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Abstract 

This paper is a mechanical analysis of the apparent redundancy of muscles in the human 
body. Because differentiation of motor commands appears to occur at the motor unit level, 
the analysis examines possible distributions of motor unit activation levels for a given motor 
task. The transformation from these motor commands to movement is defined mathemati- 
cally. Each motor unit, regardless of how many joints it crosses, produces a single action, a 
vector describing multi-joint motor tasks including control of position and/or force. These 
individual actions, even for apparently antagonistic muscles, are summed to produce overall 
movement. Because there are many possible combinations of motor unit actions which 
produce a desired net action, it is hypothesized that the central nervous system uses some 
consistent criteria for selecting favored combinations. Modeling these criteria with optimiza- 
tion cost functions, it is shown that the potential cost for producing movement decreases 
with increasing numbers of actuators, distributed in a variety of configurations. This 
approach is compatible with self-organizing topographic feature maps, which demonstrate 
how the central nervous system may perform the described transformations. 

1. Introduction 

Study of human control of movement is complicated by the large number 
of degrees of freedom in the body ( - 2441, as well as the even larger 
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number of muscles (- 600). The central nervous system (CNS) appears to 
be confronted with many possible ways of coordinating these muscles to 
produce a given movement. Unfortunately, understanding of motor control 
is presently insufficient to determine the mechanism by which this coordi- 
nation is achieved. For this reason, a number of modeling, analytical, 
experimental, and other approaches have been used to study the distribu- 
tion of forces between muscles. Of particular interest in these studies are 
the implications of a large number of muscles and degrees of freedom, and 
whether this apparent redundancy is an aid or an obstacle to the CNS. 

Many modeling studies have proposed that the CNS can solve the force 
distribution problem by a means analogous to computational optimization. 
The individual muscle forces may thus be calculated by selecting a suitable 
cost function to be minimized, usually while matching kinematic data. 
Common cost functions include functions of summed muscle stress or 
force, as well as powers of these functions (e.g., Pedersen et al., 1987; Dul 
et al., 1984; Crowninshield and Brand, 1981; Patriarco et al., 1981). The 
results have shown that low powers of muscle stress prove adequate for 
reproducing movement profiles. However, in the absence of experimental 
measurements of individual muscle forces, it is difficult to make definitive 
conclusions. 

Much analytical work has been devoted to the study of muscles classified 
as uni-articular or bi-articular, based on the number of joints they cross. 
Hogan (1985) proposed that the redundancy afforded by bi-articular mus- 
cles could be exploited by the CNS to control the orientation of the 
stiffness ellipse for a given arm posture. Experimental data, however, have 
indicated that central control of the stiffness ellipse appears limited to 
varying its magnitude through co-contraction rather than fine control of 
bi-articular muscles (Flash and Mussa-Ivaldi, 1990). 

Other analytical studies have concentrated on unique properties of 
bi-articular muscles for specific tasks such as cycling and jumping, which 
could help dictate solutions to the force distribution problem (see review by 
Van Ingen Schenau, 1990). These studies have shown that, as compared to 
uni-articular muscles, bi-articular muscles can in specific instances produce 
forces at more advantageous lengths and velocities, or perform work more 
efficiently (e.g., Van Ingen Schenau, 1989a,b). However, these task-specific 
analyses have not been placed in a mathematical framework for generaliz- 
ing the conclusions into fundamental concepts. It has not been proven that 
uni-articular muscles cannot perform similar functions in different motor 
tasks. 
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Experimental work has suggested that the force distribution problem lies 
at a lower level than that of the muscle. Data show that motor units within 
muscles do not always share common motor commands (Ter Haar Romeny 
et al., 1984; Zuylen et al., 1988). This differential activation depends on the 
particular configuration of the degrees of freedom the muscle crosses. For 
example, different motor units within biceps tend to be activated depend- 
ing on the degree of supination. There exists insufficient evidence for 
shared commands within higher-level groups, such as neuromuscular com- 
partments, as demonstrated by Chanaud and Macpherson (1991). It there- 
fore appears that control is subject to greater redundancy than is obvious 
when the number of muscles is compared to the number of degrees of 
freedom (considering that muscles can only pull, 600 muscles are not far in 
excess of what is needed to control 244 degrees of freedom). Rather, the 
CNS seems to produce commands at the level of the motor unit rather than 
the muscle (even though humans appear to have little independent voli- 
tional control of individual muscles, let alone motor units). A study of CNS 
coordination must therefore be relevant to force distribution between not 
only muscles, but motor units as well. 

This summary, however incomplete, reveals the need to unify many 
analytically- and experimentally-derived concepts. To this end, a general 
description of multi-DOF motor tasks is needed. This description can serve 
as a basis for general principles of how the CNS distributes motor com- 
mands or desired forces to the motor units - the force distribution problem. 
Descriptions in terms of movement according to the number of joints 
crossed by a muscle are inadequate, because many joints have more than 
one DOF (e.g., 3 at hip, at least 4 at shoulder), and even simple planar 
movements involve control of muscles or motor units exerting moments 
about DOFs outside the plane of movement. Moreover, some motor tasks 
are isometric, for which kinematic description of movement is inappropri- 
ate. A general description of motor tasks must be applicable to control of 
both position and force. 

An analysis of CNS-controlled movement must also consider evidence 
that the CNS performs more like a parallel distributed processor (PDP; 
Rumelhart et al., 1988) than a serial computer. The traditional robotics 
difficulties of inverse dynamics, inverse kinematics, and inverse actuation 
(i.e., resolving actuator redundancy) have been based on the problems of 
computing numerical solutions in real time (see, e.g., Craig, 1986). A PDP 
is subject to different complications, such as the problem of setting synaptic 
weights between neurons so that the system converges on a correct solu- 
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tion. In addition, these weights must be compatible with physiological 
evidence of somatotopic mappings within the CNS, in which nearby neigh- 
borhoods of neurons correspond to related movements. 

A PDP approach to the force distribution problem is made difficult by 
the relative inaccessibility of the CNS and its methods for encoding 
information such as movement commands. Recognizing that researchers’ 
familiar terms such as joint angles, moments, and forces are unlikely to 
correspond directly to weightings and neuronal firing rates, it may not 
prove advantageous to study force distribution using these terms. Rather, a 
more abstract approach, in which the results are invariant with respect to 
CNS coding, appears more suitable. In other words, the choice of coordi- 
nate systems for this analysis must be arbitrary and cannot affect the 
conclusions. 

This paper presents an abstract approach to the force distribution 
problem, based on an analysis of the mechanics of multi-DOF movement. 
The conclusions are general in the sense that they are applicable to any 
motor task involving control of force and/or position, about any number of 
DOFs. The findings apply to either individually activated motor units or 
“ideal” muscles composed of motor units sharing the same activation. This 
approach must necessarily make use of considerable abstraction to main- 
tain generality (though examples are given). Nevertheless, the approach 
brings insight to the problem of translating movement commands into the 
vast number of motor unit commands, and demonstrates how the large 
number of actuators lowers the potential cost of movement, for a large 
class of possible cost functions. In addition, the interpretation of move- 
ments in terms of action is shown to be compatible with PDP networks. 

The analysis begins with a definition of the force distribution problem 
and the term action which is used to describe motor tasks. Following are 
analyses of multi-DOF mechanics, the cost of actions using multi-DOF 
actuators, the feasible actions using multi-DOF actuators, and implications 
for self-organizing maps which translate voluntary movement commands 
into motor unit commands. 

2. Problem definition 

This paper dissociates the question of how forces are distributed be- 
tween redundant actuators from the question of how stability is controlled, 
based on the model shown in Fig. 1. Decoupling the two problems makes it 
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Motor Control System 

motor 
task 

Fig. 1. Model for the motor control system. Motor task commands are encoded and sent to the CNS 

control centre, which uses sensory feedback to control timing and stability and deliver a desired action 

H, in unknown coordinates, to the force distribution centre. This centre transforms the action command 

into motor commands for a large number of motor units. Activation-contraction dynamics determine 

the normalized motor unit forces f, and motor unit characteristics determine actual forces. Body 

segment dynamics translate force into movement, which determines feasible motor unit forces, and is 

also fed back to the CNS control centre (and possibly the force distribution centre). Resulting 

movement is the actual action a, which is sensed in unknown coordinates. Humans observers measure 

a as joint accelerations 6 and reaction forces r. 

possible to study force distribution without regard to problems of stability, 
timing, or the structure of feedback or feedforward control. This decou- 
pling is based on two assumptions: first, that it is mathematically valid to 
separate control functions from force distribution functions, and second, 
that the activation-contraction dynamics for muscle fibres are the same 
(homogeneous) from one fibre to the next. 

While it is unknown whether control and force distribution are physically 
separable within the CNS, the assumption of mathematical separability 
facilitates the study of a general movement command, the output of the 
control centre (see Fig. 11, which is then mapped by the force distribution 
centre into individual commands to the motor units. The basis for this 
assumption is that the CNS appears to effectively distribute forces among 
the motor units for all motor tasks, whether ballistic (feedforward) or 
controlled, as well as uncontrolled tasks, where the feedback fails. Humans 
have the conscious, voluntary ability to specify gross movements, but not to 
individually activate single motor units or muscles. It is therefore possible 
that learning and implementation of control is separated from the transla- 
tion of desired movement into motor unit commands. This study is con- 
fined to the distribution of commands (or forces) to motor units, given a 
desired movement produced by other parts of the CNS. 

If muscle activation-contraction dynamics, which act as a low-pass filter 
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on excitation levels, are relatively homogeneous, they can be regarded as 
part of the control problem, and hence disregarded in the force distribu- 
tion problem. Homogeneity implies that the same low-pass filter is applied 
to all inputs, and therefore only affects the temporal rather than spatial 
aspects of force development. These temporal aspects are therefore rele- 
vant to stability rather than force distribution, and can effectively be 
“moved” into the domain of the CNS control centre of Fig. 1. 

The force distribution problem is defined as one portion of the overall 
movement control loop. In this model, the CNS control centre performs a 
motor task by mediating the time course of a command, a, termed the 
desired action, with sensory feedback. Examples of typical actions include 
reaching tasks, flexion of single joints, and application of contact forces. 
The CNS force distribution centre maps the desired action into motor unit 
activation levels, which are effectively regarded as normalized forces, f 
(that is, each component of vector f varies between 0 and a maximum of 
1). Actual force production depends on muscle parameters, as well as fibre 
length and velocity, which depend on the body segment dynamics. The 
resulting movement is the actual action a, which, given perfect conditions, 
equals Z. However, no existing instrumentation is capable of measuring a 
in the units used by the CNS; units convenient for observation often take 
the form of angular accelerations, 4, or contact forces, r, with the external 
environment. 

Multiple lines of communication between the blocks in Fig. 1 imply that 
the quantities Z, f, and 4 are vectors whose dimensions reflect the number 
of degrees of freedom in a signal. The kinematics q has a dimension equal 
to the number of mechanical degrees of freedom, nd, while f has a 
dimension equal to the number of motor units, its. The number of motor 
units far exceeds the number of DOFs. The dimension of Z, n,, is more 
difficult to specify. Consider that humans have voluntary control over most, 
but not all, mechanical degrees of freedom. For example, the finger 
musculature is insufficient to independently control the joints of the 
phalanges, nor can humans independently move the individual articulations 
of the spine. It is therefore reasonable to hypothesize that n, < nd +K ~l~. 

The force distribution problem may be considered a problem of mapping 
from a space of dimension rz, to one of dimension nM. A vectorial 
approach to this problem offers graphical insight to the mechanics of 
movement, which have considerable bearing on the possible solutions 
without regard to a particular configuration or task. 
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3. Analysis of movement mechanics 

A mathematical analysis shows that mechanics may be interpreted and 
visualized as a mapping of motor unit forces into movement defined by 
actions. After muscle fibres are grouped into motor units, successive 
transformations of force to moment about a DOF, and moment to acceler- 
ation or contact force, can be described as uffine mappings, meaning that a 
linear transformation (i.e., matrix multiplication) is followed by the addi- 
tion of a constant vector (Rockafellar, 1970). Because affine mappings are 
transitive, the succession of these transformations is itself affine. Visualiza- 
tion demonstrates the characteristics of these mappings, beginning with the 
muscle fibres. This section describes how mathematics may be used to 
interpret the coordination of multi-actuator, multi-DOF movement. 

3.1. Muscle fibres produce moments dependent on musculoskeletal geometry 

Consider a simplified model of nf muscle fibres, producing forces 
described by the n,+ector 

fMf(4, 4, P) = 434,4) -ff, (1) 
where 0 r f f I 1 is the column vector of normalized fibre forces, 4 and 4 
are column vectors of joint angles and velocities, respectively, and FEA(q, 4) 
is the diagonal matrix of maximum possible fibre forces. Implicit in 
FzL(q, 4) are force-length and force-velocity properties, as well as peak 
isometric active muscle fibre forces. In a typical musculoskeletal system, 
each muscle fibre will simultaneously produce moments about several 
degrees of freedom, described by the n,-vector of moments 

tMf(q, 4, ff) =RMf(cl) *fMf(9, 4, f’) =RMf(4) -4$&L 4) *ff, (2) 
where nd is the number of degrees of freedom, and RMf(q> is an IZ~ X nf 
matrix describing the muscle fibre moment arms about each DOF. Each 
muscle fibre will generally have a unique moment arm, depending on the 
aponeurosis and origin and insertion points. One possible interpretation of 
Eq. (2) is that tMf is a weighted sum of the columns of RMf, with weightings 
provided by the elements of f f. Each fibre therefore produces moments 
which contribute to tMf in an additive manner. The number of non-zero 
elements in each muscle fibre’s contribution is given by the corresponding 
column of RMf, and depends on the number of degrees of freedom a given 
fibre spans. 
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3.2. Motor units form the smallest indivisible units of force and moment 
production 

Each fibre within a muscle receives excitation common to certain other 
fibres comprising a motor unit (Ghez, 1991). Thus, while individual fibres 
cannot be excited independently, individual motor units are likely to 
receive some degree of independent excitation. The moment arising from a 
motor unit is the sum of the moments arising from its constituent fibres. 
Because these fibres receive common excitation, they can be lumped 
together, even if they are distributed throughout a muscle, with the 
moment vector given by 

t”(CL 4, f> =M”(q, 4) *f, (3) 
where the deletion of the superscript ’ in tM and f denotes motor unit, 
rather than muscle fibre, moment and normalized force vectors. For nM 
motor units, f is an nM-vector, and RF M is an nd X nM matrix with a 
column for each motor unit corresponding to the summed maximal mo- 
ments of its constituent muscle fibres. Note that RFM could be decom- 
posed into lumped moment arm matrix and maximum motor unit force 
vector if needed. Fig. 2 demonstrates how muscle fibre moments can be 
lumped into motor unit moments. 

a. Muscle fibers b. Motor units 

Fig. 2. Muscle fibre actions are grouped into motor unit actions. Example: a two degree-of-freedom 
(DOF) system. (a) Each muscle fibre produces a moment about the two DOFs, described by a vector. 

Each vector in the figure represents the moment produced by one of the fibres within a muscle. (b) For 

each motor unit, the constituent fibres receive equal activation, so that the total moment resulting from 
excitation of one unit is the sum of the constituent fibre moment vectors. The vectors tM describe 

motor unit moments. 



A.D. Kuo /Human Movement Science 13 (1994) 635-663 643 

3.3. The mass matrix maps joint moments into joint accelerations 

Equations of motion describing body segment dynamics can be written as 

4=W’( 4 t )[ “( 4, 4, f) +g(q) + +I, 4) +m”(q, 4) ‘f,(4YG) 

++I, 4)] 9 (4) 

where the elements are defined as follows: 

ii n,-vector of joint angular accelerations, 
M(q) nd x rzd positive-definite mass matrix (Kane and Levinson, 19851, 
g(q) n,-vector of terms due to gravity, 
v(q, 4) n,-vector of Coriolis and centripetal terms, 
f,(q, 4) n,-vector of normalized passive motor unit forces, 
d(q, 4) n,-vector of friction and other dissipative terms. 

Terms g(q), v(q), f,(q), and d(q, 4) depend purely on the state com- 
prising q and 4. After substituting Eq. (31, Eq. (4) can be written as two 
terms - one that is (state-dependent but) linear in the motor unit forces, 
and one that is independent of motor unit forces - in an affine mapping 
from f to S (Kuo and Zajac, 1993b): 

cj’=&(q, 4>.f +s,(q, 4). (5) 

The equations of motion therefore can be interpreted as an affine mapping 
between motor unit forces and joint angular accelerations. 

Dynamic coupling between body segments is described by the off-diago- 
nal terms of the mass matrix, which is in general not diagonal. The effect of 
this coupling is that actuation of a moment about a given joint (DOF) 
results in acceleration about many joints (DOFs). Conversely, the accelera- 
tion of a single joint generally requires the production of moment about 
several DOFs. Moments about other DOFs are necessary to cancel the 
dynamic coupling from the joint to be moved. 

3.4. Joint moments also map into reaction forces 

A similar relation also holds for reaction forces, which may include 
contact forces with the environment or reaction forces internal to a joint. 
Newton’s Law states that the sum of forces acting on a body is proportional 
to that body’s translational acceleration. Euler’s equation generalizes this 
relationship to moments and angular accelerations (Craig, 1986). Separa- 
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tion of forces or moments acting on a body into input and output general- 
ized forces reveals that output forces are affine in input forces. By grouping 
together joint moments into input forces, and reaction forces into output 
forces, and substituting Eq. (3) for joint moments, it is evident that reaction 
forces are affine in muscle fibre and motor unit forces, The relationship 
may be written in the form: 

(6) 

where Y is the vector of reaction forces of interest, L,(q, Q> is a (generally 
non-diagonal) matrix, and s,(q, 4) is a vector (see Kuo and Zajac, 1993a, 
for a detailed derivation). 

3.5. Actions are affine in motor unit forces 

The development above leads to a generalized description of motor tasks 
based on the term action. The popular use of kinematics to describe 
movement proves inadequate when considering the ability of humans to 
control force alone (as in an isometric contraction against an immovable 
object) or even control force and position simultaneously (as in turning a 
screwdriver). A fully generalized description of movement must be flexible 
enough to describe any combination of force or position control. 

Because both accelerations and forces are affine in motor unit (input) 
forces, both can be combined into a single affine equation defining action: 

a=P]=l:::,a::i]f+[t’j:::il]=I_l(q,o)i+r,(q,U). (7) 

Thus, the time-varying action vector is a full description of motor tasks, 
whether of movement or isometric contraction. It can describe all the joint 
angles and contact forces in the body. Though Eq. (7) defines a explicitly, 
the action is abstract, in the sense that the coordinates that the CNS uses 
for it are unknown, so that a cannot be assigned an actual value. It is 
useful to describe actions in terms such as pushing against a wall or flexing 
the elbow as mentioned in the previous section, although these terms do 
not describe how the CNS encodes these commands. (Note that matrix L, 
is not in general square or full rank, i.e., accelerations and reaction forces 
are not linearly independent.) 
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It is important to note that the experimental& has access to only a 
subset of the information describing an action. Moreover, this subset is 
biased by the choice of coordinate systems and units in which it is 
measured. The possible operations of scaling, change of coordinates, re- 
ordering of elements, and extraction of a subset of the action vector can be 
described by 

= [&(a 4) *z&L 4)] *f+ [&(cL 4) .&I, 4) +&L 411. (8) 

The result is an instance of the action a, that is in coordinates which are 
convenient for the observer and the task. The symbol a^ denotes a task-ori- 
ented instance of a. Note that while the dimension II, of a may be large, a^ 
may be any dimension that is useful for studying a particular motor task. 
The various types of actions are summarized as follows: 

the desired action, encoding a motor command (e.g., a joint flexion, a 
push, etc.), 
the actual action, the result of a motor command, which is fed back after 
being sensed, 
the action measurement made by experimentalists, in coordinates conve- 
nient for analysis; each set of measurements is an instance of a. 

It is important to recall that a and Z are abstract vectors, encoded by the 
CNS in an unknown coordinate system, while a^ is a vector which can be 
measured in some particular coordinate system and which contains a useful 
subset of the information contained in a. 

3.6. Effects of musculoskeletal mechanics may be visualized 

Affine mappings of actions may be visualized to offer interpretations of 
the effects of dynamic coupling. Consider the simple example of a two-seg- 
ment planar linkage, actuated by six homogeneous ideal muscles (in which 
all motor units have identical activation) with equal moment arms (see Fig. 
3a). Actuation of forces within these muscles, comprising vector f (Fig. 3b), 
produces a moment vector which can be visualized in moment space (Fig. 
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Fig. 3. Dynamic coupling and coordinated use of actuators. (a) A sample two degree-of-freedom system, 

with six actuators. (b) Normalized forces are described in a vector. Cc) Matrix RFM maps normalized 

forces into moments. Each actuator produces a moment vector as shown. Cd) Inverse mass matrix maps 

moments into actions. In this example, the actions correspond to angular accelerations of the two joints. 

Each actuator produces an action vector. To produce a desired action, the individual actuator actions 

are summed in a weighted combination, with the weights determined by normalized forces f. In this 

example, a pure joint extension, denoted by the asterisk, requires the coordinated activation of more 

than one muscle. One likely combination involves actuators 2, 3, and 5. Although actuators 2 and 5 are 

traditionally considered antagonists, they can work together to produce action. 

3~). Each muscle’s moment, weighted by the fraction of muscle force 
exerted, contributes to the total moment vector. 

Multiplying the inverse mass matrix by the moment vectors results in 
acceleration vectors for each muscle (Fig. 3d). One possible interpretation 
of this matrix multiplication, based on singular value decomposition (Strang, 
19881, is that the moment axes are rotated, followed by an additional 
compression or elongation of the axes, the result of which is subjected to an 
additional rotation, leaving the system in its output coordinate frame. The 
overall projection from f to G depends upon body configuration, as does 
the state-dependent vector of Eq. (5) which is added to this result (and 
assumed to be zero in this example) to form the net action. This paper 
considers the general form of the f to 4 projection, so that the actual 
matrix values forming the projection are unimportant. 

The result of a muscle or motor unit contraction is not generally 
confined to acceleration of the DOF(s) it actuates. Rather, to accelerate 
only a single DOF, as with most actions, generally requires the propor- 
tioned activation of more than one muscle (see Fig. 3d). The action due to 
muscles is the vector sum of the appropriately weighted individual muscle 
action vectors. There are often many weighting combinations that will 
produce a given action. For example, the desired action of extending joint 2 
in Fig. 3d can be achieved by activating muscles 3 and 5, or muscles 1 and 
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3, muscles 1, 3, and 5, etc. Of special note is the combination of muscles 2 
and 5, traditionally regarded as antagonists, but which work together in this 
example to produce the joint extension. 

The visualization of actions demonstrates that the execution of actions 
requires coordinated activity of muscles, whether or not they are regarded 
as antagonists. Herzog and Binding (1992) used optimization techniques to 
show how antagonists may be co-activated in some motor tasks. The 
example of Fig. 3d is a graphical interpretation of the same phenomenon. 
The desired action acts as an additional constraint on the muscle forces, 
which nevertheless outnumber all constraints. Optimization is used to 
resolve the system, so that muscle forces are distributed to minimize a cost 
function. Whatever the particular cost function chosen, the co-activation of 
muscles 2 and 5 remains a viable solution, despite the inconvenient label of 
antagonistic activity. In fact, the only instance when two muscles are truly 
antagonistic is when their actions entirely oppose each other. In systems 
consisting of hinge joints, this situation occurs with uniarticular muscles on 
opposite sides of each joint or when bi-articular muscles have moment 
arms which are perfectly configured to achieve opposite actions. In other 
cases, the sum of two non-opposing muscle actions together will generally 
result in a non-zero action. In more realistic systems, in which joints have 
multiple DOFs (e.g., ball-and-socket joints), there are in fact few cases in 
which two muscles perfectly oppose each other. Thus, in multi-DOF 
systems, muscles can rarely act as pure antagonists. 

4. Cost of coordinated movement 

The vectorial approach to describing multi-DOF movement shows that 
when muscles are coordinated, they produce actions with components 
opposing each other and components acting together. Presuming that some 
combinations of actuators may be more effective than others at producing a 
given action, it is possible to assess a cost to activating muscles which in 
some way reflects the cost (metabolic and otherwise) to the human body. 
The CNS could use this cost as a criterion for distributing forces between 
motor units. 

The hypothesized requirements for a useful measure of movement cost 
are that the cost must increase both with effort or force exerted, and with 
increasingly antagonistic behavior (ignoring possible benefits of coactiva- 
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tion, such as increased joint stability). These requirements are met by the 
mathematical measure of the magnitude of a vector, the p-norm of an 
n-vector x (denoted 1) x Ilp; see Chvatal, 1983): 

The norm is a scalar whose description of the size of a vector depends on 
the value of p. For example, 11 x II1 gives the summed absolute values of x, 
II x )I2 gives the familiar Euclidean length of X, and (1 x IJm gives the largest 
magnitude of the individual elements of X. 

The p-norm may be used to assess the cost of coordinating motor units 
by substituting the normalized force vector f for x in Eq. (9). Because peak 
isometric force is proportional to physiological cross-sectional area (Zajac, 
1989), muscle stress (defined as force divided by cross-sectional area) is 
proportional to normalized motor unit force. Thus, II f (Ip is a norm of 
muscle stress, similar to the objective functions used in other studies, with 
values of p between 2 and 4 (Dul et al., 1984; Pedersen et al., 1987). 
Minimization of II f 1) 1 may be regarded as minimizing the summed total 
stress exerted, at the expense of activating some muscles much more than 
others. Higher values of p will tend to encourage greater distribution of 
stresses, with minimization of II f II= producing maximum sharing of stresses, 
at the possible expense of larger summed total stress. 

Using a simple 2-DOF system as an example, the p-norm may be used to 
demonstrate the effect of the number of actuators on the cost of producing 
an action, regardless of what value of p best mimics the CNS criterion for 
distributing forces. As shown in Fig. 4, the hypothetical system consists of 
m homogeneous actuators, distributed evenly about the 2-dimensional 
action space. (This system could, for example, correspond to the two 
degrees of freedom of a ball-and-socket joint, or the two joint rotations of 
Fig. 3, in which the actuators have a variety of origins and insertions.) To 
produce any given action a of Euclidean length 1, there exists a force 
distribution, specified in vector f, minimizing II f Ilp. Because the minimum 
II f (lp varies with a, the costs will lie in a range between best and worst 
possible cases for the generic a of length 1. 

Fig. 5 shows the range of possible costs for varying numbers of actuators 
and varying values for p. The results show that whatever the value for p 
used in the force distribution objective, the potential cost for executing an 
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i 

I Ml 
a 

a a 

Fig. 4. Sample two degree-of-freedom system with m homogeneous actuators, distributed evenly 

through action space. The figure shows the configuration for m = 5. The cost of producing an action a 

with length 1 (arbitrary coordinates) is to be determined. An example of a corresponding physical 

system is the hip joint, with five muscles distributed around the ball-and-socket joint. 

action decreases with increasing numbers of actuators. The cost saving is 
most dramatic between small values for m, such as between 3 and 4. 

In the general case, actuators are neither homogeneous nor evenly 
distributed through the action space (which is also of higher dimension). It 
is also possible that the objective of minimizing the p-norm poorly models 
the criteria by which the CNS distributes forces. Nevertheless, cost of 
performing an action can potentially be reduced even for different condi- 
tions, as a simple induction argument demonstrates. Beginning with a 
minimal, non-redundant set of heterogeneous actuators, consider the addi- 
tion of another muscle which does not duplicate the action of any other 
actuator. This additional actuator cannot increase the cost for any desired 
action, because the CNS always has the option of leaving that muscle 
unactivated. In general, there exists a desired action collinear with the 
additional actuator’s action, which can then be achieved at lower cost than 
possible before the additional muscle was included. Each additional actua- 
tor will similarly lower the potential cost of performing an action. 
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5. Feasible actions and muscle strength 

Aside from lowering the cost of producing many actions, actuator 
“redundancy” has the effect of increasing the range of actions possible. 
The set of all feasible actions can easily be computed using methods 
described by Kuo and Zajac (1993b). This feasible action set (FAS) de- 
pends on the characteristics of individual actuator actions, and represents 
the entire range of possible actions, given all possible combinations of 
muscle activations. 

Visualization demonstrates how redundant actuators affect the size of 
the feasible action set. Consider a two DOF system which must, at the 

p-norm 

1l.f lr, 

Fig. 5. Possible range of costs for producing actions of length 1 for a two degree-of-freedom system. 

The number of actuators m is varied, but actuators are always evenly spaced and have equal lengths as 

in Fig. 4. Costs are shown for minimum p-norm solutions to the force distribution problem for varying 

values of p. The p-norm describes the optimization objective, and is equivalent to the summed muscle 
stresses, raised to the power p. Higher values of p encourage greater degree of shared stress. Actual 

cost always lies within the range shown, and depends on what particular action a is desired. The figure 
shows that regardless of the value of p, increasing the number of muscles lowers the potential cost of 

executing a motor task. 
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a. 4-Muscle System b. 8-Muscle System 

feasible action set - 

Fig. 6. Feasible actions for four- and eight-actuator, two degree-of-freedom systems. Actuators are 

homogeneous and evenly distributed. The circle signifies the minimum requirement of achievable 

actions. (a) For a four-actuator system, feasible actions lie within a square (shaded region). (b) For an 

eight-actuator system, feasible actions lie within an octagon, and actuators capable of producing 41% of 

the force of actuators in the four-actuator system are able to achieve minimum required actions. When 

actuator 7 is removed, the feasible action set is significantly reduced in size, as shown by dashed line, so 

that minimum requirements can no longer be achieved. When many actuator are available, less force is 
required of each of them to produce necessary actions. But loss of any one actuator significantly 

reduces the feasible action set. 

minimum, be able to produce actions of Euclidean length 1. (For example, 
nominal function may require a minimal moment about the hip in both 
flexion/ extension and abduction/ adduction.) A comparison of systems 
with four and eight actuators shows that with a larger number of actuators, 
each actuator needs to produce an action of smaller magnitude to fulfill the 
minimum specifications (see Fig. 6). 

The removal of an actuator will analogously reduce the size of the 
feasible action set. In the example, the effect of removing a single actuator 
is a severe reduction in the range of actions possible (Fig. 6b). This 
trade-off makes it difficult to study redundancy in terms of muscles in 
excess of a theoretical minimal set. Given bounds on achievable forces, 
muscles cannot be considered redundant in the sense of being superfluous. 
Rather, the large number of muscles, while indeterminate, are placed and 
sized to fulfill the requirements of a biomechanical system confronted by 
the need to perform a variety of motor tasks. 
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Eontour plot 

Fig. 7. Diagram showing force distribution solutions for the S-actuator system of Fig. 6b. The figure 

shows the feasible action set delineated by an octagon. In the top part of the figure, line segments show 

relative weights (normalized forces) for each of the eight actuators, Solutions are shown for minimum 

II f I/a, with p = 2.5. The bottom part of the figure shows the normalized force for actuator 5 (action 
denoted by arrow) varying with action in a contour plot. For nearly half of the feasible actions, a 

non-zero force in actuator 5 contributes to the overall action. A topographic feature map stores the 

relative weights for each action direction, shown in the outer ring of the top part of the figure. 

The force distributions necessary to produce a range of actions within 
the feasible action set are shown in Fig. 7. For a given action, the 
minimum-11 f (lP solution specifies the relative excitation of each actuator. 
These solutions vary as the action direction varies, and scale with the 
action magnitude (Fig. 7, top). From the viewpoint of a single actuator, the 
amount of excitation also varies with the action. In this example, each 
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actuator produces a non-zero force for nearly half the feasible actions (Fig. 
7, bottom). As discussed below, these characteristics of minimum-11 f Ilp 
solutions to the force distribution problem are amenable to implementation 
in the CNS. 

6. CNS solution of the force distribution problem 

The CNS appears to solve the force distribution problem using parallel 
distributed processing circuitry to perform the transformation from action 
commands into a large number of motor unit commands. In addition, this 
solution appears to be found without expending the considerable computa- 
tional and often iterative effort usually assorted with resolution of indeter- 
minacies by computer. It is perhaps more appropriate to examine how a 
PDP solves such problems than to study the computational steps that 
would be performed by more traditional serial computers. 

It is also suggested that the mapping must be at least partially plastic 
and have an ordered structure. The difficulty of encoding a vast number of 
interneuronal connections in a genetic program, as well as the fact that the 
body and its dynamics change over time, imply that the force distribution 
centre must have some ability to adapt. An ordered structure is hypothe- 
sized to be simpler to specify in a genetic code. 

Kohonen (1982b, 1982a) has shown that self-organizing networks fulfill 
many of these specifications. These maps have a topographical structure, 
meaning that input signals excite specific regions of the network, with the 
locations varying regularly and continuously with the input signal. More- 
over, neurons within the network tend to connect primarily to their closest 
neighbors, in fast, short paths. As discussed below, many similar character- 
istics are embodied in the spinal cord and primary motor cortex. 

The self-organizing network consists of a layer of neurons which consti- 
tute a topographic feature map (Kohonen, 1982b). Each neuron produces a 
graded response according to the weighted sum of its inputs. Nerves 
carrying incoming signals synapse on neurons within the layer. These 
neurons interact laterally in a simple fashion: nearby neurons tend to have 
excitatory synapses, while spatially-distant neurons tend to have inhibitory 
synapses. This internal feedback results in spatially bounded “excitation 
zones” for particular input signals. If related input signals result in spa- 
tially-related excitation zones, the layer functions as a “topographical 
feature map”. A simple variation of the Hebbian learning rule, in which a 
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correlation between pre- and post-synaptic activity results in strengthening 
of a given synapse, causes a network to converge on such a feature map 
(Ritter et al., 1992). 

A simple model based on a previous example (Figs. 6b and 7) shows that 
topographic feature maps are ideally suited for solving the force distribu- 
tion problem. Initially assuming that action magnitude is encoded in neural 
firing frequency, the action direction can be stored as relative weights to 
associated motor neurons. For example, consider the actions lying on the 
outer edge of the feasible action set (Fig 7). Each action (of twenty 
circumscribing the feasible action set in Fig. 71, when delivered to the map 
as input, excites a local excitation zone. Consider the case in which the 
local excitation zone consists of a single neuron (hereafter referred to as an 
action neuron) in the map. Each action neuron excites up to four of the 
eight motor neurons in the example, with the magnitude of the action 
regulated by firing frequency, and direction regulated by synaptic weights, 
which govern relative weights of the outputs. A topographic arrangement 
implies that neurons encoding actions of similar direction are located close 
to one another. (In fact, one possible arrangement is a ring, as in Figs. 7). 
Fig. 8 depicts the mapping from action command to motor unit command 
pictorially. 

The synaptic weights for this network are determined through learning. 
The information necessary to adjust each weight includes pre- and post- 
synaptic activity (a Hebbian learning rule), augmented by feedback on the 
resulting action, which is necessary to achieve a minimum-norm solution. 

Two characteristics are immediately recognized from this model. First, 
nearby action neurons in the feature map have similar, but not identical, 
outputs which vary spatially. Second, each motor neuron has a “receptive 
field” on the feature map which corresponds to a physical region within the 
map. The upper half of Fig. 7 illustrates the spatial variations in output 
weightings, while the bottom half shows how each motor neuron’s receptive 
field varies. 

The topographic feature map also makes it possible to spatially encode 
action magnitude. Starting with a local excitation zone of one target action 
neuron, local feedback (excitatory interconnections between nearby neu- 
rons) will cause nearby neurons to fire, as input magnitude increases. The 
output from these nearby action neurons will augment the output from the 
target action neuron, increasing not only the input to the target motor 
neurons, but also triggering additional, nearby motor neurons. In other 
words, the network provides for modulation of action magnitude through 
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Fig. 8. Schematic diagram of hypothesized force distribution neural network. Neurons are arranged in 

two 2.dimensional layers (height of bars indicates level of activation in a neuron). Input to the feature 

map encodes a desired action. Internal feedback guarantees that the resulting excitation is confined to 

a region within the feature map, a local excitation zone. The local excitation zone varies regularly and 

continuously with the input, so that the feature map has a topographic organization. Output from this 

map is associated with a layer comprising the motor neurons. A particular local excitation zone 
therefore activates a group of motor units, resulting in an action. This association implies that the 

feature map is somatotopic, and maps action commands into motor unit commands. Given sufficient 

sensory feedback in conjunction with a simple learning rule, this network can produce minimum-norm 

solutions to the force distribution problem. 

both firing frequency and motor unit recruitment. Excitation zones larger 
than one neuron also make it possible to vary action continuously, rather 
than as discrete jumps between successive action neurons. 

One interpretation of the map is that excitation location encodes the 
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a3 

a2 

Fig. 9. Imaginary three degree-of-freedom system populated by heterogeneous, varied muscles. Each 

muscle comprises a bundle of motor units, shown by line segments. To produce a desired action, the 

CNS must excite an appropriate combination of motor units, possibly across several muscles. The CNS 

must have some adaptive ability to adjust for changes in the biomechanical or nervous systems. The 

number of joints crossed by a muscle does not impinge on how it is controlled, but a wide distribution 

of muscles facilitates the production of a wide variety of actions by “covering” regions of action space. 

action direction (i.e., the type of movement) while excitation size and firing 
frequency encode the action magnitude (i.e., the magnitude of movement). 
The action magnitude corresponds directly to muscle forces and to contact 
forces and joint accelerations. Taking into account muscle activation-con- 
traction dynamics, the network neurons could alternatively be interpreted 
as encoding rate of change of force. 

When the model is extended to a more realistic system, it becomes 
evident that the input signal need not correspond to a single target action 
neuron. A system consisting of many muscles, many motor units within 
these muscles, and many DOFs (Fig. 9) will require a complex motor unit 
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activation pattern. For example, the act of throwing a baseball is an action 
requiring activation of many muscles in the lower extremity and torso in 
addition to the upper extremity. The multi-dimensional action space must 
somehow be mapped into a physically realizable two- or three-dimensional 
layer of neurons. However cleverly nature “unwraps” this multi-dimen- 
sional space, it is likely that many actions are associated with multiple 
excitation zones. 

If input signals can correspond to multiple locations in the topographic 
feature map, it is possible to envision the production of multi-dimensional 
actions. In the case of the baseball throw, the upper and lower extremities 
need not be spatially related. Instead, the input signal could trigger a target 
location within each of the upper and lower extremity feature maps. The 
multi-dimensional nature of the upper extremity alone suggests that the 
arm itself may be broken into several feature maps. It would therefore not 
be surprising if a given motor unit’s “receptive field” were non-contiguous, 
so that multiple representations could occur within the overall map. 

The telephone directory offers an analogy to the problem of unwrapping 
multi-dimensional spaces. A phone book may be regarded as a one-dimen- 
sional map, with information listed in rows. The information given is 
typically three-dimensional, consisting of names, addresses, and phone 
numbers. While it is possible to form a topographic feature map using an 
alphabetical listing of names, it is impossible to simultaneously organize the 
other two dimensions topographically. This impossibility implies that two 
persons sharing the same phone number cannot be grouped spatially within 
the one-dimensional alphabetical listing. Thus, the shared number may 
have multiple representations in the book. 

A neural network simplifies the problem of multi-dimensionality some- 
what because it acts as a look-up table only on learned portions of the 
action space. More neurons are dedicated to actions involving fine control, 
in which more information is required, while few neurons are dedicated to 
grossly controlled or rarely used actions. Still, the mathematical model of 
projections between multi-dimensional spaces is inadequate for predicting 
the actual form of a topographic feature map. A more advanced model 
must take into account the amount of information stored in these maps as 
well as possible topologies for such a neural network. 

The theoretical development above, when combined with experimental 
observations, suggests that the spinal cord, possibly in conjunction with the 
primary motor cortex, may be responsible for mapping between action 
commands and motor commands. The spinal cord contains motor neurons 
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and interneurons arranged in a topographical manner, while in the motor 
cortex, neurons organized in micro-columns form a two-dimensional layer 
of functional units, which act as a somatotopical map of movements (Kelly 
and Dodd, 1991). Experiments have shown that contiguous joints occupy 
contiguous (and overlapping) areas within the cortex. Voluntary move- 
ments involve the excitation of populations of neurons, which vary in an 
orderly manner with the direction of movement and activate groups of 
motor neurons in the spinal cord (Georgopoulos et al., 1992; Georgopoulos 
et al., 1982). Moreover, individual motor units have been shown to have 
non-contiguous, multiple representations (Kwan et al., 1978; Lemon, 1988). 
A rich set of sensory information is also fed back to both the motor cortex 
(Murphy et al., 1978) and spinal cord, facilitating adjustments of the map 
and minimization of an appropriate motor unit weighting function (such as 
the p-norm) through learning. 

7. Discussion 

The vectorial analysis of mechanics above shows that the large number 
of muscles distributed throughout the body, rather than posing a problem 
to the CNS, could be interpreted as offering efficient and flexible solutions 
to the CNS. More complicated models may reproduce biomechanical 
characteristics more faithfully, but the principles remain the same. These 
principles may be relevant to both biomechanists and motor control physi- 
ologists, and may suggest different interpretations of multi-joint movement. 

One important principle to be extracted from this work is that the 
paradigm of single-joint movement does not generalize easily to multi-joint 
movement. In particular, the concepts of agonist/antagonists become con- 
fusing when two supposed antagonists (such as a uni-articular muscle 
opposite a bi-articular muscle in a two-joint planar linkage) can actually 
work together to perform an action. Also considering that many joints have 
multiple DOFs and thus require multiple actuators, it becomes especially 
difficult to even define which muscles act as antagonists. 

A simpler interpretation regards motor units as producers of actions 
more general than rotations about one or more joints. Each motor unit 
produces one action, which may consist of multiple joint rotations and/or 
reaction forces. A muscle can produce only those actions conferred by its 
motor units, and the number of joints crossed by a muscle does not confer 
additional actions. 
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This interpretation reveals that the very notions of redundancy and 
indeterminacy are inconvenient for studying human movement. Because 
different actuators work together to perform movement, and because each 
muscle is physically limited in its force production, a mathematical redun- 
dancy poorly describes the true situation. The actual system must be able 
to coordinate these limited muscles (or motor units) in such a way as to 
produce a wide repertoire of movements. The significant reduction of the 
feasible action set caused by the removal of almost any muscle makes it 
difficult to consider any muscle superfluous. It is therefore perhaps inap- 
propriate to consider the system redundant. 

It must also be stressed that indeterminacy is a “problem” only to 
scientists, who presently lack the means to measure or deduce individual 
motor unit or muscle forces. But unlike the analytical or computational 
solutions to the force distribution problem, the CNS stores the necessary 
information in such a way that “solutions” may be found in real-time, 
without lengthy calculations. Consider the analogy of a lattice of a large 
number of springs, to which are applied a small number of static perturba- 
tion forces. Such a system could be considered indeterminate, because the 
individual displacements of the springs is not immediately evident. A 
lengthy series of nontrivial calculations can yield the solution. But the 
lattice of springs “solves” the problem simply by resting at a point of lowest 
potential energy. Similarly, a network of neurons solves problems by 
seeking states of lowest “energy” (Ritter et al., 1992; Hopfield, 1982). Just 
as the large number of springs in the lattice allows for flexible solutions for 
a wide variety of inputs, the large number of muscles in the body similarly 
provide the flexibility to produce many actions. 

The fact that the CNS easily maps action commands into motor unit 
commands nevertheless does not solve the problem of predicting or choos- 
ing a value for I, in an optimization. However, the findings above explain 
why several possible values for p are reported in the literature (Dul et al., 
1984). In Fig. 6b, the octagon defining the external boundary of the feasible 
action set may be regarded as the contour of constant II f I(oc, while the 
dashed circle may be regarded as the contour of constant II f (12. As the 
number of actuators increases, the constant-11 f (I2 through constant-l) f Ilm 
contours become increasingly similar. The minimum-norm costs therefore 
also become similar, regardless of the value for p. This makes it difficult, in 
“over-actuated” systems, to use optimization to predict p from kinematics. 
But it also makes the choice of p in an optimization-based simulation 
non-critical. 
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While this paper focuses on the mapping from action to motor unit 
commands, it does not address how the desired time-varying action trajec- 
tory is influenced. Other work (Kuo and Zajac, 1993b,c; Kuo, 1993) has 
shown that body dynamics and musculoskeletal geometry dictate features 
of the feasible action set, so that not all actions are equal. The CNS 
appears to have a dynamic awareness, which is used to harness more 
favorable actions when possible to minimize the overall cost of movement 
over time. But whatever the choice of desired action, it is formed by the 
coordination of (many) motor unit actions. 

Another obstacle to understanding CNS coordination is the choice of 
coordinate systems used for analysis. Familiar kinematic measurements 
such as joint angles or Cartesian coordinates necessarily bias any study, 
because they have limited relation to neural coding of movement. Using 
joint moment coordinates, it is tempting to define uni-articular muscles as 
the canonical muscles for movement, and therefore to consider bi-articular 
muscles to be special additions to this canonical set. But the fact that 
roboticists consider uni-articular muscles to be a minimal, a canonical set 
does not imply that the CNS does so as well. This analysis has shown that a 
large variety of muscles facilitates efficient production of a wide repertoire 
of actions. This variety is constrained by biomechanical considerations, 
such as the difficulty of routing muscles with exceedingly disparate origins 
and insertions or excessive length during development. In addition, the 
efficiency advantages of “over-actuated” systems are greatest for small 
numbers of additional muscles. Whatever the number of muscles, uni-artic- 
ular and bi-articular designations are biased by the joint coordinate system, 
and do not take into account the DOFs involved. 

It is in fact entirely possible that the CNS knows nothing of joints, but 
only of multi-DOF movements. While local excitation zones in the primary 
motor cortex could correspond to individual joint rotations, it is also 
possible that they correspond to combinations of DOF rotations. Move- 
ments subject to dynamic coupling, such as shoulder and elbow movements, 
would likely have overlapping representations in the motor cortex. But 
movements which are not strongly coupled dynamically, such as finger and 
toe movements, would likely have separate, possibly non-contiguous, excita- 
tion zones. Of course, the apparent two-dimensional structure of the motor 
cortex could hide an underlying multi-dimensional network, which would 
remove some of the topological considerations of which excitation zones 
are contiguous. 

Nor need the CNS know of uni-articular or bi-articular muscles. All 
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types of muscles make unique contributions to actions, and their represen- 
tation in the motor cortex is not likely to be differentiated on the basis of 
number of joints, or even DOFs, crossed. Rather, the CNS needs only to 
associate each actuator with its unique action. 

This work leads naturally to future studies of force distribution. Neural 
network simulations may lead to new insights to the encoding of the action 
command, and to specifics of the force distribution mapping. Information 
theory may yield data on what portions of action space are learned with 
high resolution, and the number of bits encoded in the action command. 
Topological studies may offer likely structures for the self-organizing force 
distribution map, as well as shapes and arrangement of excitation zones. 

While the analysis above ignores issues of control, stability, and timing, 
the force distribution for dynamic movement must have some dependence 
on these issues. Since muscle time constants are in reality heterogeneous, 
the CNS must coordinate motor units based not only on the actions they 
produce but also on their ability to produce force within a time frame. 
Optimal control is a useful technique for simulating this activity. But as 
always, it is important to understand the problem being studied. 
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