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Abstract 

The structural and energetic properties of [loo] and [llO] steps on the (001) surface of fee metal have been 
determined by T = 0 atomistic simulations. The interactions between [NO] steps and between [llO] steps on the (001) 
surface are determined from the surface energy of a series of (Oln) and (ilm) surfaces, respectively. For step 
spacings larger than three fee lattice parameters (R > 3a,), we find that the interaction energy between two similar 
steps on the (001) surface can be reasonably represented by the functional form R-‘, in agreement with the 
prediction of a simple linear elastic analysis based upon a line dipole force model of a step. However, we observe 
qualitative differences between the displacement fields determined by the two methods. For R < 3a,, on the other 
hand, we find that the interaction between steps deviates significantly from the form R-‘. These deviations 
demonstrate that both dipole and quadrupole force distributions are necessary to account for step-step interactions 
for spacings as small as a fraction of a lattice parameter up to infinite step spacings. We show that a [lOO] step on the 
(001) surface in Au and Pt (but not in Ag, Au, Cu, or Pd) may lower the surface energy by transforming into a 
zig-zagged [llO] step. 

1. Introduction 

The structural and energetic properties of steps 
on an otherwise flat surface are important in 
understanding surface related phenomena, such 
as epitaxial growth, surface roughening, and equi- 
librium crystallite shapes. Additionally, the inter- 
action between steps has a strong influence on 
the spatial and temporal evolution of the sur- 
faces. Step-step interactions arise mainly from 
the interaction between the elastic displacement 
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fields within the solid which are associated with 
the individu~ steps. Since the step displacement 
field decays as l/R away from the steps, the 
step-step interaction energy decays slowly with 
step separation. 

Theoretical calculations [l], based on contin- 
uum elasticity, predict that the step-step interac- 
tion energy decays as the square of the inverse 
step separation. In that study, the displacement 
field associated with a step on a flat surface was 
modeled as a line of dipole forces directed along 
the surface and acting perpendicular to the step 
direction. The strength of the dipole force is 
related to the surface tension and the elastic 
properties of the bulk material. Other studies 
have employed atomistic simulation methods [2,3] 

0039~6028/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 
SSDI 0039-6028(94)00335-7 



222 R. Najafabadi, D.J. Solo&z /Surface Science 317 (1994) 221-234 

to determine the structure and energy of steps 
and to test [3] the validity of the continuum 
elasticity prediction [l]. Since the displacement 
fields decay very slowly away from the step, large 
systems must be employed in atomistic simula- 
tions. Alternatively, step-step interactions can be 
examined via atomistic simulations by employing 
arrays of steps, such that the elastic fields of the 
individual steps screen each other. 

In a previous study of [110] steps on a (001) 
copper surface [2] using a Morse pair potential, 
the atomic relaxation was limited to the first two 
(002) atomic planes at the surface. Furthermore, 
fixed boundary conditions were employed parallel 
to the step direction in the (001) plane. Since 
these constraints were imposed on the simulation 
cell due to limited computational resources avail- 
able twenty years ago, those numerical results 
cannot be used to predict the detailed nature of 
step-step interactions. Recently, another simula- 
tion study [3] examined the properties of [lOOI 
steps on both the (001) and (011) surfaces in gold 
and copper. That study concluded that the step- 
step interaction varies with the square of the 
inverse step separation, in agreement with the 
continuum elasticity analysis [ 11. A similar conclu- 
sion [4] was reached for the [lo01 steps on the 
(001) surface of silicon. Although the elastic anal- 
ysis was based upon continuum ideas, it was 
found that the inverse square dependence of the 
step-step interaction energy with step separation 
was valid for step separations as small as one 
lattice constant [3]. This result is surprising given 
the over simplification of the true atomic dis- 
placement field assumed in the continuum the- 
ory, especially on length scale comparable to the 
discreteness of the atomic lattice. The goal of the 
present study is to examine step-step interactions 
over a wide range of step spacing, from very 
large, where the continuum theory is expected to 
be valid, to very short, where the discreteness of 
the atomic lattice is important and the assump- 
tions of the continuum theory break down. 

In the present study, we investigate the struc- 
tural and energetic properties of [lOOI and [llOl 
steps on the (001) surface of six fee metals: Ag, 
Au, Cu, Ni, Pd, and Pt. To carry out this investi- 
gation, we employed the static energy minimiza- 

tion method (T = 0) and EAM potentials [5] to 
represent the interatomic interactions. The inter- 
actions between [loo] steps and between [llO] 
steps on the (001) surfaces were determined from 
a series of simulations performed on (Oln) sur- 
faces (n < 71) and on (ilm) surfaces (m < 411, 
respectively. In the next section, we describe our 
computational procedure and the geometry em- 
ployed in the simulations. In Section 3, we derive 
an expression relating the step-step interaction 
energy, step energy, and surface energy, within 
the framework of linear elasticity. This expression 
is used to extract these quantities from the simu- 
lation data. In Section 4, we present the surface 
energies for the vicinal (Oln) and (ilm) surfaces 
and the interaction energies between [lo01 steps 
and between [llO] steps on the (001) surface of 
six fee metals. Finally, in Section 5, we compare 
our results for the step-step interaction energies 
and strain fields with those from the continuum 
elasticity analysis, and discuss the relative stabil- 
ity of the [loo] steps on the (0011 surfaces of 
these metals. 

2. Simulation method 

In order to determine the interaction energies 
between [lOOI steps and between [llOl steps on 
the (001) surface, we calculated the surface ener- 
gies of a series of (Oln> and (ilm> surfaces. We 
employed the static energy minimization method 
(T = 0) and EAM potentials [5] to represent the 
interatomic interactions in the fee metals: Ag, 
Au, Cu, Ni, Pd, and Pt. These surfaces are shown 
schematically in Fig. 1 for IZ = 4 and m = 5. As in 
our previous simulations [61, we applied periodic 
boundary conditions in both the X ([On?]) and Y 
([loo]) directions for the (Oln) surface, and the X 
([mE2]) and Y ([llO]> directions for the (?lm) 
surface. In the -Z direction, we employed fixed 
boundary conditions, by attaching the computa- 
tional cell to a perfect fee crystal with the appro- 
priate zero temperature lattice parameter. Dur- 
ing the course of the energy minimization, the 
size of the computational cell in the -Z direc- 
tion was extended such that the surface energy 
remained unchanged upon further extension (to 
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within < 10e6 mJ/m2) and the forces on all 
atoms were less than lop5 eV/A. We note that 
the final size of the computational cell in the -Z 
direction increases with increasing n and m for 
the (Oln) and (ilm) surfaces, respectively, since 
the decay length of the displacement field of the 
periodic array of steps scales inversely with step 
spacing and the step spacing increases with in- 
creasing n or m [7]. The total number of atoms 
required to satisfy the above energy convergence 
criterion were approximately 30000 and 24000 
for the longest period (Oln) and (ilm> surfaces 
studied, respectively (n = 71, m = 41). 

3. Elasticity analysis 

The (Oln) and (ilm) surfaces (with odd m) 
may be decomposed into (001) terraces and ar- 
rays of the equally spaced [loo] steps and [llO] 

(b) 

Fig. 1. A schematic representation of the (014) and (]lS) 
surfaces. The open and filled circles represent the two differ- 
ent stackings of (a) (010) planes and (b) (110) planes. Periodic 
border conditions were employed in the X and Y directions. 
The Y direction corresponds to the [OlO] direction for the 
(Oln) surfaces and to the [110] for the (ilm) surfaces. In the 
Z direction a fixed border condition was used. a0 and R are 
the lattice constant and step spacing, respectively. 

steps, respectively (as shown in Fig. 1). The (Oln) 
surface energy, yOln may be expressed as 

RY,,, = Y!&? + n $a01 + Yint( R) 9 (1) 

where #$I and yool represent the [OOll step 
energy per unit length and the (001) surface en- 
ergy per unit area, respectively, and na,/2 is the 
terrace length (a, is the cubic unit cell lattice 
constant). The [lo01 step spacing, R, is (a,/2) 

P-- )2 + 1 . The third term in Eq. (11, y,,(R), repre- 
sents the contribution to the (Oln) surface energy 
from the interactions between the [lo01 steps. 
This equation relates r$$] and y,,(R) to the 
(001) and (Oln) vicinal surface energies, which 
may be determined from atomistic simulation 
studies. Similarly, the (ilm) surface energy may 
be written as 

RY,,, = r%ril + m SYOOI + Yintt R) 9 (2) 
where R = &/2)/m. 

Since the strains due to the steps are small 
throughout the solid, the step-step interactions 
may be analyzed within the framework of linear 
elasticity. The strain field E associated with the 
steps is simply the sum of the strains associated 
with the individual steps, l tota, = Cei, where bold 
symbols indicate tensors or vectors. The total 
elastic energy of the system Wtota, may be written 
as 

= $ C cq(r)ei(r) 
I[ 

dv 
i 1 

++ 
/[ 

C c &i(r)~j(r) dv i j#i 1 
= N h,W + 5 x-A jR) I j=l 1 =N[Ystep(R) +YintCR)]T (3) 

where C is the elastic constant tensor of the 
material, x-S is the interaction energy between a 
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pair of steps and Yint is the total interaction ergy between steps is finite, the coefficient {r in 
energy per step (i.e., one half of the interaction Eq. (4) must vanish. Thus, substituting this for 
energy of one step with all other steps). yint in Eq. Cl), we obtain the following 

We expand the interaction energy, +yS_,(R) in 
an inverse power series in the step-step separa- 
tion R, normalized by the lattice parameter 

k 

where k,, is in principle infini~, but is finite in 
all practical implementations of the expansion. 
The step energy and the f;c-‘s may be determined 
by fitting Eq. (7) to the surface energy data (de- 
termined from the simulations) via a least-squares 
fitting procedure. A similar expression is found 
for the (1 lm) surfaces. 

where the coefficients & are material dependent 
and are to be determined. The total step interac- 
tion energy may now be written as 

co 

or 

(6) 

where the material independent coefficients pk 
= Zy=tj-” may be easily calculated: & = 7r2/6 
= 1.645, & = 1.202, and flq = 7r4/90 = 1.082. The 
coefficient pi is infinite since the sum over j-’ 
diverges. However, since the total interaction en- 

0 10 20 30 40 50 

8 

4. Results 

4.1. Surface energies 

The variation of the (01~1) relaxed surface en- 
ergies with the vicinal angle 8 is shown in Fig. 2a 
for the six fee metals (Ni, Cu, Ag, Pd, Pt, and 
Au), where the angle 8 is defined as the angle 
between the (Oln) and the (001) planes (tan 8 = 
l/n). All six curves show the same general trend: 
a minimum at B = 0 (001) and a m~mum at 
@ = 25.56 (012). 

The difference between the surface energies of 
the equilibrium (relaxed) and bulk-terminated 
(unrelaxed) surface structures is the surface re- 
laxation energy, by. Fig. 2b shows the variation 

0 

. 
0 

. 

Fig. 2. The (a) {OkI relaxed surface energy and (b) (01 1 n surface relaxation energy as a function of the vicinal angle for six 
different fee metals. The symbols CO), CO), (A 1, Cm), (4 1, and (A) represent Ag, Au, Cu, Ni, Pd. and Pt, respectively. 



R. Najafabadi, D.J. Srolovitz /Surface Science 317 (1994) 221-234 225 

in the surface relaxation energy with the vicinal 
angle. The surface relaxation energy is the energy 
associated with the atomic displacements near 
the surface, measured relative to the bulk- 
terminated structure. Fig. 2b shows that the re- 
laxation energies for the (Oln) surfaces in Ni, Cu, 
and Ag are very small (< 20 mJ/m2) compared 
to those in Pd, Au and Pt. The variation of the 
surface relaxation energies with 0 for Pd are 
35-100 mJ/m2, for Au are 60-150 mJ/m2 and 
for Pt are 110-280 mJ/m2. The ordering of the 
(Oln) surface relaxation energies is consistent with 
those found for the flat (001) surfaces in Ni, Cu, 
Ag, Pd, Au, and Pt, which are 0.2, 3.0, 5.1, 36.6, 
61.3, and 109.7 mJ/m2, corresponding to a change 
of -0.006, ;0.029, -0.039, -0.086, -0.117, 
and -0.123 A, in the spacing between the top 
two (002) planes, respectively. Not surprisingly, 
the ordering of the relaxation energies is consis- 
tent with the ordering of the magnitude of the 
strain (E,,) at the surface. 

Fig. 3 shows similar results obtained for the 
(ilm> surfaces. The trends in the (ilm) surface 
energies of the metals are similar to those found 
for the (Oln) surfaces. The relaxation energies for 
the (ilm) surfaces in Ni, Cu, and Ag are very 
small (< 20 mJ/m2) compared to those in Pd, 
Au, and Pt which range from approximately 35 to 
90, from 60 to 120, and from 110 to 220 mJ/m2, 
respectively. 
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4.2. Atomic d&placements 

The atomic displacements associated with the 
presence of a [loo] step on an otherwise flat (001) 
surface are defined as 

where r: is the position of atom i on the unre- 
laxed (Oln> surface r”“’ represents the LX ([OlO] 
or [OOl]) componen; oFthe position of atom i at a 
terrace on the relaxed (Oln) surface and rizl 
corresponds to the (Y component of the position 
of atom i at the relaxed (001) flat surface. rirl is 
determined by simply identifying the (002) plane 
in the flat (001) surface that corresponds to the 
(002) plane of the (001) terrace to which atom i 
belongs. All atoms on an (002) plane of the flat 
(001) surface have the same displacements. Al- 
though the atoms close to the [lo01 steps may 
experience much larger displacements than the 
other atoms on the (001) terraces, there is no 
ambiguity in identifying their corresponding (002) 
planes on the flat (001) surface since the atomic 
displacements are very small compared with the 
(002) planar spacing. We also note that, due to 
the translational symmetry in the [loo] direction 
(parallel to the step direction in the (Oln) sur- 
face), the atomic displacements in the [lOO] direc- 
tion are zero for both the (Oln) and flat (001) 

0 

. 

0 

. 

Fig. 3. The (a) (ilm) surface energy and (b) (ilm) surface relaxation energy as a function of the vicinal angle for six different fee 
metals. The symbols (01, (O), (A), (01, (+I, and (A) represent Ag, Au, Cu, Ni, Pd, and Pt, respectively. 
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surfaces. An equivalent definition is used for the 
atomic displacements associated with the [llO] 
steps on (iid surfaces. 

Fig. 4 shows the atomic displacements for 
atoms on or near the (Oln) gold surface (pro- 
jected onto the (1001 plane) corresponding to 
n = 71, 5 1, and 31. The displacements immedi- 
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(d 
Fig. 4. Displacement vectors of atoms on and below one 

repeat unit of the Au(Oln) surfaces as projected on the (010) 
plane corresponding to (a) n = 71. (b) n = 51, and (c) n = 31. 

A [loo] step of height a,,/2 is seen in the center of each 

figure. The displacements in [OlO] are zero due to the transla- 

tional symmetry in this direction. All displacements are mag- 

nified by a factor of 5 X 10s. The large displacements of the 

atoms very near the step are not shown. 

ately adjacent to the steps are not shown in these 
figures, since these displacements are too large to 
be plotted for the magnification factor employed 
here and since our focus is the elastic displace- 
ment fields within the bulk. One clearly sees 
rotational components in the displacement fields 
close to the steps. These rotational components 
are obviously related to the presence of a torque 
associated with the step on the (Oln) surfaces. 
Since no net torque exists on the sample (other- 
wise, the sample would rotate), this torque is 
balanced by two opposite rotational fields. As the 
spacing between the [loo] steps on the (001) 
surface is varied from 35.5~~ (n = 71) to 15.5~2, 
(n = 31), the displacement field around the steps 
remains essentially unchanged, as seen in Fig. 4. 
The atomistic displacement results for the sur- 
faces of the other five fee metals show qualita- 
tively similar behavior as those observed for the 
AuCOln) surfaces. Since the displacement field 
around a step does not vary appreciably with step 
spacing, the observed displacement fields in the 
vicinity of a step are largely not associated with 
step-step interactions. 

The [OOl] (2) component of the atomic dis- 
placement on the upper terrace near the step is 
negative (inward relaxation) but gradually be- 
comes positive (outward relaxation) with increas- 
ing distance from the step. There is a maximum 
in the outward relaxation between two steps (this 
is at approximately lla, for the (0 171) Au sur- 
face shown in Fig. 4a). The maximum seems to 
disappear as the step spacing is decreased due to 
the interaction between the displacement fields 
(see Fig. 4~). In order to show the atomic dis- 
placements more quantitatively we have plotted 
(Fig. 5) both the [OlO] and [OOl] components of 
the atomic displacement for the atoms in the top 
(002) plane of the (001) terrace. The displace- 
ments in both directions do not vary monotoni- 
cally with distance from the step and go through 
extrema as the distance away from the step is 
increased (or decreased from the step on the 
other side). Similar results were obtained for the 
(Oln) surfaces of the other five fee metals. 

Fig. 6 shows how the magnitude of the atomic 

displacements I u I = /u&,~ + u&, midway be- 
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tween two steps vary with distance into the solid, 
d. As for the displacements along the surface, the 
atomic displacement in the bulk do not decay 
monotonically with increasing distance d. The 
atomic displacements decay much faster for the 
(0130) than for the (0170) gold surface with 
increasing distance d. This shows, in agreement 
with a linear elasticity calculation [7], that the 
displacement associated with large n decays more 
slowly into the bulk than that associated with 
small n. In addition we find that for the same 
(0130) surface, the atomic displacements are 
considerably larger in Au than in Cu. This is 
consistent with the magnitude of the atomic dis- 
placements associated with surface relaxation 
found for the flat (001) surfaces of Au and Cu. 

4.3. Interaction between steps 

In order to determine the [loo] step energy 
and the interaction energy between [lo01 steps on 
the (001) surface separated by a distance R, we 
fit Eq. (7) to the surface energy data determined 
from our simulations using a least-squares fitting 
procedure. In the fitting procedure, we only used 
the surface energies corresponding to the (Oln) 

0.002 

$ 
-O.CQO 

Fig. 5. Atomic displacement on the Au(0 171) surface along 
the n direction (see Fig. 1) as a function of distance away 
from the [loo] step. The solid and dashed lines show the 
in-plane (x) and normal (z) displacements, respectively. The 
inset figure shows a magnified view of the displacements. 
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Fig. 6. The normalized and scaled displacements 100 X 1 u I/a, 
(1 uI =(uf + u~)‘/~) of atoms below the surface and on the 
(010) plane passing through the midpoint in a terrace of the 
(Oln) surface as a function of distance from the surface, d. 
The symbols (01, (+), and (0) correspond to the displace- 
ments of the Au(0 1311, Au(0 1711, and Cu(Ol31) surfaces, 
respectively. Note that the closer the steps are on the surface 
(smaller n) the faster the displacement decays in the bulk. 

surfaces with 6 5 n 5 20. We excluded the IZ I 6 
(Oln> surface energy data because the [loo] steps 
on these surfaces are less than 3a, distance apart 
and, therefore, their interaction energy may not 
be accurately described using linear elasticity. 
When II is large it is important to include dis- 
placements in the bulk far from the surface. Since 
we use fixed boundary conditions on the -Z 
edge of the model, these displacements are not 
adequately described for large n. Therefore, the 
fitting procedure used in determining the step- 
step interactions omitted the (Oln) surfaces with 
n > 20. 

We performed several fits corresponding to 
truncating the power series in RWk at different 
values of k,, in Eq. (7). Table 1 shows the 
values of the 5’s found by fitting and the associ- 
ated goodness of fit parameter x2 (x2 = 0 indi- 
cates a perfect fit> for k,, = 2, 3, and 4. We find 
that x2 is typically an order of magnitude smaller 
when Eq. (7) with k,, = 3 is employed rather 
than k,, = 2 for Au, Pd, and Pt. For Ag, Cu, 
and Ni the reduction in x * is at least 50% on 
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going from k,, = 2 to k,,, = 3. Table 1 also 
shows that xZ is not significantly reduced by 
including more terms in the power series (i.e., 
k max > 3). Table 1 shows that l2 does not vary 
significantly with k,,,. On the other hand, the 
magnitude of l3 changes by nearly a factor of 2 
on increasing k,, from 3 to 4. Therefore, the 
reported values of the coefficients of the l/R2 
interaction energy are accurately determined and 
insensitive to the choice of k,,,, while the coeffi- 
cients of the higher order terms are not reliably 
determined (i.e., they can only be accurately de- 
termined in the large k,,, limit). Since S2 > 0 for 
all six elements, we conclude that widely sepa- 
rated [MO] steps repel each other. On the other 
hand, [3 < 0 for all six elements. This indicates 
that this l/R2 repulsion between steps is soft- 
ened at small step-step separations. For suffi- 
ciently small R, the steps may even attract. How- 
ever, at these small separations, the expansion in 
l/R may not be valid. 

Fig. 7a shows the variation of the surface en- 
ergy per period in Au, r= Ryoln - (~~~~~,)/2, 
with the [lOO] step spacing R as determined from 
the simulation data and by fitting Eq. (7) with 
k max = 2 and 3. This figure shows that the k,,, = 2 

-2 212.4 

2 

0 

E 211.4 

functional form provides an excellent fit to the 
simulation data and the improvement found by 
including the (l/R)” term in the step-step inter- 
action energy is small. Similar results were ob- 
tained for the other five elements. 

The <ilm> surface energies were fit to Eq. (7) 
in the same manner as for the (Oln> surfaces and 
the results are summarized in Table 2. In this 
case, the fit only included the Cilrn) surface 
energy data for odd m in the range 9 5 m < 25. 
The even m data were omitted since they corre- 
spond to surfaces with uneven step spacing. 
Again, we find that the k,,, > 2 functional forms 
are in better agreement with the (ilm> surface 
energies determined from the simulations than 
when k,,, = 2. Nonetheless, we find that the 
(l/R)* functional form for the step-step interac- 
tion also provides an excellent fit to the data (see 
Fig. 7b) for all six metals examined. 

The surface energy fits performed above also 
provide an estimate of the step energy per unit 
length for both the [lOOf and Ill01 steps on the 
(001) surfaces in the six elements. These energies 
are presented in Table 3 along with their corre- 
sponding values for the unrelaxed step structure. 
The step relaxation energies per unit length, 

138 

wao R-4 
Fig. 7. (a) The variation in the A~[1001 step energy, r = Ry,,, - (~a~~~~,)/2 = &_, ‘O”] + yin&R) with step spacing, R. The circles 
represent the atomistic simulation results while the dashed and solid lines are the results of fitting these data to Eq. (7) with 

k max = 2 and 3, respectively. (b) Shows similar results for the Aut?lm) surfaces. Note that in both cases the fit is much better for 
k man = 3 than for k,,, = 2. 
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Table 1 Table 2 
The material dependent coefficients & of the Rmk terms in 
the expansion of the interaction energy between [lOO] steps 
0%~. (7)) extracted from fitting the simulated (Ok) surface 
energies; The & are reported for fits to the expansion with 
k max = ‘2, 3 and 4 for each of the six fee metals examined; The 
goodness of fit oarameter Y* would be zero for a oerfect fit 

The material dependent coefficients lk of the RTk terms in 
the expansion of the interaction energy between [110] steps 
(Eq. (711 extracted from fitting the simulated (ilm) surface 
energies 

10’3 {a 10’3 & 10’3 & x2 
(J/m) (J/m) (J/m) I. 

10’3 g, 10’3 l3 10’3 [A xz 
(J/m) (J/m) (J/m) 

Ag 

AU 

CU 

Ni 

Pd 

Pt 

26 
36 
34 

0.0003 
0.0002 
o.ooo2 

0.0077 
0.0004 
0.0003 

0.0031 
0.0017 
0.0017 

0.0007 
0.0004 
0.0004 

0.0073 
o.OcQ4 
o.oOo4 

0.0138 
0.0015 
0.0016 

-34 
-16 -3.5 Ag 

Au 

Cu 

Ni 

Pd 

Pt 

19 
20 
20 

0.0013 
0.0003 

-7 0.0003 
-7 
-3 108 

142 
135 

- 141 
-78 - 122 73 

88 
85 

0.0271 
0.0022 

-49 0.0021 
-60 
-34 56 

78 
72 

-92 
-48 -85 41 

47 
46 

0.0014 
0.0007 

-18 0.0006 
-23 
-14 36 

48 
44 

-60 
-29 -60 26 

28 
28 

0.0027 
0.0003 

-11 0.0003 
- 10 

-5 126 
165 
156 

- 166 
-97 - 134 87 

101 
97 

0.0278 
0.0032 

-62 0.0030 
-5s 
-22 206 

263 
247 

- 25.5 
- 123 - 254 146 

165 
161 

0.0565 
0.0081 

-65 O.Ou78 
-74 
-40 

surface relaxation energies. SpecificaIly, the re- 
laxation is smallest for Ni and largest for Pt. The 
ratio of the [loo] step energy to that for [llO] 
steps varies from 1.30 for Cu to 1.56 for Au. 

bhep9 defined as the difference in the relaxed 
and unrelaxed step energies (Table 31, show the 
same trend as that observed for the flat (001) 

Table 3 
The unrelaxed and relaxed step energy and the change in step energy upon relaxation of [RIO] and [HO] steps on the @Ol) surface 
in six different fee metals; The ratio of the [lOO] and [llO] step energies and the change in the energy of the system upon 
transfo~ing a straight [lOO] step into a zig-zagged [llO] step (Eq. (15)) are also reported 

lOI3 yStep (J/m) 1013 ystCp (J/m) 
Unrelaxed Relaxed 

MJI [1101 llool UlOl 

&step (%o) E;&P _ E,Syz 

[loo1 Ill01 
E;&Q 

(%o) 

43 892 650 798 564 10.6 13.2 1.0008 -0.1 
Au 1387 947 857 551 38.2 41.8 0.9091 + 9.9 
CU 1421 1099 1287 987 9.4 10.2 1.0845 -8.4 
Ni 1633 1246 1556 1186 4.7 4.8 1.0783 - 7.8 
Pd 1758 1295 1323 945 24.8 27.0 1.0108 - 1.1 
Pt 2368 1674 1356 909 42.7 45.7 0.9483 +5.2 
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5. Discussion 

The interaction between [loo] steps and be- 
tween [llO] steps on the (001) surfaces of Ag, Au, 
Cu, Ni, Pd, and Pt were determined by fitting the 
surface energies of (Ok) and the (ilm> surfaces 
to a functional form that separates the terrace, 
step and step-step interaction energies. The de- 
pendence of the step-step interaction energy on 
step spacing was analyzed by expanding the 
step-step interaction energy in powers of the 
interstep spacing R. In agreement with the pre- 
dictions of a continuum elastic theory [l], the 
step-step interaction energy was found to be 
proportional to the inverse step spacing K2 for 
large step spacings. This is also in agreement with 
the results of a recent atomistic study of the 
interaction energy between the [loo] steps on the 
(001) surface and on the (011) surface in Au and 
Cu modeled employing the EAM and Lennard- 
Jones (LJ) interatomic potential, respectively [31. 
However, the fact that the fit between the simula- 
tion data and expansions of the step-step inter- 
action energy truncated at higher order (see the 
x2 values in Tables 1 and 3) was better than that 
obtained simply with the predicted R-* step-step 
interaction energy, demonstrates that higher or- 
der terms (e.g. Rp3) are important for the range 
of step separations considered (6 I II I 20). In 
some cases, including an Rv3 term in the step- 
step interaction energy decreased x2 by over an 
order of magnitude. Inclusion of higher order 
terms, such as R-4 did not further improve the 
goodness of fit. 

The term in the step-step interaction energy 
proportional to Re3 must dominate the Rw2 term 
at small step separations and, therefore, the sim- 
ple continuum elastic theory should be invalid at 
small step separations. This failure of the simple 
continuum model has two distinct origins: (1) the 
neglect of the discrete atomistic nature of the 
surface and surface steps and (2) the simplified 
assumption that the elastic field of a step is 
equivalent to that produced by a surface force 
dipole. The first problem can only be overcome 
with an atomistic description of the step. The 
second can be rectified by performing a multipole 
expansion of the force distribution that includes 

-45 04 

l&i, 

4 5 6 

Fig. 8. The elastic component of the step energy r = Rye,, - 

(~Woo,)/~ = Ystep [loo]+ Y~,,@!‘I for [llO] steps on the (001) Cu 
surface as a function of step spacing, R. The circles represent 
the energies determined based on our atomistic simulation 
results while the dashed and solid lines are calculated using 
the parameters found in fitting the (ilm) surface energies to 
Eq. (7) with k,,, = 2 and 3, respectively. 

higher order terms than the simple dipole. A 
formalism for performing such a multipole expan- 
sion has recently been put forward 181. However, 
even here, atomistic simulations are required in 
order to determine the amplitude of the individ- 
ual terms in the multipole expansion. 

In order to further demonstrate the impor- 
tance of the higher order terms in determining 
the step-step interaction energy at small step 
spacing, we plot (Fig. 81 the Cu simulation data 
and the k,, = 2 and k,, = 3 predictions for the 
step contribution to the surface energy (r= 

RYO,, - (~0~,~>/2 = $$‘I + ri,,(R)) for very 
small step spacings. The k,, = 2 predictions are 
in poor agreement with the simulation data at 
very small step separations, while inclusion of the 
Rm3 term captures the essential behavior at small 
step separations. We observe similar behavior for 
the other metals considered in the present study. 
Therefore, it is not reasonable to model step-step 
interactions using the classical Re2 behavior for 
step spacings down to approximately a,, in con- 
tradiction to statements in another, recent atom- 
istic study [3]. The good fit between the k,,, = 3 
results and the simulation data is impressive be- 
cause the sharp change in the r versus R plot 
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near R/a, = 1 was predicted based upon fits 
obtained for R 2 3~2,. Note that yint, as described 
in Eq. (3), is the elastic energy due to the interac- 
tion among the displacement fields associated 
with the steps on the surface while that deter- 
mined based on Eqs. (1) or (2) also include en- 
ergy due to the formation of bonds between atoms 
in the steps. This distinction is usually unimpor- 
tant, but when step spacing is very small (for the 
EAM potentials used in present study for step 
spacing less than approximately 1.54,) this bond- 
ing energy does contribute to r. In Fig. 8, the 
interaction energy was corrected for this bond 
formation energy by subtracting the bonding con- 
tribution, as determined from the unrelaxed sur- 
face energy and Eqs. (1) or (2). 

The simple, continuum elasticity analysis of 
step-step interactions [l] was based on the as- 
sumption that the displacement field associated 
with a single step on an otherwise flat surface can 
be approximated by that produced by an array of 
double (dipole) forces acting parallel to the ter- 
race and directed perpendicular to the step: 
f,S(z>a[S(x - x,>l/ax, where f, is the strength of 
the force, &z) is a delta function and the step is 
located at x =x,, and runs parallel to the y-axis. 
The real distribution of forces is considerably 
more complex: it has a finite width, has compo- 
nents into and out of the surface plane [7] and 
contains in-plane components that are non-dipole 
in nature. While inclusion of all of these effects is 
beyond the scope of the present research, we may 
account for the non-dipole character of the elas- 
tic distribution by expanding the true force distri- 
bution using a multipole expansion, analogous to 
the expansion used in the electrostatic theory to 
describe the electrostatic potential of a charge 
distribution in terms of its multipole moments [S]. 
The expansion given in Eq. (7) for the interaction 
between two steps may be derived from a multi- 
pole expansion of the double force distribution 
associated with a single step. The first term of the 
expansion in Eq. (7) represents the interaction 
between the dipole moments of the interacting 
steps and the higher terms represent the interac- 
tion between higher order multipoles. For exam- 
ple, the Re3 contribution to the step-step inter- 
action energy is attributable to a dipole- 

quadrupole interaction and the Rp4 term to a 
quadrupole-quadrupole interaction. The fact that 
the simple continuum elasticity analysis [l] only 
included the dipole-dipole interaction and was in 
excellent agreement with the simulation data for 
all R > 3a,, shows that the dipole-dipole inter- 
action energy is clearly the dominant term at 
these step spacings. However, the significant dif- 
ference between the simple elastic analysis [I] 
and our simulation results for the interaction 
energy observed for R < 1.5a,, demonstrates the 
importance of the dipole-quadrupole (Re3) in- 
teraction in this step-spacing range. Since no 
improvement in the fit between the simulation 
data and Eq. (7) was obtained when k,, was 
increased from 2 to 3, we conclude that to within 
the numerical accuracy of our results, multipole 
interactions of a higher order than dipole- 
quadrupole are unimportant. 

The elastic interaction energy between two 
steps is obtained as an integral over the strain 
fields due to the individual steps minus that due 
to widely separated steps. Therefore, in order to 
further examine the relationship between our 
simulation results and the elastic theory more 
closely, we now directly examine the strain field. 
For a linear elastic medium, the displacement 
field along a flat surface due to an array of dipole 
forces acting in the n-direction may be written as 
Dl 

2(1- v’) fx 
u,(x,z=O)= ME y,  (12) 

where E and v are the Young’s modulus and the 
Possion’s ratio of the medium, respectively. The 
strain field E,,(x, z = 0) is simply au,/& 

2(1-G) f, A 
E =(x,2=0)= _=_ XX TE x2 x2' (13) 

where A is a constant. 
The total 6:“: strain due to a periodic array of 

steps on the surface with the step spacing R is 

=~{l+cot+(l+;)l). (14) 
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Fig. 9. The x component of the normal strain E,, on the 

A~(01 71) surface along the x direction (see Fig. 1). The 

circles are the results of the atomistic simulation data and the 

solid line represents the results of modeling the step as a line 
force dipole (see Eq. (14)). 

Fig. 9 shows the strain .eF’ on the (0 171) surface 
in Au as calculated numerically from the dis- 
placement field determined by our atomistic sim- 
ulation results and that predicted by the contin- 
uum elasticity analysis as given in Eq. (14). The 
strain 6:“: on the surfaces of other metals consid- 
ered in the present study shows similar behavior. 
The value of parameter A in Eq. (14) was chosen 
to yield the same strain value at x = 5a, as that 
determined in the atomistic simulation results. 
The (0 171) surface was chosen for this compari- 
son since the [loo] step spacing on this surface is 
large (145 A), such that the assumption of linear 
elasticity and the dipole-dipole nature of the 
interaction should be most applicable, compared 
with the lower index surfaces in this study. Fig. 9 
shows that there are qualitative differences be- 
tween the results of the two methods for deter- 
mining e:“:. The continuum elastic (dipole-di- 
pole) analysis predicts that e:“: has a mirror sym- 
metry with respect to the (010) plane passing 
through the midpoints between the steps, that the 
second derivative of e:“: is everywhere positive 
and that ~2’ itself is positive (tensile) over the 
entire surface. The symmetry is a result of the 
periodicity of steps along the x direction and the 
reflection symmetry in the x direction of the 

dipole force distribution. However, the atomistic 
simulation results do not show such a symmetry 
in the strain field. On the (001) terrace and 
normal to the step direction, the strain goes 
through three extrema between the two steps at 
approximately x = llSa,, 16a,, and 22.&z,. The 
(001) terrace experiences compression in the 
range 10.5~2, <X < 13.5~2, while it is under ten- 
sion on the rest of the terrace. The magnitude of 
the compressive strain on the terrace is, however, 
relatively small (6:; < 10p4) on the Au(0 171) 
surface. 

These discrepancies between the dipole elastic 
theory and the simulation results for the strain 
field again suggest the importance of the non-di- 
pole terms in defining the elastic fields of the 
step. However, other possible explanations exist. 
For example, the effect of elastic anisotropy has 
not been analyzed and the fee metals considered 
here are known to exhibit substantial elastic 
anisotropy. The anisotropy ratio 2C,/(C,, - C,,) 
(which is unity for no anisotropy) varies from 3.0 
in Ag to 4.5 in Pt. Nonetheless, the main features 
of the elastic strain field measured in the simula- 
tion are reproduced by the dipole elastic theory; 
namely, the quick decay of the strain field away 
from the steps and the presence of only very 
small strains between these widely separated 
steps. It is important to note that small errors (of 
order e> in the strain produce even smaller errors 
in the strain energy density (of order e2). 

The step energy per unit length for the [loo] 
step on the Au(001) surface is 857 X lo-l3 J/m, 
in good agreement with 824 X lo-l3 J/m deter- 
mined in a recent atomistic simulation study [3] 
employing the same EAM potential. The small 
difference (4%) in the two energy determinations 
is presumably attributable to a slight modification 
made in the EAM potential in that study. How- 
ever, for the [loo] step on the Cu(OO1) surface 
employing the copper EAM potential, we find 
the step energy to be 1287 X lo-l3 J/m while it 
was found to be only 792 X lo- l3 J/m when a 
Lennard-Jones potential fitted to the copper lat- 
tice constant and melting point is used [3]. It was 
suggested [3] that the remarkable similarity in the 
step energies 824 X lo-l3 and 792 X lo-l3 J/m 
for Au(EAM) and Cu(LJ), respectively, is due to 
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the fact that the step energy is dominated by the 
underlying core contributions (i.e., by the number 
of broken bonds per unit length of step and, 
hence, by the short-range repulsion between 
neighboring atoms) and both the Au(EAM) and 
C&J) have similar repulsive potentials. While 
both the dominance of core contributions to the 
step energy and the similarly in the repulsive part 
of the EAM and LJ potentials are correct, we 
find a significant difference (70%) in the [loo] 
step energies when the same type of interatomic 
potential (EAM) is used for both Au and Cu. In 
addition, we also note (see Table 3) that the [lOO] 
step energy for the six elements using the EAM 
potentials changes from 798 X lo-l3 J/m for Ag 
to 1556 X lo-l3 J/m for Ni. The fact that the 
step energies are different for different materials 
as observed in this study, like any other defect 
energy, is to be expected and is due partly to the 
difference in the bond strengths of different ma- 
terials. 

Inspection of Table 3 shows that the [llO] step 
energy is approximately 40% smaller than that of 
a [loo] step on a (001) surface. This difference is 
largely attributable to the fact that Ill01 steps 
have fewer broken bonds per unit length than do 
[MO] steps. If the difference in the step energies 
is sufficiently large, then it may be energetically 
favorable for the [lo01 steps on the (001) surface 
to transform into [llOl steps. However, in order 
to evaluate the stability of [loo] versus [llO] steps 
on a (001) surface, we must consider the differ- 
ence in the energies of a straight [loo] step and a 
zig-zagged [1101 step, as shown in Fig. 10. Note 
that due to the crystallographic orientations of 
these steps, the angle between the [lOOI step and 
different segments of the zig-zagged El101 step 
are either 45” or 135”. If we assume that the 
energy due to the interactions between different 
segments of the zig-zagged [llO] step is smaI1 
compared to the step energy, then the difference 
in the energies of these two steps configurations 
(per unit length L of the [lOOI step) is simply 

E step - E;poP =: 
100 (15) 

where the step energy ratios for the six metals are 

k31 lb! 

Fig. 10. A schematic illustration of a @Ol) surface (seen from 
above) with (a) a straight [lOO] step and (b> a zig-zagged [IlO] 
step. The shaded region represents part of the upper terrace. 

given in Table 3. The (001) surface energy does- 
not enter into this equation since the surface area 
remains unchanged upon this transformation. 

The difference in energy between a straight 
[OOll and a zig-zagged [llOl step, Eq. (151, is 
negative for Ag, Cu, Ni, and Pd while it is posi- 
tive for both Au and Pt, as shown in Table 3. 
Thus a straight [lOO] step on the (001) surface in 
Au or Pt would lower its energy by transfo~ing 
to a zig-zagged [llO] step while it remains stabIe 
on the (001) surfaces of Ag, Cu, Ni, and Pd. 
Although it is difficult, however, to determine the 
effect of interactions between different segments 
of the zig-zagged [llO] step on this stability analy- 
sis, one may crudely approximate this energy by 
assuming that the average step spacing between 
the nearest neighbor segments is L/2. Fig. 10 
shows that the interaction energy between [llO] 
steps on the Au(OO1) surface is less than 4 x lo- l3 
J/m when R > 5a, (L > lOa,). This interaction 
energy is much smaller than 857 X lo-i3 and 
551 x lo-l3 J/m for the El001 and [llO] step 
energies on the Au(001) surface, respectively, and, 
therefore, the interaction between different seg- 
ments of the zig-zagged [llOl steps does not alter 
the above conclusion. It should be noted, how- 
ever, that the present [lo01 step stability analysis 
has not considered the entropic contribution to 
the step energy (free energy) and, therefore, the 
present prediction applies to sufficiently low tem- 
peratures where the entropic contribution is 
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small. A similar analysis for the transformation of 
a straight [llO] step into a zig-zagged [l&I] step 
on a (001) surface, shows that the straight [IlO] 
step is stable against transforming into [110] steps 
for all six fee metals examined in this study. 

6. Summa~ and conclusions 

We have employed an energy minimization 
method (T = 0) and the EAM potentials to deter- 
mine the (01~) and (?lm) surface energies for 
n zz 71 and m 5 41, respectively, for the elements: 
Ag, Au, Cu, Ni, Pd, and Pt. An elastic model is 
used to extract step-step interaction energies be- 
tween [loo] steps and between [110] steps on the 
(001) surface of these fee metals. 
l For step spacings larger than approximately 
three fee lattice parameters (R > 3~1, the inter- 
action energies between [lOOI steps and between 
[I101 steps on the (001) surface in the six metals 
can be reasonably described as being propor- 
tional to R-‘. This is in agreement with a simple 
linear elastic theory of step interactions [1,7,8] 
and a recent atomistic simulation study [3]. How- 
ever, a detailed comparison of the step strain 
fields implicit in the elastic theory with that pre- 
dicted by the simulations, shows that modeling 
steps as in-surface-plane dipole line forces in an 
isotropic elastic medium leads to the prediction 
of elastic fields that are in qualitative and quanti- 
tative disagreement with simulation results. 
* For interstep spacings smaller than three fee 
lattice parameters CR < 3a,), we find large differ- 
ences between the step-step interaction energies 
predicted by the simple linear elastic theory [1,7,8] 
and the atomistic simulations for both [lOOI and 
[110] steps on (001) surfaces. In particular, we 
find significant deviations from the R-’ func- 
tional form predicted by the elastic dipole force 
model for surface steps [1,8]. Expanding the 
step-step interaction energy in powers of Rek, 
shows that in addition to the dipole-dipole con- 
tribution which is dominant at large step separa- 
tion, dipole and quadrupole contributions are 
important at small step spacing. We find that 
while dipole-dipole and dipole-quadrupole are 
important for determining the step-step interac- 

tion energy, higher order moments are unimpor- 
tant. 
l The interaction between [loo] steps are weaker 
than that between [110] steps on the (0011 surface 
in all six metals. Among the six metals studied 
here, the interaction between two similar steps on 
the (001) surface is weakest in Ag and strongest 
in Pt. 
l A simple comparison of the surface energies of 
[lOOI and [IlO] steps on (001) surfaces, shows that 
straight [lOO] steps are unstable to faceting into 
zig-zagged fllO] steps in Au and Pt, but not in 
Ag, Au, Cu, Pd or Ni. Straight [llOl steps are 
stable against faceting into zig-zagged [lOtI] steps 
on (001) surfaces of all six fee metals examined. 
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