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A b s t r a c t - - A n  innovation model is derived for a nonlinear 
stochastic system described by a state variable representa- 
tion. The problem of state and system parameter estimation 
is solved through identification of the innovation model. A 
recursive prediction error (RPE) algorithm is derived for the 
joint system parameter and state estimation through 
minimization of the innovation variance (MIV). The 
algorithm is robust against the use of an erroneous model. 
Convergence and stability properties of the algorithm are  
also analyzed. In order to ensure stability, the algorithm 
needs an on-line stability check at each iteration. 

1. Introduction 
LINEAR MODELS are very popular to simplify the analysis and 
design of control systems. Linear representations could be 
over simplifications for the phenomena they describe. 
Controller design based on an oversimplified model not only 
leads to performance deterioration, but may also make the 
controlled system unstable. As a result, the analysis and 
design of nonlinear systems are of importance to system and 
process control engineers. 

This paper considers the on-line state and parameter 
estimation problem of nonlinear systems in the presence of 
modeling errors and/or measurement noise. The most 
popular method of state estimation in nonlinear systems is 
the extended Kalman filter (EKF) (Jazwinski, 1970). The 
extensions include linearization at different stages of the 
algorithm, model linearization and the jump matrix method. 
All of these methods assume that the covariances of the 
noise processes are known. It is well known that the 
performance of EKF deteriorates or may even diverge in the 
case of erroneous models. 

A state estimation procedure for nonlinear systems is 
presented through an innovation representation. An 
innovation model is derived for nonlinear stochastic systems 
given by a state variable description. The innovation 
representation is exact when the state equation is nonlinear 
but the output equation is linear. 

The state estimation problem is solved through identifica- 
tion of the innovation gain. A recursive prediction error 
(RPE) algorithm (Ljung and Soderstr6m, 1983) is derived for 
joint state estimation and innovation gain identification 
through minimization of the innovation variance (MIV). It 
does not require the knowledge of the noise covariances. 
Since the algorithm is based upon direct minimization of the 
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innovation variance, it is also robust against modeling errors. 
MIV can be extended to simultaneous state estimation and 
system parameter identification. The paper discusses the 
derivation of the algorithm, its convergence and stability 
properties, and presents some simulation studies. 

Application of the RPE algorithm for simultaneous 
parameter and state estimation in linear systems is 
considered by Moore and Weiss (1979), Ljung and 
Soderstr0m (1983), Omani and Sinha (1987) and Soderstr0m 
and Stoica (1989). In the present paper, RPE is applied to 
state and parameter estimation in nonlinear systems. In 
addition, a continuous-discrete algorithm is presented to 
incorporate systems in continuous time description. 

In a recent paper, Dhingra et aL (1992) proposed a jump 
matrix method (JMT) for the state estimation problem in 
nonlinear systems. The method is based on a Kalman 
estimator which approximates the nonlinear system as a 
memoryless nonlinearity embedded in a dynamic linear 
system using fictitious samplers and clamps. Through 
simulation study, the authors have shown that JMT 
outperforms the EKF in terms of mean square error. In this 
simulation study, the proposed MIV is compared with the 
EKF and JMT, and their advantages and disadvantages are 
highlighted. 

2. A n  innovation representation 
Consider a nonlinear system described by the state 

variable representation 

~(t)  = g(£, u, t) + F( t )w( t )  (1) 

y( t )  = h(£, u, t) + v(t),  (2) 

where £(t )  E ~" ,  u( t )  E ~r, y( t )  ~ ~m, w(t)  ~ ~q,  v( t)  ~ ~m 
and t e ~ are the state, control input, measured output, state 
disturbance, measurement noise and time, respectively. F(t) 
is a time varying n × q matrix, w(t)  and v(t)  are assumed to 
be zero mean, and individually and mutually uncorrelated 
(white) random sequences with variances 5:w(t) and Zv(t), 
respectively. (Even if the state noise is nonwhite, the 
composite system can still be put into the above form by 
augmenting the state vector x(t) . )  

The usual method of joint parameter and state estimation 
from the representation of equations (1) and (2), is the use of 
the extended Kalman filter (EKF). However, EKF requires 
that the variances Zw(t) and Zv(t) be known. When the 
assumed values of these quantities differ substantially from 
the true values, the filter performance deteriorates. 

The above system representation can be discretized by 
integrating equation (1) in the time interval tk to tk+~, which 
gives (Jazwinski, 1970) 

x-k+ i = £~ + f (g ,  xk, uk, tk) + wk (3) 

Yk+l = h(£k+t, uk+t, tk+l) + v~+t, (4) 
where 

£k=--£(tk), Uk==-u(tk), yk=--y(tk), Vk=--v(tk), 

ftk k * l f ( g ,  -fk, uk, tk) = g(£, u, Z) d r  
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and the sequences {w,} and {v~} are two zero mean mutually 
and individually uncorrelated discrete sequences. 

Now define xk/~ as the estimate of Y~ from the observations 
up to time ti. The linear estimation of the sampled state 
values Y~ from the discrete observations Yk can be obtained 
a s  

~'k+ I/~ = ~ / *  + f ( g ,  ~ ,  U,, t~) (5) 

~ k + l / k + l  = ~ k + l / k  4- L k + l Y k + l l  k (6) 

with 

.Vk + Ilk : Yk + ~ - h(~k + Ilk, Uk + l, tk+l), (7) 

where Lk + ~ is an n X m gain matrix to be optimally chosen 
according to a criterion to be specified below. 

Next defining Xk=--~k/k I, X~=--X~/k and ek==--.gk/k t 
equations (6), (5) and (7) may be written, respectively, as 

x~ = xk + Lke~ (8) 

Xk , I = X* + f ( g ,  X~, Uk, tk) (9) 

Yk+ ~ = h(xk  ~i, Uk + l, tk+~) + ek ~ I. (10) 

Equations (8)-(10) constitute an alternate representation for 
the nonlinear system described by equations (1) and (2). 

If Lk in the above state estimation scheme is chosen to 
minimize the mean squared error, then the sequence {ek} 
becomes individually uncorrelated. Indeed, subtracting 
equation (10) from equation (4) and using a first-order 
approximation of h(.), gives 

ah(2~+l, u,  +l, tk+O ~ 
e ~ l ~ -  xk+~/k+v ,+~ (11) 

,gx- 

where 

- ~ k + l / k ~ - - ~ k F I  X k + l / k : X k *  I - - X k +  1 . 

The first-order approximation is not necessary if the output 
equation is linear. Then equation (11) becomes 

e~+l =/~(t~+l)Y~ ~ ~n, + v~+l. (12) 

For a mean square error estimation sequence {L~} must be 
chosen such that the estimation error £~+~,k is made 
orthogonal (uncorrelated) to yy, j < - k  (Papoulis, 1991). 
Further, v ~  being white, it is also uncorrelated with yj, 
j < - k .  Therefore, from equation (11) [or equivalently 
equation (12)] it can be observed that e~+~ is also 
uncorrelated with y~, j -< k. In other words e~ is white and is 
an innovation sequence. 

With Xk = ~k/k 1 being the mean square estimate of £k, the 
representation given by equations (8)-(10) becomes an 
innovation representation. This representation is exact if the 
output equation is linear. However,  in the presence of 
nonlinearity in the output equation, it involves an 
approximation as shown in equation (11). 

3. App l i ca t ion  to parameter  and  state est imation 
The innovation representation can be used advantageously 

for parameter identification and/or  state estimation. Gain 
sequence Lk is, in general, time varying. However,  assuming 
that gains change slowly with time, algorithms can be 
developed for simultaneous parameter and state estimation. 

Consider the innovation description given by equations 
(8)-(10) and the following criterion function 

V(O) = ~2 ~{~Z,- '(k)6k}, (13) 

where ${.} denotes the expectation, {?} denotes the estimate, 
Z~(k) is the covariance of e~, and the row vector 0 of 

dimension no contains all the parameters to be estimated 
including any unknown system parameters and the elements 
of gain matrix L k. Since sequence {ek} is white with 
covariance Z,.(k), the identification problem may be 
formulated as minimization of V(O). In single output systems 
this corresponds to minimization of  the innovation variance 
(MIV). Hence this approach will be called the MIV 
algorithm. 

Define 
2"  =£k + Lk~k (14) 

- ^* ~* 0k) (15) 2k+l --Xk + f ( g ,  Xk, uk, tk, 

~)k ~ l -- h( 2k + l, uk + l, tk + l, Ok) (16) 

~k+t =Yk+l  --3~k+1 (17) 

d ~ [  =df~t  (dim: m ×no) ,  (18) 
W k = -  d0lo  _b, d 0  [o==bk  

where Ok is the estimated value of 0 after the kth observation 
and ,fk is the estimated output from the assumed parameter 
values. The gradient matrix Wk provides a descent direction 
for the minimization of V(O). In order to compute kok the 
following variables need to be defined. 

A~" =- df*l  and Ag = dxk+l ( d i m : n o × n ) .  
d O [ o = ~  , t -  dO o:=~k 

(19) 
Further defining 

F~ Ofl k ~ - -  (dim: n × n) (20) 
Ox 1, = e~,,o = bk 

Oh ~=~k o=bk H~ -= (dim: m x n) (21) 

F ° ~- O~0] 0 ~ (dim: n × no) (22) 
x = £ k  ~, 0 = O k 

o Oh t 
H k ~ - ~ . ,  ~k.o ~ ( d i m : m X n 0 )  (23) 

L ° ~  O(L~ e t ) -  (dim: n × no), (24) 
O O  Ix  = ft-.O : Ok 

where h ~ h(£k,  uk, tk, O) and f -~ f ( g ,  x f ,  uk, tk, 0). one gets 
the following recursive relations 

A* = Ak - LktIJk + L ° (25) 

Ak+ ~ = A* + F~A* + F ° (26) 

tPk + l = H;~ + t Ak ~ t + H°+ I. (27) 

3.1. The discrete est imation algorithm. With the above 
definitions and following the approach of Ljung and 
SoderstrSm (1983) an RPE algorithm for the recursive 
minimization of V(O) may be derived as follows. 

(i) Compute the prediction error and the innovation 
covariance matrix 

e k = Y k - 9 ~  ( d i m : m × l )  (28) 

Xe(k) =Z~(k- 1) + l [ ~ - X ~ ( k  1)1 

(dim:m × m ) .  (29) 

(ii) Compute the parameter adaptation gain 

Mk = [AYe(k) + WkPk ,WkX] II'IJkPk., (dim: m × no). 

(30) 
(iii) Update  the parameters 

Ok ~l = Ok + 8kVMk (dim: 1 × no). (31) 

(iv) Update  the parameter covariance matrix 

1 q/kPk lq/k] q/kPk 1] P k = ~ [ P *  , - - P k  ,qlkX[AZ~(k)+ 3 ' 

(dim: no ×no) .  (32) 

(v) Compute the next state and output estimates using 
equations (14)-(16). 

(vi) Compute the gradient tPk+ 1 using equations (25)- 
(27). 

(vii) Set k = k + 1 and go to (i). 
A is a forgetting factor with 0 <- A ~ 1.0, which accommod- 

ates for the time-varying nature of the parameters. A may be 
held constant or may be generated by the following equation 

.~(k) =/~x - Xr[a~ - A(k - 1)]; .~.(0) = )to, (33) 
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where )to and A. are the initial and final values of A, and Ar 
controls the rate at which the transition takes place. To start 
the iteration Po may be set to aI  (a  > 0), elements of 0o may 
be set to the best guess or to small values (20.1)  and 
elements of Ao, A~ and W0 may be set to zero. 

The above algorithm requires discretization of g(.) as 
shown in equation (3). Using Euler's integration technique 
one may write 

f (g ,  xk, Uk, tk) : [tk + l -- t~]g(xk, Uk, tk). 

However, discretization using other integration procedures is 
also possible. A continuous-discrete algorithm that does not 
require the plant discretization is presented below. 

3.2. The continuous-discrete estimation algorithm. Using 
the relationships following equation (3), a continuous- 
discrete algorithm can be developed as well. The 
continuous-discrete equivalent of equations (14)-(16) and 
equations (25)-(27) can be obtained, respectively, as 

I 
x* =xk + /~k~k; ~k =£*  (34) 

ftl k+l s~+l = ~k + g(~:, u, T, Ok) d'r; -fk+l = ~k+l (35) 

~-Yk+l = h($k+l, Uk+l, tk+l, Ok) (36) 

) (37) 
Ak+~ =A~ + G~dt  A~+ G°dt ,  (38) 

t k ~ t  k 

Wk+l = H~+lAk+l + Hk°+l (39) 

where 
3t, 

G;{---~ (dim: n × n )  (40) 
og 0 = 0  k 

G =Ogl (dimn × no) (41) 
k - dOlo=b ~ 

and g -= g(s ~, u, t, 0). 
Equation (35) involves the solution of differential 

equations that can be implemented using any numerical 
procedure. In addition, the evaluation of Ak + ~ using equation 
(38) may be incorporated with the above numerical 
procedure. An alternate efficient but simpler method of 
computing Ak+l is the use of the trapezoidal integration. 
With appropriate modifications, the discrete algorithm given 
by equations (28)-(33) can be extended to accommodate the 
above continuous-discrete equations. 

3.3. Known  system parameters. When the system para- 
meters are known, the derivative computation by equations 
(25)-(27) is simplified. In this case, 0 contains only the 
elements of L,. As a result, F ° (or equivalently G °) and Hk ° 
become null matrices. Further denoting 

o = [h . . . . . .  t..], 

where ti. denotes the ith row of Lk, L ° becomes 

[ ] e~ 
Lk ° = " ". (dim: n x no). (42) 

The convergence and stability properties of the proposed 
algorithm are analyzed in the Appendix. 

4. Simulation studies 
In order to verify the theoretical findings and compare the 

proposed algorithm (MIV) with other methods, five 
examples are considered. The first two examples are taken 
from Dhingra et al. (1992). The other three examples are 
modified forms of the first one. The other methods for 
parameter and state estimation considered in the simulation 
are the extended Kalman filter (EKF) (Jazwinski, 1970) and 
the jump matrix technique (JMT) (Dhingra et al., 1992). 

Example 1. State estimation in Van der Pors  equation. In 
this example a form of Van der Pol's equations is considered. 

Van der Pol's equation originally arose in the theory of 
circuits containing a triode valve. The solution of many other 
nonlinear equations can also be converted into this form. 
Van der Pors equation driven by a Gaussian wideband input 
w(t) can be obtained as (Dhingra et al., 1992) 

y - p.(1 - y2)) + 9y : w(t) (43) 

which can be written as 

[xX":] = [ - 9 x l  + Ix(21- x2)x2] + [~]w(t)  (44) 

y(t)  = xl( t)  + v(t), (45) 

where v(t) depicts the additive measurement noise. In our 
study/z is taken as 2.0. Two values of the sampling interval h 
are considered. They are 0.01 and 0.05 s. The differential 
equations are solved using a fourth-order Runge-Kutta 
method. In all the simulations involving Van der Pors 
equation, x0 and ~f0 are taken as [5 0] T and [6 2] T, 
respectively. For the MIV and EKF the continuous-discrete 
versions are implemented. 

All the system parameters are assumed to be known in this 
example. Therefore, MIV requires estimation of Lk only. P0 
and Lo are taken as 0.11 and [0.1 0.1] T, respectively. Other 
values of P0, i.e. 1, 101 and 1001, are also considered. Large 
values of P0 caused relatively large initial errors in the state 
estimates. But in all cases, the estimated states settled down 
near the true states within 40 iterations. It may be 
emphasized here that in MIV, P0 corresponds to the initial 
confidence on 00 (not on .%). A small value of P0 adjusts the 
unknown parameters conservatively and prevents initial 
oscillation of the estimated parameters. For the MIV, A has 
been fixed at 0.99 and the integration in equation (38) is 
performed using a trapezoidal rule. 

Figure 1 shows the actual and estimated state values with 
MIV when h is set to 0.05. The variances of w(t) and v(t) 
both are taken as 1. In order to get an appreciation of the 
noise levels, it may be mentioned here that the noise free 
output x~(k) had a mean square value 21. After the initial 
convergence period the tracking ability of the algorithm is 
clearly evident. The on-line estimation of Lk is depicted in 
Fig. 2. The time varying nature of these parameters is clearly 
evident from the figure. When the simulation is carried on 
for a longer time, these parameters are found to swing slowly 
confirming their nonstationary nature. 

Tables 1 and 2, respectively, compare the three methods in 
terms of the mean square error between the estimated and 
the real state values for h = 0.01 and h = 0.05. The values of 
Z,, and Zv needed by the EKF and JMT, are both set to 10L 
Table 1 indicates that at low noise levels the performance of 
EKF is best with MIV being comparable, but at high noise 
levels JMT outperforms EKF and the performance of MIV 
becomes worst. 

As the value of h was increased to 0.05, the performance 
of JMT deteriorated. The algorithm started showing 
instability. Although in some cases it has been possible to 
stabilize it by varying the initial state covariance matrix, $2 
showed large initial oscillations in the range -4-100. All these 
oscillations needed about 40 iterations to die out. In other 
cases no values of the initial covariance matrix succeeded to 
stabilize it. These results are shown in Table 2, where two 
columns of JMT results are given, one corresponding to the 
total mean square error, the other corresponding to the mean 
square error computed after the oscillations has died out. 
The results in these tables show that JMT is effective at a 
high sampling rate but is unsuitable for low frequency 
sampling. This observation is consistent with the JMT 
principle that it approximates the dynamic nonlinearity by a 
static nonlinearity embedded into a dynamic linear 
equations. Such an approximation may only be justified for a 
high sampling frequency. The performance of EKF and MIV 
in this table follows the same explanation as in Table 1. 

However, the last rows of Tables 1 and 2 show superiority 
of the MIV. The inferior performance of EKF and JMT in 
these rows is due the fact that the ratio (Zw/~v) has been too 
different from the actual values. The performance of EKF 
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FIG. 1. Actual and estimated states (MIV): Van der Pol's equation. 
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FIG. 2. Estimates of the innovation gains (MIV): Van der Pol's equation. 

10 

10 

and JMT therefore may deteriorate when knowledge of the 
noise variances is imprecise. MIV, however, is free from this 
problem. 

Example 2. State estimation in a nonlinear control system. In 
this example a nonlinear relay control system provided by 

T A B L E  1.  M E A N  S Q U A R E  E R R O R  IN S T A T E  E S T I M A T I O N .  V A N  

D E R  P O E ' S  E Q U A T I O N  ( h  = 0 . 0 1 )  

Zw Zv EKF JMT MIV 

0.01 0.01 0.0076 0.0168 0.0090 
0.10 0.01 0.0083 0.0149 0.0099 
0.10 0.10 0.0091 0.0147 0.0265 
1.00 0.10 0.0168 0.0141 0.0133 
1.00 1.00 0.0244 0.0194 0.1534 

10.0 1.00 0.0984 0.0696 0.3627 
1.00 10.0 0.0925 0.0801 2.6109 

10.0 10.0 0.1706 0.1340 3.1623 
10.0 0.01 0.0872 0.0602 0.0301 

Kuo (1970) and used by Dhingra et al. (1992) is considered. 
The block diagram of the control system is given in Fig. 3. It 
consists of an amplifier followed by a second-order linear 
system connected in a feedback configuration. The slope of 

T A B L E  2 .  M E A N  S Q U A R E  E R R O R  IN S T A T E  E S T I M A T I O N .  V A N  

O E R  P O E ' S  E Q U A T I O N  ( h  = 0 . 0 5 )  

Z~ Zv EKF JMT JMT* MIV 

0.01 0.01 0.0300 2 2 . 5 8 6  0 .3 1 7 3  0.0397 
0.10 0.01 0 . 0 3 1 7  22.628 0 .3 3 2 6  0.0411 
0.10 0.10 0 . 0 3 6 8  1 0 7 . 6 4  0 . 3 5 1 5  0.0563 
1.00 0.10 0 . 0 5 6 2  1 0 8 . 9 6  0 . 4 2 4 6  0.0813 
1.00 1.00 0.1066 3 3 3 . 0 0  1 . 6 6 4 7  0.4075 

10.0 1.00 0.3708 unstable 0.9053 
1.00 10 .0  0.6613 unstable 3.4566 

10.0 10 .0  0.9512 unstable 3.6103 
10.0 0.01 0.2754 23.514 0 .9 2 4 4  0.1906 

* When first 40 iterations are excluded from the MSE 
calculation. 
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FIG. 3. Block diagram of the nonlinear control system. 

the linear part of the amplifier characteristic is taken as 10. 
The equation describing the system is given by 

[ ~ i ] = [ _ x 2 + f ( f 2 x , + w , ]  (46) 

y(t) = xl(t) + v(t), (47) 

where f is the amplifier characteristic and, w(t) and v(t) are 
the feedback noise and measurement noise, respectively. 

The system has been initially simulated using a sampling 
period of 0.05. Figure 4 shows the system and estimated 
states by MIV when the variances of w(t) and v(t) have been 
1.0 and 0.1, respectively. Tables 3 and 4, respectively, 
compare the three methods for h = 0.01 and h = 0.05. It can 
be observed that MIV outperformed the other two methods. 
In this example, the partial derivatives can not be computed 
accurately due to the piecewise linear amplifier saturation 
curve. In addition, the term w(t) being an argument of the 
nonlinear function provided nonstationary state noise. It is 
possible that these facts are responsible for the inferior 
performance of EKF and JMT. On the other hand, MIV 
adjusts the innovation gain to minimize the model mismatch 
and therefore has superior modeling error tolerance. 

Example 3. State estimation with an erroneous model. In this 
example Van der Pol's equation is reconsidered. However, 
an erroneous model is used for the state estimation. 
Although p. = 2 has been used for system simulation, the 
state estimation algorithms assumed p. as 0.5. Figures 5 and 6 
show the actual and estimated states due to the EKF, JMT 
and MIV, respectively. The variances of w(t) and v(t) both 
are taken as 1.0. h is taken as 0.05. It can be observed that 
EKF and JMT failed to track the states due to the imprecise 

TABLE 3. M E A N  S Q U A R E  E R R O R  IN STATE ESTIMATION.  
N O N L I N E A R  C O N T R O L  SYSTEM ( h  = 0.01) 

5zw 5~v EKF JMT MIV 

0.01 0.01 0.0401 0.0908 0.0209 
0.10 0.01 0.0627 0.1146 0.0337 
0.10 0.10 0.0646 0.1163 0.0395 
1.00 0.10 0.0924 0.1281 0.0841 

T A B L E  4 .  M E A N  S Q U A R E  E R R O R  IN STATE ESTIMATION.  
N O N L I N E A R  C O N T R O L  SYSTEM ( h  = 0 . 0 5 )  

5~, ]~v EKF JMT MIV 

0.01 0.01 0.1130 0.2051 0.0427 
0.10 0.01 0.1418 0.2244 0.0604 
0.10 0.10 0.1519 0.2324 0.0643 
1.00 0.10 0.2266 0.3283 0.1304 

modeling assumption. On the other hand, although a little 
bumpy, MIV estimated the states reasonably well. The 
estimated innovation gains are shown in Fig. 7. A 
comparison of Figs 2 and 7 shows that the gains assumed 
higher values in the latter, which has been needed to 
compensate for the modeling error. 

Example 4. State estimation with an unknown system 
parameter. In this example Van der Pol's equation is 

I I ) I I I I I I 
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FIG. 4. Actual and estimated states (MIV): nonlinear control system. 
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considered again but/.r is assumed as an unknown parameter. 
In MIV the unknown parameter vector 0, therefore, consists 
of the elements of Lk as well as /z. /20 is taken as 1 (the 
actual value being 2). The variances of w(t) and v(t) are both 
taken as 1.0. h is taken as 0.05. It is observed that MIV has 
been able to track the states and as well as estimate the 
unknown parameter. Figure 8 shows the on-line estimation of 
the parameter/~. The convergence of/2 to the proper value 
is clearly evident from the figure. 

Example 5. State estimation with nonlinearity in the output 
equation. In this example Van der Pol's equation is modified 
by introducing nonlinearity in the output equation. The state 
equation is the same as in Example 1, but the output 
equation has been modified to 

y(t) = 0.05[Xl(t)] 3 + V(t). (48) 

Variances of w(t) and v(t) both have been 1.0. h has been 
taken as 0.05. Although the innovation representation is 
approximate in this simulation, the state estimation by MIV 
has been found to be satisfactory. Further the autocorrela- 
tion of the estimated residual sequence revealed that ~k has 
been white with 95% confidence. 

5. Conclusion and discussion 
In this paper, a robust state and parameter estimation 

method in nonlinear systems has been proposed through 
minimization of the innovation variance (MIV). The 
performance of the algorithm is compared with the extended 
Kalman filter (EKF) and jump matrix method (JMT). 

All the examples provided in this paper revealed the 
effectiveness of MIV to estimate the system parameters and 
the states of nonlinear systems. In the presence of stationary 
state and output measurement noise, and with a good model 
of the system, EKF is generally superior. With identical 
conditions but with small values of sampling time h, JMT 
outperforms EKF at high noise level. However, in the 
presence of nonstationary state and measurement noise, 
when the statistics of the state and measurement noise are 
not known properly, and/or, when the system model is 
imprecise the proposed MIV algorithm clearly outperforms 
the EKF-type algorithms. MIV always attempts to minimize 
the prediction error variance by adjusting the innovation gain 
matrix and therefore has a superior model mismatch 
tolerance. 

The major weakness of MIV is the lack of a rigorous 
stability proof as outlined in Appendix 2. Computational 
experience, however, indicated that the algorithm in most 

cases remains stable without a stability check. In all other 
cases, the guidelines given in the Appendix are adequate to 
keep the algorithm stable. In our simulations, all but two 
cases remained stable without any stability check. All 
simulations remained stable when only stability on 
[I-/~kH~,] is checked, where stability has been violated 
and the new estimates had to be discarded only 0-4% times. 
The algorithm never became stagnant. 
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Appendix  
In this appendix the convergence and stability properties 

of MIV are analyzed. 
1. Algorithm convergence. The parameters  of the gain 

matrix L,  in equation (8) generally are time varying. In a 
RPE algorithm, this time varying nature is accommodated by 
proper  choice of the variable A. Nevertheless, it is of interest 
to investigate the convergence of the algorithm when the true 
parameter  set assumed constant values. In the following we 
investigate the possible convergence points of the proposed 
algorithm assuming that the true parameter  vector 0 is 
constant. 

Assuming that the sequences 6k(0) and qJk(0) are 
bounded,  the convergence of the recursive algorithm 
presented in Section 3 can be analyzed by considering the 
associated differential equation (de) (Ljung and SoderstrSm, 
1983) 

d 0 ~ =  ~(0~)~; ' (A.1) 
d r  

d ~ = ~ 5 ( 0 ~ )  J?~ (A.2) 
d r  

where 

~(0) = ~/eI(0)2; ,%(0)} 

r ~ l o g k ,  ~ ( k ) = y k P k l .  

where y, is a positive quantity, Z~ is the estimated value of 
Z~ which will become approximately constant for large k and 
the subscript r indicates the change of independent  variable 
from k to v. The possible limit points of 0,  as k tends to 
infinity are the stable stationary points of the differential 
equations given by equations (A.1) and (A.2). 

The convergence analysis of the proposed RPE algorithm 
directly parallels the analysis of the RPE algorithm in linear 
models reported in (Ljung and Soderstr6m) 1983 and 
Soderstr6m and Stoica (1989). It can be shown that the 
algorithm converges (locally and globally) to the stationary 
points of the asymptotic loss function 

V~(O) = ~{eT(0)'Z~, 'ek(0)} (A.3) 

among which the true parameter  is a candidate. If the true 
parameter  set is the only stationary point, convergence to the 
true parameter  set is ensured. 

2. Stability analysis. The above analysis is based on the 
assumption that e k and W, are bounded.  This in turn requires 
that 2 ,  and Ak remains bounded [see equations (14)-(17) and 
(25)-(27),  respectively). In the following, the condition 
under which they remain stable is investigated. 

Combining equations (25)-(27), one obtains 

A k ~ , = C k A k + [ I + F ' k ] [ L ~  L , H  ° ] + r  ° (A.4) 

where 

Ck = [1 + F$][1 - LkH~]. 

Similarly equations (14)-(17) may be combined to obtain 

~k,~=X~*+f(g,X~*+£kyk, U~,tD+L~yk (A.5) 

where x** = .f - £kh(-f~. ttk, tA, 0k)-f~. 
A linearized version of equation (A.5) can be obtained as 

Ark- I -~ ( ' t  A-fk + F~ Auk +/~k AYk, (A.6) 

where &r, All and Av are the incremental values. In order to 
gain insight into the stability property of equation (A.5), this 
linearized equation can be used. The analysis therefore 
remains valid for small values of the incremental variables. 

The stability of equations (A.4) and (A.6) is ensured if the 
eigenvalues of (i) [I + F;~] and (ii) [I - LkH~] lie within the 
unit circle at least infinitely often. When all the system 
parameters  are known, the eigenvalue requirement  of 
[1 + F~] translates into the stability of the linearized system 
at the operating point. Since a system should be either open 
loop stable or stabilized in closed loop, the above stabilily 
requirement  is always met. 

The stability of the algorithm therefore depends on the 
eigenvalues of [1 - LkH"k]. Since the matrices L~ and H;~ are 
available in each iteration Jury stability criteria (Astr6m and 
Wit tenmark,  1990) can be incorporated to detect the 
instability. The stability of the algorithm can be maintained 
in three different ways. 

(i) Discard the new parameter  estimates and keep the old 
ones when the stability condition is violated. 

(ii) The gain M, in equation (30) is iteratively halved until 
the stability condition is satisfied (Ljung and Soderstr6m, 
1983). This approach, called the interval halving, however, 
may increase the computational requirements considerably. 
Further, both of the above approaches may make the 
algorithm stagnant as mentioned iv Ahmed  and Sail (1989). 

(iii) Recompute L,  to obtain an equivalent minimum 
phase description. Whenever  one or more eigenvalues of 
I LkH~ move outside the unit circle, they are substituted 
by their image values inside the unit circle. Then a new value 
of Lk is computed such that l - / ~ k H ]  has the modified 
eigenvalues as obtained above. This is a typical problem of 
closed loop pole placement in control theory. Many 
techniques can be adopted (Kautsky et al., 1985). This 
approach is capable of keeping the algorithm stable without 
making it stagnant. 

The latter approach, however, is only applicable when all 
system parameters  are known. If some of the system 
parameters  are unknown, the eigenvalues of [1 + F;~] may 
also contribute to the instability, and a combination of (i) 
and (iii) may be attempted. Unlike the linear case. F~, 
depends on .f~. Consequently, a particular 0 although 
satisfying the stability requirement  for [ I +  F~] in one 
iteration, may violate the stability requirement in the 
subsequent  iterations. This poses an open problem, which is 
the development  of a suitable method to ensure stability of 
the algorithm in such cases. 


