
Compur. Htol. Med. Vol. 24. No. 6. pp. 185-492, I’*)4 
CopyrIght 0 lYY5 Elscvicr Scicncc Ltd 

Prlntcd in Great Britain. All rights rcservcd 
lW)lO-4825/Y4 $7.(M)+ O.(W) 

PC PROGRAM FOR ASSESSING THE RELATIONSHIP 
BETWEEN RATE OF CHANGE AND INITIAL VALUE 

CHARLES J. KOWALSKI, EMET D. SCHNEIDERMAN and STEP~IEN M. WILLIS 

Department of Biologic and Materials Sciences, Dental School. and The Center for Statistical 

Consultation and Research (CJK), The University of Michigan, Ann Arbor. MI 48109. 
U.S.A.; and Department of Oral and Maxillofacial Surgery and Pharmacology (EDS and 

SMW). Baylor College of Dentistry, Dallas, TX 75260677, U.S.A. 

(Receiued 7 January 1994; receiued in revived form 4 Ocrrher lYY3) 

Abstract-A menu-driven PC program implementing Blomqvist’a [J. Am. Sfuf. Assn. 72. 
746-740, 19773 method for assessing the relationship between rate of change and initial value is 

described, illustrated and made available. It is shown that the naive approach to this problem- 
computing the correlation between the initial value and either the amount or rate of change- 

results in a negatively biased estimator. The extent of this bias can be dramatic and may lead 
investigators to conclude that a negative correlation is present when none exists; or that there is 
no correlation when in fact the correlation is positive. Blomqvist’s (maximum likelihood) 
estimator avoids this bias, and is obtained by a transformation of the naive estimator. 

Growth rates Change Initial value Biased estimator PC program 

INTRODUCTION 

When analyzing longitudinal data, it is often of interest to study the relationship between 
the initial value of a measurement and its rate of change over time. One might ask, e.g. 
whether initially high/low values have differing prognostic significance. The naive 
approach to investigating this relationship would involve obtaining estimates of the 
slopes of the regression lines for each individual, say h, for i= 1.2. . . . , N and then 
correlating these with the intercepts, say m,. This provides a (negatively) biased estimate 
of the relationship between change and initial value, and the extent of this bias can be 
dramatic. Specific, numerical examples appear in the literature [l-4] and these will be 
described in more detail (in the Discussion) after we have developed the theory behind 
an estimator which is free from this bias, and hence a basis for comparison. Suffice it to 
say here that the biased estimator can be significantly less than zero when there is no 
relationship between change and initial value, and it can not be significantly different 
from zero when a significant positive association exists. The source of this bias is most 
easily demonstrated in the simple case of two times of measurement in the context of the 
correlation between change, d,=xi2-x,, and the initial value, s,, (with just two time 
points. the slope is d, and the intercept x,,). 

Most demonstrations are based on scenarios which incorporate measurement error. 
Let X,, and X,? denote the true values for the ith individual at times 1 and 2. Because of 
the vagaries of measurement, we do not actually observe X,, and X,?, but rather, for 
individual i, 

x, =X, + f, 

xq=X,+E.? _ _ 

where E, and E? are errors of measurement. If, as is usually done, we assume bivariate 
normality and that the errors of measurement are independent of the true scores 
[COV(E, X)=0 for all combinations of subscripts on X and E] and of each other 
[COV(E,, ez) =O]. then estimates of the association between true change and initial level 
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using observed change and initial level are negatively biased. This can be seen from the 
expression for the covariance x, and x2 -x,, viz., 

cov(x,,xz-x,)=cov(X,,X,-X,)-var(e,). (1) 

Thus, the covariance of interest, cov(X,, X, -X,), is estimated with negative bias when 
cov(x,, x2-x,) is used. This is because x2-x, is not independent of E,. In fact, 

COV(E,, x2-x,) = var(E,) 

the amount of the bias in (1). Thus we see that, when dealing with imperfect measure- 

ments, cov(x,, x2 -xl) will underestimate cov(X,, X2 -X,). As noted earlier, one might 
infer a strong negative correlation when the true correlation is near zero; or one might 
conclude that there is no association when a relatively strong positive correlation exists. 
Examples of this phenomenon are given in [l-4] and are discussed in more detail later. 

It is also true that it is not necessary to incorporate errors of measurement into the 
model to make the point that correlating change and initial value can produce misleading 
results. Supposing x, and x2 are measured without error, Oldham (51 showed that the 
correlation between change and initial level is given by 

It is seen that this correlation depends on p(x,, x,), cr,,, and u,? and can vary, as these 
factors vary, to a dramatic extent. Consider, e.g. that if x, and x2 are independent and if 

a,, = o,,, then p(x,, x2-x,) = - l/V’2 = - 0.707. Thus even if x, and x2 are selected from a 
table of random numbers, there will be a substantial negative correlation between 
change and initial value, which has erroneously lead some investigators to conclusions 
like, “Those with the most serious problem (high blood pressure or low scores on a stress 
test) showed the most improvement.” In the case of just two times of measurement, 
when interest centers on the hypothesis that no change has occurred, Oldham [5] 
suggested that instead of studying x, and x2 --x1, one should concentrate on D =x2 -x, 
and S=xZ +x, (or the mean, S/2). These are related according to the expression 

a;, - af, 
p(sT D, = *~1+;‘2y_(ip(x,’ x&7,,(7,,)~’ 

It is seen that if no change has taken place (so, in particular, at, = at,), p(S, D) = 0. If in a 
given situation, p(S, D) ZO, this is a positive finding and it may be inferred that change 
did in fact occur. This approach is a simple special case of the use of orthogonal 
polynomials, an approach which is most useful in testing the no change hypothesis (for a 
more detailed discussion of orthogonal polynomials, and a PC program which may prove 
useful in like contexts, see [6]). It is still of interest to inquire as to whether change is 
associated with the initial value, and we consider this further in the following section. 

CHANGE AND INITIAL VALUE 

Ragosa and Willett [3] suggested that there are four ways to approach the problem of 
assessing the relationship between change and initial value. The first, and least satisfac- 
tory, is the one considered above where the simple correlation I(x,, x2 -x,) is used. The 
second involves “disattenuation” of r(x,, x2-x,) using an estimate of the reliability of the 
baseline measurement in (1). The third employs the correlation structure implied by a 
specified model for growth; and the fourth estimates the relation between change and 
initial value by modeling both individual growth and individual differences in growth. 
The latter approach is the one pursued here. The method was developed by Blomqvist 
[7], and applied in a study of blood pressure measurements in [4]. We employ their 
notation to facilitate comparison of the quantities computed by our program and the 
derivations and examples given in these publications. 
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Blomqvist’s procedure is based on the model and quantities specified below. It will be 

seen that many of these quantities involve the following form of the “naive approach” 
mentioned earlier: the individual growth curves are fit by ordinary least squares (OLS) to 
obtain slopes (rates of change) and intercepts (initial values) for each subject. We then 
regress the slopes on the intercepts, obtaining an estimate of the regression coefficient of 
slope on initial value. This estimate is then corrected to avoid the bias illustrated earlier. 

The expression 

x,, = m, + b,t, + F,, (3) 

models the observation for individual i(i= 1,2, . . , N) at time r,(i= 1,2, . , T) with 
starting point t,=O. The errors of measurement are assumed to be independently 
normally distributed with E(F;,) = 0 and var(.s,,) = a:. We also assume 

i.e. that mj and b, have a bivariate normal distribution with respective means p and p, 

variances ai and ai, and covariance u,,,. We let 8 = a,,,,,/~; = true regression coefficient 
of b, on m,, and ,I = o~la~. 

Blomqvist’s procedure then proceeds as follows. For each of the N individuals, use 
OLS to estimate m, and b,. Compute and save the mean squared error (residual mean 
square) for each case. Then compute fi*, the regression coefficient of slopes on 
intercepts. The maximum likelihood estimator (MLE), 6, is a simple adjustment of 8*, 
viz 

e* + a,;l 
d=------ 

1 - a,1 ’ 
(4) 

where 

a, = T/s . tt 

and 

1 
I=- f,, 

T c St, = c (t,-if. 

In (4), I = (i:lsH, where 6;’ is the mean of the mean squared errors and si, is the sample 
variance of the estimated intercepts. 

Given 4, we can estimate the correlation between slopes and initial values (intercepts), 
p(b, m) = (a,,,/~,,) 8 from r(b, m) = (s,,/6,) 8. where 6, is the sample variance of the 
estimated slopes. 

Wu et al. [4] show that 

lim Nui= 
N--x 

(2T-2)(a, + az8)‘uf 

(T-2) dl 

so that for large samples, letting RHS stand for the right-hand side of the above 
expression with estimates substituted for parameters, the approximate standard error of 

8 is X(8) = VRHSIN and an approximate (large sample) 05% confidence interval for H 
is 

In addition to estimating 8, output from the program can be used to: (i) compute a 
subject’s expected rate of change; and (ii) the predicted value t time units from now. A 
subject’s expected rate of change is given by 

b,=fi+&m,-fi), (5) 

CBM 24:6-F 
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where b is the average of the estimated slopes for individuals. The predicted value t time 
units from now is 

i,, = m; + h;t, (6) 

where /!?, is computed from (5). The utility of these quantities will be illustrated in the 
example considered below. 

THE PROGRAM 

The program is written in GAUSS386i, but users need not have purchased nor 
installed GAUSS to run our program which stands alone. It is invoked by issuing the 
command gsruni rbm (this stands for the correlation or relationship (r) between slope (b) 
and intercept (m)). The user is prompted for the name and location of the (ASCII) file 
containing the values of the repeated measurements, and is asked to enter the times of 
measurement, say l,, f,, . . . , t,. We, following 141, first transform these time points by 
subtracting t, from each so that t, =0 is the first time of measurement (this makes the 
intercept equal to the initial value). We then compute and print estimates of the six 
parameters in the model, viz., ,L?, 1, si, St, &,, and 6:. We also print ;i =&f/s:, both 
r*(b, m) and r(b, m), and d* and 6. r*(b, m) is the uncorrected correlation coefficient; 
r(b, m) the corrected version. Confidence intervals for 4 and r(b, m) are also provided. 

AN EXAMPLE 

Examples in which e* seriously underestimates 8 are plentiful [l-6]. We consider 
instead a data set which has been often used to illustrate longitudinal data analytic 
procedures in the literature, e.g. [g-12], for which the difference between d* and 4 turns 
out to be less dramatic. It consists of the ramus heights of N= 20 boys at ages 8, 8.5, Y 
and 9.5 years of age. These are reproduced in Table 1. 

After specifying the name and location of this file, the user is asked to enter the times 
of measurement. Following [4], we transform these to 0, 0.5, 1, 1.5, so that t, = 0 is the 
time of the baseline measurement. The program first uses OLS to fit lines to each of the 
20 sets of measurements. The intercepts (m,), slopes (b,), the mean squared error (MSE) 

Table 1. Ramus heights of 20 boys at 
different ages 

Ind. 8 
Age 
8.5 9 9.5 

1 47.8 48.8 49.0 49.7 
2 46.4 47.3 47.7 48.4 
3 46.3 46.X 47.x 48.5 
4 45.1 45.3 46.1 47.2 
5 47.6 48.5 4x.9 49.3 
6 52.5 53.2 s3.3 53.7 
7 51.2 53.0 54.3 54.5 
8 49.8 50.0 50.3 52.7 
9 4x. I 50.8 52.3 54.4 

10 45.0 47.0 47.3 48.3 
11 51.2 51.4 51.8 51.9 
12 48.5 49.2 53.0 55.5 
13 52.1 52.x 53.7 55.0 
14 48.2 48.9 49.3 49.8 
15 49.6 50.4 51.2 51.8 
16 50.7 51.7 52.7 53.3 
17 47.2 47.7 48.4 49.5 
18 53.3 54.6 55.1 55.3 
19 46.2 47.5 4x.1 48.4 
20 46.3 47.6 51.3 51.8 
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Table 2. Intercepts, slopes, mean squared 
errors. and R’values when lines arc tit by 

OLS to ramus heights of 20 boys 

Ind (i) m, h, MSE RL 

I 47.94 I.18 0.053 0.942 
2 46.49 1.28 0.021 0.0x0 
3 46.21 1.52 0.021 1).98h 
4 44.86 1.42 0. I04 O.Y24 
5 47.7s I, IO 0.037 O.Y53 
6 52.62 0.74 0.032 0.016 
7 51.57 2.24 0.329 O.YO5 
8 49.35 I .x0 0.705 0.742 
9 48.34 4.08 0. I26 O.YXX 

10 45.37 2.04 0.269 O.YOh 
II 51.20 0.50 0.00x O.Y54 
I2 47.83 4.96 0.X89 O.Y45 
I3 51.96 1.92 0.046 O.YXO 
14 48.27 I.04 0.00’) O.Y87 
IS 49.64 1.48 0.006 O.YYh 
I6 50.78 1.76 0.034 0.988 
17 47.06 1.52 0.046 0.9hY 
18 s3.60 1.30 0.157 0.x70 
I9 46.47 1.44 0. 129 0.Y00 
20 46.22 4.04 0.864 0.922 

and the value of R’ for each are computed and printed by our program. and shown in 
Table 2. 

The estimates of the parameters in the model and the uncorrected estimates of the 
correlation and regression coefficients are then printed in the following form: 

MUHAT = 48.667 
BETAHAT = 1.868 
VAR(M) = 6.494 
VAR(B) = 1.352 
COV(BM) = - 0.655 
VAR(E) = 0.194 
LAMBDAHAT = 0.0303 
RSTAR(BM) = -0.221 
THETAHATSTAR = - 0.101. 

All of the above quantities would ordinarily be computed when following the naive 
approach described above. In particular, RSTAR and THETAHATSTAR refer to 
r*(b, m) and P*, the uncorrected estimates and their confidence intervals: 

Lower limit Thetahat Upper limit 
-0.296 -0.085 0.127 

Lower limit R(BM) Upper limit 

-0.649 -0.1X6 0.378 

The quantities with STAR in their name are the uncorrected, “naive” estimators of the 
correlation between slope and intercept; and of the regression coefficient for slope on 
intercept (d*). It is seen that, in this example. the corrected values are quite close to the 
uncorrected values. The negative bias associated with the uncorrected estimators, while 
present, is relatively small for this data set. 

To illustrate the use of (5) and (6), consider an individual with initial value m,=50. 
The expected rate of change for this subject is 

6; = 1.868 - 0.090(50-48.667) = 1.748. 

Noting that in our example rates are computed per half-year, this subject’s predicted 
value t years from now is 
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f,,=50+2*1.74&=50+3.496t. 

For example, for this subject with initial value m, = 50 at 8 years of age, we predict 
f, = 53.496 at 9 years of age. 

DISCUSSION 

The example considered above, where the adjusted estimator differed but slightly 
from the unadjusted estimator, is not typical. This can be seen from equation (4) and 
those immediately following. In particular, it is seen that a, and a2 depend on the design 
of the study. Their values depend on the number and spread of the times of observation. 
For a given design, 8 and 8* will be relatively close when 1=$/a: is small, i.e. when 
lines provide good fits to the data and the variation among intercepts is relatively large. 
Table 2 shows that both these conditions are satisfied in our example. As 2 increases, e 
will differ more from e*. Often the differences are quite dramatic, and these differences 
can lead to conflicting inferences [2,5]. Examples exist where significant negative 
regression coefficents have been reported, the significance either vanishing or becoming 
significant in the positive direction when the adjustment is made. Thus, Feinleib et al. 
[13] demonstrated the negative association between initial value and rate of change in 
blood pressure found in the classic study by Jenss [ 141 could be attributed entirely to the 
bias inherent in the naive estimator. Dwyer and Feinleib [l] gave another example 
involving blood pressure where the unadjusted and adjusted regression coefficients were, 
respectively, -0.28 and -0.09. Blomqvist [7] reported a change from -0.22 -t 0.032 to 

0.16 + 0.064. 
We might also mention that an estimator of the regression coefficient of slope on initial 

value which is somewhat easier to compute, and lies somewhere “in-between” the naive 
estimator and Blomqvist’s estimator exists [13]. It does not require that the mean 
squared errors for the individual regressions on time be computed, but it retains some of 
the negative bias associated with the naive estimator, and is less efficient than that 
considered in this paper [4]. 

Finally, the reader will have noted that the analysis described above assumes a linear 
relationship between b and m. This will be true whenever, for each individual, the 
response variable is linearly related to time, and if individual values of the slope and 
intercept have a bivariate normal distribution. This will be a reasonable assumption in 
many biomedical research contexts, e.g. Hui and Burger [15, p. 7531 justify fitting 
straight-line growth curves to epidemiologic data: “an important feature of many 
epidemiologic studies is that the follow-up of most of the individuals studied are 
sufficiently short that the response curves in the intervals can be approximated by 
straight lines.” In the present context, where rate of change is the focus, there is also 
reason to expect a good approximation even when the true growth curves are quadratics 
[16]. In any case, a PC program for testing the linearity of the individual growth curves is 
available [ 121. 

SUMMARY 

When analyzing longitudinal data, it is often of interest to study the relationship 
between the initial value of a measurement and its rate of change over time, e.g. to see 
whether initially high/low values have differing prognostic significance. A stand-alone, 
user-friendly, menu-driven PC program implementing Blomqvist’s [7] method for 
assessing this relationship has been described, illustrated and made available to inter- 
ested readers. It was shown that the naive approach to this problem-computing the 
correlation between the initial value and either the amount or rate of change-results in 
a negatively biased estimator. The extent of this bias can be dramatic and may lead 
investigators to conclude that a negative correlation is present when none exists; or that 
there is no correlation when in fact the correlation is significantly positive. Blomqvist’s 
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maximum likelihood based estimator avoids this bias, and is obtained by a transforma- 
tion of the naive estimator. 
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APPENDIX 

A set of PC programs, including this and related procedures can be obtained on 5.25” or 
3.5” diskettes (please request type) by sending $25 to defray the cost of handling and 
licensing fees. These programs require a 80386 or 80486 based personal computer (PC) 
running the MS-DOS operating system (version 5.0 or higher is recommended, although 
versions as low as 3.3 will suffice). 80386 computers must also be equipped with a 80387 
math compressor. At least 4 mb of memory is required, and must be available to 
GAUSS386i, i.e. not in use by memory resident programs such as Windows. EGA or 
VGA graphic capabilities are required to display the color graphics; VGA or SVGA is 
suggested to display optimally the graphic results. Runtime modules are supplied with 
the programs so that no additional software (i.e. compiler or interpreter) is required to 
run these programs. One can create and edit ASCII data sets for use by these programs 
using the full screen editor supplied with MS-DOS version 5.0. The programs are written 
and compiled using GAUSS386i version 3.0, require no additional installation or 
modification, and are run with a single command. When requesting the programs, 
address inquiries to the corresponding author and make checks payable to Baylor 
College of Dentistry. 


