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Dickson’s construction obtains the quaternions as pairs of complex numbers with
a specific multiplication. We modify his construction to obtain four-dimensional
division algebras from pairs of two-dimensional real division algebras and compare
this class of algebras to other known classes. ¢ 1994 Academic Press, Inc.

1. INTRODUCTION

Dickson’s Construction. Dickson [8] obtained the complex numbers as
pairs of real numbers, the quaternions as pairs of complex numbers, and
the Cayley numbers as pairs of quaternions by defining addition and scalar
multiplication componentwise and multiplication and conjugation by

(a,b)(c.d) = (ac — db,da + b¢) and  (a,b)=(a.-b),
respectively, where @ = a if a is a real number. (See also [5, 7, 10].)

We consider two modifications of Dickson’s construction, each yield-
ing four-dimensional real algebras from two-dimensional algebras. The
first modification replaces the complex numbers with an arbitrary two-
dimensional real algebra & = (R, ) and replaces conjugation by a non-
singular linear transformation ¢: R* — R>. On the vector space R & R?
we define multiplication by

(a,b)(c,d)=(a-c—b-e(d),a d+b- p(c)).

Note that the order of the letters on the right is alphabetical and does not
correspond to the order in Dickson’s construction. This construction
defines a four-dimensional algebra, which we call the ¢-algebra &/*. The
two-dimensional algebra .o is called its base algebra and is isomorphic to
the subalgebra of pairs (a,0), a € .

The second modification involves two two-dimensional real algebras
& = (R?,- Yand &# = (R?, x ) with the following multiplication tables with
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respect to a basis {u, ¢} for R

} u r
& u aju+ by apu+ bsr
& a»u + by AU + byt

X ( u v
B u o +dy cau +d
v Cuqu +dyr Corlt + dost

We define multiplication on the direct sum & ®.% by
(a,b)(c,d)y=(a - c—bXd,a-d+bXc).
It is easy to check that this construction makes .&# & % into a real

algebra. Setting e, = (u,0), ¢, = (¢,0), ¢, = (0, u), e, = (0, '), it is easy to
verify that the algebra .w &.% has the multiplication table

l €y ¢ €3 €y
e, |aye +bye, ape +bne, ape; +bye apey + bye,
€y | ane, + bye, axpe, +bye, ajey+ bye, ae,+ bye,
ey | cpey +dye, cpestdpe, —cpe —dye, —cpe —dpe,
e | cpes +dyey cpes+dye, —cne —dye, —cpne —dye,

We call this table a standard table for the &-based fused algebra
& @ Z. Again, & is isomorphic to the subalgebra of pairs (a, 0),
Every .o/-based ¢-algebra can be obtained as an .&/-based fused algebra

by defining X by a X b = a - ¢(b). We will see in Section 3 that not every
fused algebra is a ¢-algebra.

2. THE DivisioN ALceEBrRA CONDITION

Since fused algebras are more general than ¢-algebras, we consider only

the former. Qur main theorem characterizing fused division algebras
depends on two lemmas.

Lemma 1. The quadratic form W(x,, x5, x5, x;) = (Ax? + Bx,x, +
Cx3 + Dxi + Ex,x, + Fx$)* + (Gx,x; + Hx,x, + Ix,x, + Jx,x,)% s
positive definite if and only if

B* —4AC <0, E? - 4DF <, AD > 0.
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Proof. (1) Suppose that B? — 44C > 0. Then the following nontrivial
substitutions make the form ¢ zero:

I A%0let x,= ~B+ VB> —4AC, x, = 24, x, = x, = 0.
(i) If A=0let x,=1Lx,=x,=x;=0.

Similarly, if £ — 4DF > 0, the form is not positive definite.

(2) Now suppose that B2 —4A4C <0 and E? — 4DF < () (so that
neither 4 nor D is zero). Complete the squares on x,, x, and x;, x, to
rewrite the form as

Yy ¥y vy = [(3+y3) + e(y3+y3)]
+(Ky|y3 + Lyly4 + M,VQ,V_} + NYz)'4)2a

where

IAI( B ) Vaac — B?

= X, + —x,], Y, = s X5

Y1 1 42 2 2\/|A| 2
»/ﬁ( E ) V4DF - E?

'y = X3+ —x,|, = ———x

Y3 3T 5pte Yq 2D 4

and ¢ = AD/|AD| = +1. Clearly ¢ is positive definite if and only if vy is.
If AD > 0so that £ = 1, then vy is positive definite. On the other hand,

suppose that AD < 0, so that ¢ = —1. If "“4 l’vf= 0, then there exists
(y},yD = (0,0) such that

Ky! + My§ =Ly} + Ny§ =0
so that
Kyly, + Lyly, + MyQy, + Ny9y, =0

for any (y,;, y,) and, in particular, for (y,, y,) = (y!, y9). Then
y(¥), 9 v}, y9) =0, so y and ¢ are not positive definite.

If 'ﬁ [1# 0, then for any pair (y,,y,) # (0,0), we will have (Ky, +
My"_v Ly] + Ny:)) * (O, O) Then Ky1y3 + Lyl_)’4 + A/Iyzy3 + Nyzy.‘ =
(Ky, + My,)y; + (Ly, + Ny,)y, = 0 if and only if (y5, y,) = c(Ly, +
Ny,,— Ky, — My,), for some ¢ # 0.
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Take (y,, y,) of this form. Then y(y,, ¥,, ¥3, ¥,) = 0 if and only if
0=(yi+y3)—(¥i+yi)
= [1 = (K2 + L)y} = 2(KM + LN)c2y,y, + [1 = (M2 + N?)e?] 3
=06.(¥y,¥2).
This quadratic has discriminant
p(c) =4[~ (KN = LM) c* + (K* + L' + M* + N?)¢? - 1].

Viewed as a quadratic in ¢?, p(¢) has discriminant 164, where

A= (K + L2+ M+ N2’ — 4(KN — LM)*

= [(K= Ny + (L +M)][(K+N)Y +(L-M)]>o0,

and, hence, p(c) = 0 if and only if

c= +y(K*+ L2+ M2+ N> V3 )/2(KN -~ LM)* #0.

But when p(c) =0, there exists a pair (y.,y,) # (0,0) such that
8y, y¥,) =0 and hence y(y, y,,¥3,¥,) = 0. Thus, y and ¢ are not
positive definite in this case.

The next lemma can be proved by expanding the left-hand side.

LEMmA 2.

p qa w x

R R ) I + ¢ +pz)
= s — — (wz —xy —qy —rx .

“w o-x p g (ps —qr) — ( V) sw—qy —rmx + pz)

-y -z r s

THEOREM 3. A fused algebra & ® B is a division algebra if and only if
& and B are division algebras and in any standard table for & & B

(anby, —byan)(end, —dycp) <0.
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Proof. Let L_ denote left translation by the element o = Yx,e;. Then
the matrix of L with respect to the basis {e,, e,, 5, €,} is

~

[

}
=
!
o
~ " = =
K

T — s
where
D =apx; ¥ dyx,, q=a;Xx, tayk,
r=b,x, +byx,, s =b,x, + byyx,
W= X3+ CyXy, X = C X3 + CanXy
y =d;X;+dyxg, z2=dpxy +dyx,
Let
A a; by apn by 4 a by ay; by
b ap; by : ay b, P ay byl N ay by
B oy dy B ¢ dys B cyy  dy B € dy
: i dpsl : ¢y dy } ¢y dayl * oy dy

Using Lemma 2 we find
det L, = {[A;x] = (A, + A)x,x, + Ayx]]
—[Byx2 = (B, + By)x:x, + Byxl]}
+{Gx,x3 + Hx,x, + Ix,x; + Jx,x,}

From [4] the division algebra conditions for the algebras &« and % are,
respectively,

(A, +A,) —44,A, <0 and (B, + B,)’ — 4B,B;, < 0.
Thus, by Lemma 1, & ® .4 is a division algebra if and only if & and ¥
are division algebras and A, B, < 0.

COROLLARY 4.  An & -based ¢-algebra is a division algebra if and only if
& is a division algebra and det ¢ < (.

Proof. Recall that a ¢-algebra is a fused algebrawith a X b = a - ¢(b).
It is not hard to verify that for an .&-based ¢-algebra the determinants in
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Theorem 1 are related as

B, = (detg)A,; B, = (det¢) Ay; B, + B, = (det p)( A, + A4,),
where @ = (R%, x). It follows that if det ¢ # 0, then . is a division

algebra if and only if % is. The condition 4,B, < 0 is (det ¢) A} < 0 and
the result follows.

3. Crasses OF Four-DiMENsIONAL DivisioN ALGEBRAS

The first example in this section shows that the class of fused algebras is
larger than the class of ¢-algebras.

ExampLE 5. Suppose a four-dimensional algebra is both a fused alge-
bra & @&.% and a ¢-algebra #’¥. Let -, X, and o denote the multiplica-
tions in ., .#, and ¥, respectively. Then for all a, b, ¢, and d in R?

(a,b)(c,d)y=(a-¢c—bxd,a-d+bXc)
=(acc -bog(d),acd + bog(c)).
Let b = d = 0. Then we have
(a-c,0)=(a-c,0) for all a and c.

Thus, - and ° coincide and & = &.
Now let @ = d = (). Then we have for all b and c:

(0,b Xc)y=(0,bo¢(c)).
Thus, the X and o multiplications are related by
bXc=bog(c) for all b and c.

Now consider an algebra & ® %8 = € which has & as its only two-
dimensional subalgebra, where % is isomorphic to C. Then the only
possible base for the algebra is %' and the operation e is ordinary complex
multiplication. Thus, if ¢ has the matrix

Py P
Py Pn

with respect to the basis {1,i} for R?, it is easy to check that # has
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multiplication table:

x l 1 i
1 il + pyi P2l + pai
i =yl +pyi =Pyl + ppi

On the other hand, consider the algebra ¢ @ 4 with .4 = (R?, X ) given
by

X 1 1
1 1+ —i
i -1+ 2i 1

It is easy to check that .%# is a division algebra, as is the fused algebra
% @& %. We now show that ¥ & % has # as its only two-dimensional
subalgebra.

Note that e, is a left identity. If « is idempotent, then the equation
(e, — a)a = 0 implies that ¢, = a. Thus, e, is the only idempotent. Since
any two-dimensional subalgebra of C @.# is a division algebra (and,
hence, contains an idempotent), such a subalgebra must contain e,.
Suppose that {e,,a} is a basis for such a subalgebra, where a = ae, +
be, + ce, + de,. Then since ae, = ee, + fa for some real numbers ¢ and
f, we have

ae, + be, + (c —d)ey; + (¢ +2d)e, = (e + fa)e, + fbe, + fee, + fde,.

Equating the e; and e, coefficients, we find that ¢ =d =0, so « is an
element of &. Thus, & is the only two-dimensional subalgebra of & & 2.

Finally, by comparing the 1 X 1 and i X 1 entries of the two X multipli-
cation tables, we see that € @ 42 is not a ¢-algebra.

There are several other known classes of four-dimensional real division
algebras: quadratic algebras are treated in [9]; C-associative algebras and
algebras that satisfy two C-associative conditions are classified in [1, 2],
respectively; and rotational scaled quaternion algebras appear in [3]. We
now turn to an examination of the intersections of these classes with the
class of fused division algebras. The next example shows that there are
four-dimensional fused algebras that lie in none of the other classes.
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ExaMpLE 6. Let . and 28 be the following algebras:

u r
R4 u u v

& - u

X u l
B u u —1

t —1 —-u—r

It is not hard to check using Theorem 3 that the fused algebra .o/ & % is
a division algebra. A division algebra that is quadratic or C-associative or
satisfies two C-associative conditions has an identity which is necessarily its
only idempotent. Thus the algebra & ®.# is of none of these types,
because e, is an idempotent but it is not the identity. We now verify that
& @®.%# is also not a rotational scaled quaternion algebra.

Suppose {a, a,, a3, a,} were a basis with respect to which . & % has
a table in standard form for a rotational scaled quaternion algebra [3]:

@ @; as @y
a; qo, ra, Ua, Ua,
a, Say la oy —ra,
a, wa, Xay ya, 2
ay wa, —Xa, —za, Ya,

Let @, = ae, + be, + cey + de,. The equation af = gea, yields the sys-
tem:

a*+ b’ —c’+d’=gqa (1)
2ed + d* = gb (2)

2ac = qc (3)

— 2bc — bd = gd (4)

Since g # 0 in a division algebra, Eqgs. (2) and (4) imply that 6 = d = 0. If
¢ # 0, then ¢ = 2a by Eq. (3) and Eq. (1) yields a contradiction. Thus,
¢ = 0, g = a, and the only choices for a, are of the form ae,.
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The matrices of right translation by a, with respect to the {¢;} and {a,}
bases are respectively

a 0 0 0 a 0 0 0

0 —-a 0 0 and 0 s 0 0

0 0 a 0 0 0 w O

0 0 0 -a 0 0 0 w
Consideration of eigenvalues reveals that w = —a, so that «a; and a, are

in the eigenspace of —a, which is spanned by e, and e,. Then
a, =be, +de, fori =34
SO
al = bje, + d} (e, +¢,) — bd,e, = ya, = yae, for i = 3, 4.

It follows that d, = d, = 0, whence «; and a, are dependent, a contra-
diction. Thus ./ @ .%# is also not a rotational scaled quaternion algebra.

The algebra of quaternions is both a fused and a rotational scaled
quaternion division algebra. The next example shows that it is not the only
division algebra lying in the intersection of these classes.

ExampLE 7. Let & and .# be algebras given by the following multipli-
cation tables:

u v
& u u U
U - u
X u I3
@ u u -
r —r —u —r

It is not hard to check by Theorem 3 that the fused algebra & & % is a
division algebra. It is not the algebra of quaternions, since it has an
idempotent which is not its identity. The standard table for &w & .%# is not
a standard rotational scaled quaternion table. However, the basis change
a, =e,,a, = e,,a; =e,,a, =e,, yields a rotational scaled quaternion

table with g=r=s=1,t= -1, u=1, t=w=x= -1, and y =
z =1
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Note that a rotational scaled quaternion table with g =u=r, s =
—~t=1r,and w = —x = —y = z also represents a fused division algebra.

Our next example shows that therc is also a nontrivial intersection for
the class of fused division algebras and the class of division algebras
satisfying two C-associative conditions [2].

ExampLe 8. An algebra is both middle and right C-associative if and
only if it has a basis {1, i, J, i/} yielding a multiplication table of the form:

1 ! J u
1 1 i J i
i i -1 i —J
J J —iJ p+aqi+J qg—pi+ i
i i J —q +pi —UJ p+ag +J

and is a division algebra if and only if 4p + 1 < 44°. Let 2 denote the
algebra

X ] u {
B u u —u — U
v v u-—-ur

In the algebra C @, set 1 = ¢, i =¢;, and J = te, + ¢,. Then it is
easy to check that the basis {1, 1, J, 1J} yields a middie and right C-associa-
tive table in which p = — } and g = 0, so C &% is a division algebra.
Finally, the algebra is not the quaternions since it is not associative: for
example, e (e,e,) = —e, but (eje,)e, = 2e,.

Our last results deal with the intersection of the class of fused division
algebras with the classes of quadratic and C-associative algebras,

THEOREM 9. The quaternion algebra is the only quadratic fused division
algebra.

Proof. Let & @4 be a quadratic fused division algebra. Then & & %
has an identity, which is its unique idempotent. Viewed as a subalgebra of
¥ ®&H#, & is a division algebra and hence contains an idempotent, which
must be the identity of & & 2. Since C is the only two-dimensional real
division algebra with identity, .&/ must be isomorphic to C, so & &% has
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a table of the form

e e, €, e,
€y € € €3 e,
€, e, —e, e, —e,
€3 €s Ca€3 T dyrey —e€ —cppey —dpye,
€y €, Cyey +dye, —€, —Cyep — dse,

In a quadratic algebra, every element « satisfies a quadratic
a’ = Aa + Be,
for real numbers A4 and B. Thus, in particular,
A(e; +e3) + Be, = (e; + e;)2 = —2¢ tcpes+ (1 +dpy)ey,

whence ¢, =1 +d,, = 0.
Similarly, a consideration of (e, + e,)* yields ¢, — 1 = d,, = 0. Thus,
& @ % is the quaternion algebra.

CoroLLary 10.  The quaternion algebra is the only C-associative fused
division algebra.

Proof. Let & &% be a C-associative fused division algebra. Then
& @ has a table of the form

1 i J
1 ] i J
i i —1 i -J
J J —iJ p+qi q — pi
i i J —q + pi p+aqi

As a C-associative algebra, & & % has an identity, so it has a fused
table of the form in Theorem 9. Note that &/ @ <& contains at least two
distinct copics of C: namely, the ones with bases {e,, ¢,} and {e,, ¢;}. By
Lemma 13 of [1], the presence of two copies of C forces g to be zero.
Then by Theorem 18 of [1], the algebra is quadratic and the result follows.
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10.
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