+ +p, €Z,[X, A, Ay, B, B,,Y,,....Yy]

for N sufficiently large, where X, A, A,, B, B,,Y,,...,Y, are indetermi-
nates over Z, and where each p, is the sum of all monomials in
(A(B, B,) + B(A, A,))" with each monomial having a different Y; as a
coefficient. In other words, F is the generic polynomial lifted from the
equation of integrality of x over aJ + bl, where x is lifted to X, a is lifted
to A, b to B, a, to A,, b, to B,, and the various coefficients to the
variables Y.

Similarly we lift an equation of integral dependence of a,b, over
aJ + bl to a generic polynomial in Z [ X, A, A,, B, B,,Y|,..., Yyl possi-
bly adding more indeterminates Y;. We call this polynomial G. Now we let

Z,[X,A,4,,B,B,,Y,,....Yy]
(F,G) '

481/170/2-16
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By construction (A4, B) is a joint reduction of ((A, A,)S,(B, B,)S) and X
is integral over (A, 4, B, B,)S.

It is easy to see that {A4, B, F,G} is a regular sequence in
Z, X, A A, B, B,.Y,, ..., Y, 1. a polynomial ring over the field 7, so
{F.G, A, B} is also a regular sequence. Hence § is Cohen—Macaulay and
the height of (A, B)S is two.

Let § — R be the obvious ring homomorphism and let K be its kernel.
So K is a prime ideal in §. Let P be¢ a minimal prime ideal in § which is
contained in K and let T=5/P. As ht((A, B)T) =2, by (*) and by
Smith’s result from [17], the image of X in T lies in (A, B)(TQ)*O T for
every prime ideal Q in 7. By [9, Lemma 6.5] then the image of X lies
in ﬂQ(A, BXT");. o, N T. So for each prime ideal Q in T there exists an
clement s € T\ Q such that sX € ((A, B)T)*. Thus X liesin (( A4, B)T)".
By Lemma 6.5 in [9] then the image of X in S/K lies in

(A.BY(S/K) NS/KC(a.b)R*"NR=(a,b) . |

It may be possible to prove Theorem 12 for any ideals I and J by a
similar constuction as in (iii). Namely, if / = (a,,...,a,) with a, = a and
J=1(b,,...,b,) with b, =b, we can construct a polynomial F in
Z,,[X. A,..., A, B,...,B,., Y, ..., Yy] which lifts an equation of inte-
gral dependence of x on aJ + bl, and for each pair (i, j) with i, j > 1, we
can construct a gencric polynomial F; in the same polynomial ring with
possibly more indeterminates Y; which lifts an equation of integral depen-
dence of a,b; over aJ + bl (similar to the construction of G earlier). Then
we set

Z[X. A, ....A,.B.....B,.Y,,....,Y\]
(F) + ({Fli,j > 1})

and let P be a minimal prime ideal of S contained in the kernel K of the
obvious ring homomorphism § — R. With this set-up, whenever
(A, B))S/P has height 2, the proof of (iii) goes through.

The computer programs “Macaulay” and “Maple” cannot handle even
the case n = 2, m = 3, and all degrees of integral equations equal to 2, as
the number of variables is quite large. But the generic nature of these
equations makes such a generalization at least plausible. Another plausi-
ble generalization is the corresponding theorem for complete domains of
arbitrary dimension. This approach may be helped by an understanding of
Grobner bases of ideals generated by generic polynomials.

"
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