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Abstract 

Excitons in an infinite layered dipolar medium, such as a layered molecular crystal or a multiple-quantum-well stack, with 
perfect periodicity exhibit a vanishing radiative width due to the requirement of energy-momentum conservation. Using a po- 
la&on model with off-diagonal disorder and a configuration-averaging technique, we show how deviations from the ideal case, 
specifically in the form of weak departures from perfect periodicity, and the resulting breaking of full translational invariance, 
give rise to a nonvanishing radiative width. 
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Shortly after the introduction of the polariton con- 
cept, Hopfield recognized that excitons in ideal infi- 
nite crystals should not undergo radiative decay [ I]. 
This results from energy-momentum conservation: an 
exciton with center-of-mass wavevector k couples only 
to photons with the same wavevector due to momen- 
tum conservation. Energy conservation then dictates 
that radiative decay can only take place when 
E,,(k) = hck, i.e. when the noninteracting exciton 
energy is equal to the photon energy, both at k. (c is 
the speed of light in the background dielectric me- 
dium.) The exciton-photon interaction, however, 
gives rise to an anticrossing between the noninteract- 
ing exciton and photon dispersions, thus prohibiting 
radiative decay from occurring. An equivalent view 
is that at each k the exciton and photon each are de- 
scribed in terms of a harmonic oscillator. The polar- 
itons are then the two coupled modes that result at a 
given k. In particular, regardless of the initial condi- 
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tions chosen, the dynamics of the system are peri- 
odic; irreversible radiative decay does not take place. 

The polariton model, in its original form, does not 
account for scattering, whether by excitons (non-Bose 
behavior) or phonons, nor for crystal surfaces or het- 
erointerfaces. Other important effects not considered 
are disorder effects on the electronic states and on the 
photon modes, or the presence of impurity species 
with resonances far from E,,(k). The effect of all of 
these is to allow the excitons to access that point in 
phase space where energy-momentum considera- 
tions allow radiative decay. In terms of dipole oscil- 
lators, the aforementioned effects disturb the exci- 
ton’s perfect spatial and temporal coherence which is 
implied by the two-oscillator model that underlies 
polariton theory in bulk crystals. 

Some of the effects just mentioned are well docu- 
mented. For example, excitons in optically thick but 
finite crystals obviously can undergo radiative decay. 
There has been much interest recently in low-dimen- 
sional electronic systems embedded in the three-di- 
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mensional vacuum electromagnetic field in which 
excitons display particularly efficient spatially coher- 
ent or superradiant, radiative decay [ 2-81. There has 
also been an effort to understand the radiative dy- 
namics of crystaline media in which atoms or mole- 
cules with resonances different from the background 
material are randomly placed [ 9, lo]. Nevertheless, 
there has been little, if any, work on the effect of static 
material disorder on the radiative width or other po- 
lariton effects. 

In this Letter we explore a minimal model of dis- 
order of a specific type. We consider how slight de- 
partures from ideal periodicity give rise to a nonvan- 
ishing excitonic radiative width in an otherwise 
infinite medium formed from thin dipolar layers. 
Thus this model qualitatively describes the origin of 
the bulk contribution to the radiative width in opti- 
cally thick layered molecular crystals (molecular 
crystal slabs) or multiple-quantum-well (MQW) 
stacks in the absence of other kinds of disorder, scat- 
tering, etc. Without loss of generality, we shall em- 
ploy the language of MQWs in order to allow a 
straightforward comparison with an existing body of 
work [ 6,7,11,12 1. Our course is to derive an essen- 
tially exact expression (within the polariton model) 
for the Green function (GF) for the exciton’s tran- 
sition dipole moment in the presence of the interac- 
tion with the electromagnetic field. The random dis- 
placements of the constituent quantum wells (QW) 
from their ideal positions show up as a nonadditive, 
off-diagonal, energy-dependent perturbation of infi- 
nite range as viewed in a tight-binding model. We shall 
then apply a configuration-average technique to ex- 
tract the disorder-induced radiative width account- 
ing for first-order correlations. 

We consider a stack of N identical symmetric QWs 
(we let N-tco) each of width L, much less than the 
optical wavelength corresponding to the transition of 
interest, and we take the location of the Ith QW in the 
growth (z) direction to be LI. The spectral and dy- 
namical properties of an exciton interacting self-con- 
sistently with the vacuum electromagnetic field are 
given by the dipole GF 6 ‘, the definition of which is 
given in Refs. [ 6,11,12]. In summary, the coupled 
exciton-electromagnetic modes ( polaritons) can be 

’ The double arrow signifies a dyadic while the sans serif font 
signifies a matrix in the site or planewave bases. 

classified as s wave (transverse electric) and p wave 
(transverse magnetic) [ 5 1. The s-wave mode corre- 
sponds to the T-mode polariton in which the transi- 
tion dipole moment lies in the QW plane but is per- 
pendicular to the in-plane excitation wavevector k,, 
while the p modes (in a single symmetric QW) can 
be further classified as the L mode (dipole moment 
parallel to k,, ) and the Z mode (dipole moment par- 
allel to z direction). We shall assume that there is no 
electronic coupling between the T, L, and Z modes, 
which holds exactly insofar as the heavy-hole and 
light-hole excitons in zincblende-semiconductor 
symmetric QWs are concerned. In MQWs, the L and 
Z modes are optically coupled: this coupling, how- 
ever, is shown in practice to be negligibly weak for 
GaAs/AlGaAs MQWs [ 121. For the sake of brevity, 
we shall therefore neglect this coupling. This allows 
us to drop the dyadic notation and write D, where 
EE{T, L, Z}. We find that the GF obeys the Dyson 
equation D; ’ = D:- ’ -hX$‘), where D: is the exci- 
ton GF including depolarization effects ( (TL)-Z 
splitting) [ 51 and fiC$‘) is the spatially regular 
(nonlocal) part of the radiative self-energy (SE) 
[6,11,12]. 0: is site diagonal, namely [D:lrr, = 
2&(&)/t (i~)2-~,,(~,1)2-2~,,(~ll)f2~!2)(~~~)l~~~f 
where ia is the energy variable (in general complex). 
hX$2) (ii,, ) is the spatially singular SE which gives rise 
to the (TL)-Z splitting. It is nonvanishing only for 
E = Z and is real and energy independent, and there- 
fore only enters the theory as a renormalization of 
E,x(k,, ) [ 6,111. Explicit expressions for all these 
quantities can be found in Refs. [ 6,12 1. The SE ma- 
trix is of the form hXj’) =FU$‘)(k,,ie) where 
fiz!’ ) (k,, , ie) is the single-QW SE [ 6,111 and F,!, = 

exp(-alLI-Ll,l) with a=[ki-(ix)2]1/2 and 
irc=ie/Ac. The terms for 1 #I’, therefore, govern the 
interlayer excitation transfer. They can be regarded 
as hopping matrix elements in a tight-binding model. 
They are, however, energy dependent and of infinite 
range. Moreover, the perturbation is not in any ap- 
parent way additive. These complications preclude 
the straightforward application of known exact re- 
sults for one-dimensional disordered chains and of 
many techniques for calculating configuration aver- 
aged GFs [ 13 1. The intralayer excitation transfer is 
built into hC! ’ ) (k,, , ie) . Finally, we note that the den- 
sity of exciton states in each subspace E in the pres- 
ence of the self-consistent interaction with the elec- 
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tromagnetic field is given by the spectral density& (E, configuration average gives the virtual-crystal ap- 
kr)=-2ImTrD,(E+iO+,k,,).Moreover,A,(E,k,,) proximation, where, for practical purposes, the orig- 
is an important experimentally accessible quantity inal random medium is replaced by a uniform one 
because it is proportional to the transmission coeffi- with average parameters. For the type of disorder un- 
cient and the coherent spontaneous-emission spec- der consideration, we shall find in addition that the 
trum of an exciton [ 12 1. The widths of features in first-order approximation yields the leading moditi- 
the spectra, which are governed by the analytic form cation to the radiative dynamics due to the random 
of the SE, are the radiative widths of the correspond- interwell spacings. A higher-order treatment is difft- 
ing resonances. cult due to the previously mentioned reasons. 

Since we are concerned with MQWs which are al- 
most periodic, the planewave basis { 1 q) } in the z di- 
rection is a good zeroth-order starting point. Because 
D, is diagonal, we need only transform the SE from 
the site basis { 11) } to the planewave basis { 1 q) }. In 
particular, we need only look at F, 

Let ( 0) denote the configuration average of Lo. In 
the S-matrix expansion of D, we encounter quantities 
of the form (Y(p,+q,)Y*(p,+q’, )... Y(p,+ 

qm) Y+ (p, + q& ) ) . If the disorder is uncorrelated 
between sites, the configuration average of the type 
above would factor as (Y(p,+q,)) (,4m(p,+ 

q;)>...(Y(p,+q,))(~(p,+q:,)) were it not 
for terms which involve multiple occupancy on the 
same site which is surely correlated. We shall, how- 
ever, only retain such correlations between products 
with the samep variable; namely, we shall replace the 
configuration average of the product of structure 
factors with (Y(pl+q,)Y(p,+q’,))...(Y(p,+ 

qm) F(p,+ qk ) ) . This should be a good approxi- 
mation as higher-order correlations will, on average, 
be weak due to their essentially random phases. 
Within the first-order approximation, it is easy to 
show that ( D,) obeys the following Dyson equation: 
[(De)]-‘z(D;‘)=D:-‘-(fiE$‘)). [(fzZ:“)],,< 
is proportional to (Y(p+q)Y’(p+q’)). We have 

Fqqt = ~_~~t,~,exp(iqL,)~~texp(--iq’L,l) (la) 
9’ 

cm 

=;z& dp s & y(P+q)y*(P+q’) 7 
--QD 

(lb) 

where Y(k) = N - r /*C C, exp ( ikLI) is the structure 
factor. The foregoing equations are exact within the 
polariton model in the absence of LZ coupling 
(though the inclusion of the latter is trivial). In order 
to calculate A, (E,k,, ) , it is necessary to diagonalize 
the infinite matrix D,. For the periodic case - L, = IL 
with L a constant interwell spacing - the representa- 
tion ( 1 q)} is in fact diagonal since the MQW then 
possesses full translational invariance. This case was 
analyzed in Refs. [ 11,121 where it is shown that all 
states have vanishing radiative widths as N+co. That 
effects of this type are real is attested to by the mea- 
surement of superradiant excitonic emission from 
QWs in Refs. [ 14,15 1, from molecular systems [ 16 1, 
and the observed N dependence of the coherent ra- 
diative dynamics in finite MQWs [ 11,12,17,18 1. By 
adding some randomness - in the form LI = IL +x1 
with Jxrl <L - we expect to restore, at least in part, 
the radiative width present in isolated low-dimen- 
sional systems. 

For A# 0, however, we are once again stuck with a 
problem of infinite size. Fortunately, for many appli- 
cations it is found that a specific realization of a ran- 
dom medium can be well modeled as an average over 
all configurations [ 13 1. In diagonal-disorder models 
the inclusion of only the lowest-order term in the 

<y(P+qw*(P+q’) > 

= a,,:, exp[i(p+q)lLl exp[-i(p+q’VLl 
3’ 

X (ew[i(p+q)xd ew[-i(p+d)x~tl > . (2) 

Our task, thus, reduces to evaluate C= 
( exp( %x1) exp ( - ik’x,,) ) . Let the distribution P(x) 
be defined such that ( 0 (x1) ) = J?‘_, dxP(x) 0 (x) 
and moreover assume .j?‘_, dxP(x) = 1. If 
P(k-k’)=J”, dxP(x) exp[i(k-k’)x], then C= 
[P(k-k’)-P”(k)l’*(k’)]&+P(k)l’*(k’). Assum- 
ing uexL-=zz 1 (Key= E,,(k,,) /fzc), we can neglect 
Umklapp processes which simplifies the evaluation 
of the integrals. Combining the previous results gives 

(3a) 
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x [I- I&+q) I'l4&, (3b) 

where F $1~ F $i)S,,, is F,,, for xl= 0 [ Ill. There- 
fore, we see that the first-order approximation to 
(0,) is diagonal in the representation { 1 q)}, as in 
the periodic case. Eq. (3) gives sensible results in the 
limits P(x) = S(x) (no disorder) and P(x) = constant 
(maximum disorder, although here the long-wave- 
length limit is strictly speaking precluded). 

Using Eq. (3) together with the form of the SE and 
a choice for P(x), we can calculate the effect of the 
weak randomness on the configuration averaged 
spectral density (A,(E, k,, ) ) . We find that the ran- 
domness induces radiative shifts in addition to non- 
vanishing radiative widths. We leave the shifts to a 
future study and concentrate here on the widths. 
Without calculating (A, (E, k,, ) ) , we can obtain con- 
siderable information on the radiative dynamics from 
the SE. We employ the exciton-pole approximation 
[ 171, whereby the energy argument ie in the SE is 
replaced by E,, (k,, ) . Provided 1 Im fiZ$,ki [E,, (k,, ) + 

iO+, k,, 1 I ~-&(k,, ), we can associate F,(k,,, q) = 
- Im Xi,:: [ E,,( k,, ) + iO+, k,, ] with the radiative de- 
cay rate of the state (e, k,,, q). Energy-momentum 
conservation dictates that r,(k,,, q) vanishes for 
fick,, > E,,( k,, ) [ 21. Note that these rates are calcu- 
lated in the absence of disorder or scattering [ 6 1. 
F$ possesses a simple pole, and thus does not con- 
tribute directly to the radiative decay. We therefore 
have 

K(k,,, q)=CQw(k,,) ReVF,,) , (4) 

where FsQW(k,,)=-ImZ~‘)[E,,(k,,)+iO+,k,,] is 
the single-QW decay rate [6] which vanishes for 
k, > E,, (k, ) . In particular, one shows 

Re6(F,,J)={l-$[]P”(q+q)]2 

+ I&-?) l’lhL?* f (5) 

where q=,/m. Eqs. (4) and (5) represent the 
principle theoretical results of this Letter. Note that 
if the scale of variations in P(x) is da 0, in the long- 
wavelength limit (qd, qd<< 1 ), then Re6( F,,) - 

(q2+~2)d2,andsoI’,(kll,q)x(q2+~2)d2~W(k,,). 
We shall see this explicitly in the examples below. 

Thus, we conclude, to first order, the radiative decay 
rates in the weakly random MQW are given by the 
single-QW rates modulated by the factor Re 6 (F,,) ; 

by partially randomizing the spatial phase of the 
transition dipole moment from QW 1 to I’, external 
optical coupling is achieved. In the following para- 
graph we consider specific forms for the distribution 
function P(x). 

Let us begin with Gaussian randomness, i.e. 
P(x)= l/(d$) exp( -x2/d2) where again d is the 
characteristic scale of the departure from perfect pe- 
riodicity. We find 

(6) 

For qd, vd<< 1, we have Res(F,,,) -idz(q2+q2), 
which is quadratic in qd and qd, as expected from the 
general argument given above. Since the crystal 
grower can choose P(x) at will, let us now consider a 
rather artificial form for the disorder, P(x) = 
f [6(x+ d) +6(x-d) 1, i.e. each constituent QW re- 
sides either to the left or to the right of the ideal po- 
sition by an amount d. One finds for this case 

Reg(F,,) = [cos2(qd) cos2(qd) 

+sin2(qd) sin2(qd)]6,,, , 

whichagaingoesasd2(v2+q2). 

(7) 

The overall behavior of Re 6 ( Fqqt ) , and thus of the 
decay rates F, (k,,, q), depends principally on the scale 
d of departures from perfect periodicity, rather on the 
specific form of P(x). We can make several conclu- 
sions. (I) In order to maximize the enhancement in 
the coherent optical response of the weakly disor- 
dered MQW in the sense of the discussion, this dis- 
order must be maximized subject to such limitations 
as ]xr] <L and tc,,L -=x 1. An additional limitation is 
that whatever values of L and xl are chosen, the re- 
sulting structure must preserve the negligible elec- 
tronic miniband width due to electronic coupling 
across the intervening barriers. Otherwise, inhomo- 
geneous broadening may become more severe be- 
cause the electronic states sample interface disorder 
(disorder in the plane) more strongly and due to the 
formation of the minibands themselves. (II) Inter- 
face roughness seems to be a nearly ubiquitous fea- 
ture of QW structures. Therefore, in order to mini- 
mize the effects due to this type of disorder, very-high 
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quality samples are required. Moreover, extreme 
uniformity from QW to successive QW is also needed. 
(III) Low temperature is required so that phonons 
do not provide a significant source of dephasing. Due 
to the strong coupling of electronic and lattice de- 
grees of freedom in molecular systems, scattering may 
be inescapable in such materials. (IV) Both static 
disorder (II) and scattering (III) tend to randomize 
the macroscopic transition dipole moment associ- 
ated with the exciton, both within the same QW and 
from QW to QW. Thus, in order that the effects of 
the sort discussed in this Letter be measurable, co- 
herent spectroscopic techniques are required. These 
include the resonant excitation experiments of De- 
veaud et al. [ 141 and of Vinattieri et al. [ 15 1, and 
the upconversion and interferometric experiments of 
Norrisetal. [19]. 

To conclude we have proposed a model for the or- 
igin of the radiative width in a system with off-diag- 
onal disorder in the retarded radiative coupling in- 
duced by small departures from periodicity. In 
particular we considered a medium composed of thin 
identical dipolar layers. We found that even to lowest 
order the configuration-averaged GF exhibits radia- 
tive widths. More realistic models must account for 
inter- and intra-planar diagonal disorder, the macro- 
scopic crystal surface, nonlinearities associated with 
the material degrees of freedom, and exciton-phonon 
interactions. In addition, techniques to successfully 
carry out higher-order treatments of the configura- 
tion average are desired. 

This work was supported by the National Science 
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