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Let R be a connected, graded, Noetherian Pl ring. If injdim(R) = n < o, then
we prove that R is Auslander—-Gorenstein and Cohen-Macaulay, with
Gelfand-Kirillov dimension equal to n. If gidim(R) = n < «, then R is a domain,
finitely generated as a module over its centre and a maximal order in its quotient
division ring. Similar results hold if R is assumed to be local rather than connected
graded. Alternatively, suppose that R is a Noetherian PI ring with gldim(R) < x
such that hd(R/M,) = hd(R/M,) for any two maximal ideals M, in the same
clique. Then, R is a direct sum of prime rings, is integral over its centre, and is
Auslander-Gorenstein. If R is a prime ring, then the centre Z(R) of R is a Krull
domain and R equals its trace ring TR. Moreover, hd(R /M) = height(M), for
every maximal ideal M of R. «© 1994 Academic Press, Inc.

1. INTRODUCTION

For the purposes of this paper, a ring R is graded if it is N-graded; that
is R= @&_,R, with R,.R; C R, for all i and j. Of course, any ungraded
ring can be regarded as a graded ring concentrated in degree zero.
Throughout, R™ will denote &, , R;. A graded ring R is connected graded
if R, =k is a central subfield of R and each R, is a finite dimensional
k-vector space.

The study of connected graded rings has gained prominence recently,
particularly through the study of the regular graded rings of [AS] and in
the more general theory of quantum groups. The regularity condition used
in [AS] is defined as follows: Let R be a connected graded ring. Then we
define R to be Gor, or Gorenstein in dimension zero if R has finite {left
and right) injective dimension, injdim(R) = n < =, and (again on ¢ither
side) Ext(R/R™, R) = 0 for all m < n. The regular rings of [AS], which
we will term AS regular rings, are then the connected graded Gor, rings of
finite global and Gelfand-Kirillov dimension. In [ATV], ATV2] the AS
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regular rings of global dimension 3 are classified. In particular, they are
always Noetherian. More significantly, the approach of [ATV] exhibits a
fascinating interrelationship between these algebras and projective, elliptic
curves. If the ring also satisfies a polynomial identity (PI), then there are
interesting applications to the study of Brauer groups (see [Ar, Section 5)).

Of course, this would suggest that, even among connected graded PI
rings of finite global dimension, the AS regular rings are very special. Yet,
one of the main applications of this paper (Coroliary 6.3) shows that this is
not the case:

THEOREM 1.1. Let R be any connected, graded, fully bounded Noethe-
rian ring of finite injective dimension n. Then R is Gor,, with GK dim(R) =
K dim(R) = n. Indeed, R is even Auslander—Gorenstein and Cohen-—
Macaulay.

The extra terms are defined as follows: Let R be a Noetherian graded
ring with injdim(R) = n < «. Then, R is Auslander—Gorenstein if, for
every finitely generated R-module M and submodule N C Ext4(M, R),
one has Ext4(N, R) = 0 for all i <j. An Auslander-Gorenstein ring of
finite global dimension will be called .Auslander—regular. 1If j(M) =
min{j : Ext;(M, R) # 0}, then R is Cohen—Macaulay provided that
GK dim(R) < © and j(M) + GK dim(M) = GK dim(R) holds for every
finitely generated R-module M.

Theorem 1.1 is false if R is not assumed to be Noetherian; a counterex-
ample is provided by the PI ring k{x, y}/(xy).

The Auslander—Gorenstein condition is one that has proved to be very
useful elsewhere as it permits one to make effective use of homological
techniques in non-commutative ring theory: see [Bj2] for a survey of some
of these applications. If R is an AS regular ring of global dimension 3,
then Levasseur has proved that R is both Auslander—Gorenstein
and Cohen-Macaulay (see [Lvl]). However, Levasseur’s proof uses the
classification of these algebras given in [ATV1]. While the Auslander—
Gorenstein condition is a very useful concept, it seems that the Cohen—
Macaulay hypothesis is considerably stronger; for example, while many
Artinian algebras are Auslander-regular, the only Artinian algebras that
are Auslander-regular and Cohen—Macaulay are the semi-simple algebras.
For connected graded rings, the Cohen-Macaulay condition is crucial in
proving the following.

CoroLLarY 1.2. Let R be any connected graded, FBN ring of finite
global dimension. Then R is a domain and a maximal order in its quotient
division ring. If R is PI, then R is equal to its trace ring and is finite as a
module over its centre Z(R). Consequently, Z(R) is a Noetherian, integrally
closed domain.
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For applications of Theorem 1.1 and Corollary 1.2 to Skyanin algebras
of dimension n > 4, see [TV].

As indicated in the abstract, analogues of Theorem 1.1 and Corollary
1.2 will also hold for local Noetherian PI rings. (If R is a ring, write J(R)
for the Jacobson radical of R. Then, R is (semi)-local provided that
R/J(R) is (semi)-simple Artinian.) The conclusion that R is a domain
gives a partial answer to a question of Ramras (see [GW1, Question 5, p.
286] for a survey of the results on this question). In fact, the results of this
paper are proved for a considerably more general class of Noetherian PI
rings. Let R be a graded Noetherian PI ring with injdim(R) = n < <.
Then R will be called right (graded) injectively smooth if Exti(S, R) # 0
for all simple, (graded) right R-modules. By Lemma 3.12, a graded
Noetherian PI ring of finite injective dimension that is either connected
graded or local will automatically be graded injectively smooth. The
correct context for Theorem 1.1 is for the class of right graded injectively
smooth Noetherian PI rings. However, in this generality the
Gelfand-Kirillov dimension need not be defined and to circumvent this
problem we use the (Rentschler-Gabriel) Krull dimension. Thus, an
Auslander—Gorenstein ring R is called (graded) Macaulay if j(M) +
K dim(M) = K dim(R) holds for every finitely generated, (graded) R-
module M. A more appropriate phrase for a Macaulay ring is “an
equidimensional, Krull Cohen-Macaulay ring,” since in the commutative
case our definition of a Macaulay ring forces every maximal ideal to have
the same height. We have used the phrase Macaulay since the definition of
a (commutative) Macaulay ring in [Na] includes the equidimensionality
assumption. If M is a finitely generated module over a connected graded,
FBN ring R, then GK dim(M) = K dim(M) (see Lemma 6.1) and so the
Cohen-Macaulay and Macaulay concepts (with or without the prefix
“graded”) will all coincide for these rings. In general, however, these
concepts are all distinct (see Section 4). The main theorem of the paper
(Theorem 3.10) states the following.

Tueorem 1.3. Let R be a graded, Noetherian PI ring that is right graded
injectively smooth. Then, R is an Auslander—Gorenstein, graded Macaulay
ring the K dim(R) = injdim(R). In particular, R is also left graded injec-
tively smooth.

Once again, Theorem 1.3 allows one to prove strong structure theorems
for graded injectively smooth rings of finite global dimension and, by using
localization techniques, the applications hold more generally. Write hd(M)
for the homological dimension of a module M. Generalizing the notions
from [BwH] an (ungraded) PI ring R is called homologically homogeneous
if gldim(R) < « and hd(R/M) = hd(R/M') whenever M and M’ are
maximal ideals of R lying in the same clique. The definition of homologi-
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cally homogeneous rings in [BwH] is slightly different from that given here,
since that paper is only concerned with rings integral over their centres.
However, our extra generality is a mirage since the main result of Section
5 (see Theorem 5.6 and its corollaries) shows the following.

THEOREM 1.4. Suppose that R is a Noetherian PI ring that is homologi-
cally homogeneous. Then

(i) R is a direct sum of prime rings, is integral over its centre, and is
Auslander-regular.

(ii) Let 12 be a clique of maximal ideals of R. The (2 is finite and the
localization R, of R at 2 is Auslander-regular and Macaulay.

(iii) Assume that R is a prime ring. Then the centre Z(R) of R is a
Krull domain, R is integral over Z(R), and R equals its trace ring.

(iv) If M is a maximal ideal of R, then j(M) = hd(M) = height(M).

Almost all of the conclusions of Theorem 1.4 will fail for Noetherian PI
rings that are just Auslander-regular (see, in particular, Example 5.11 and
[St3, Example 3.5)).

The definitions given above, particularly of smoothness and Macaulay,
are forced on us by the fact that one cannot localize at maximal ideals of a
non-commutative ring. In comparison with the commutative theory, one
should think of an injectively smooth ring as being the analogue of a local
commutative ring of finite injective dimension. Similarly, a Macaulay ring
is the analogue of a local (or equidimensional) commutative Cohen-
Macaulay ring. The definition of a homologically homogeneous ring is then
the analogue of an arbitrary regular commutative ring. The results of this
paper indicate that this analogy is appropriate, since they show that many
of the standard commutative results do generalize. For example, parts (ii)
or (iv) of Theorem 1.4 show that a homologically homogeneous PI ring is
CM, in the commutative sense.

It is interesting to compare Theorem 1.4 with the standard methods for
constructing “bad” Noetherian PI rings, notably of prime Noetherian PI
rings that are not integral over their centres. Most, if not all, of these
constructions can be modified so that the given ring R is also a semi-local
ring of finite global dimension (see the discussion before Example 5.13).
By Theorem 1.4, this forces the simple R-modules to have differing
homological dimensions. These examples illustrate the problem with trying
to use homological techniques in non-commutative ring theory—too many
rings have finite global dimension—and this has led to the profusion of
different possible definitions of a ‘“‘noncommutative regular ring.” How-
ever, the results of this paper show that if a PI ring satisfies reasonable
local properties (thus, if the ring is local or connected graded or, in the

481/168/3-21
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global case, homologically homogeneous) then one is able to use homolog-
ical techniques to prove strong results about the structure of the ring.

In outline, the paper is organized as follows. Some preliminary results
and many of the basic definitions are collected in Section 2. Graded
injectively smooth PI rings are studied in Section 3. In particular, Theorem
1.3 and some of its easier applications are proved there. In Section 5 the
applications to homologically homogeneous rings and connected graded Pl
rings are given. Finally, some of the techniques of this paper apply to more
than just PI rings. Applications to FBN rings are considered in Section 6
where, in particular, we prove Theorem 1.1. In Section 4 some easy
applications to non-fully bounded rings are given.

2. PREPARATORY RESULTS

In this section we give some of the basic definitions and results that will
be needed in this paper. Unless specified otherwise, if a concept for a
graded module M is prefixed by the word “graded” then that property is
assumed to be defined in the category of graded modules, whereas if the
word graded is omitted, then the property is assumed to hold in the
category of all modules. Thus, for example, M is graded-uniform, if every
two non-zero graded submodules have a non-zero intersection, but M is
uniform if any arbitrary pair of non-zero submodules have a non-zero
intersection. Usually, however, the graded and ungraded definitions are
equivalent for a graded module and the proof of this fact can, in each
case, be found in [NV]. In particular, this is true for the terms ‘prime
ring,” “Goldie ring,” “Krull dimension,” “uniform,” and ‘“projective.”
However, it is not true for “injective”; that is a graded-injective graded
module need not be injective. Similarly, a graded Macaulay ring need not
be Macaulay. For example, take R = k[[x]l[y], graded by degree in y.
Then, as R has only one graded simple module, R/(xR + yR), the
commutative theory shows that R is graded Macaulay. However, R is not
Macaulay, since the module R/(1 — xy)R is simple of homological dimen-
sion one. The term FBN will always stand for a ring that is fully bounded
and Noetherian as an ungraded ring.

LemMa 2.1.  Let M be a finitely generated, graded right module over an
FBN graded ring R. Then there exists a chain of graded submodules M =
M,2oM,_, 2 -~ 2My; =0 such that

(i) for each i, set M;/M;_| and P; = r-ann(M,). Then P is a prime,

i

graded ideal and M, is a torsion-free, uniform right R /P,-module.
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(ii) Each M, is isomorphic to a uniform right ideal of R/P,. There
exists an integer r and a graded short exact sequence 0 — R/P, » M{" —
K — 0, where K is a torsion right R /P-module.

(iid) If R is prime and M is a torsion right R-module, then Mz = 0, for
some regular homogeneous element z € R.

Proof. (i) This is very similar to the ungraded proof given, for exam-
ple, in [GW1, Theorem 8.6]. Pick a graded-uniform submodule M, of M
with P, = r-ann(M,) as large as possible. By [NV, Lemma A.I1.5.9], M, is
uniform. Clearly, P, is a (graded) prime ideal. Moreover, [NV, Lemma
A.11.9.14] implies that the singular submodule 7 of M, is a graded
submodule and so, as R/P; is FBN, r-annp(T) 2 P;. Thus, T = 0 and M,
is torsion-free. Now apply Noetherian induction.

(ii) Let U be a graded, uniform right ideal of R/P,. By [GW1,
Example 6M], there exists a non-zero (possibly ungraded) homomorphism
0: A-/f, - U. By [NV, Corollary A.1.2.11], 8 is a sum of graded homomor-
phisms, and so we may also assume that 6 is graded. Since 17[,. is uniform,
g is an injection. If R has uniform dimension r, then R contains a direct
sum of r graded, uniform right ideals ((NV, Corollary A.I1.5.11]). Thus,
M = [ (as graded modules), for some graded, essential right ideal / of
R. Thus, R/I is a torsion module. Finally, by the graded version of
Goldie’s theorem ([NV, Corollary C.1.1.7 and Theorem A.1.5.8]), I con-
tains a homogeneous, regular element of R.

(iii) As R is FBN, r-ann(M) is a non-zero, graded ideal of R. Thus,
as in the proof of part (ii), r-ann(M) contains a regular, homogeneous
element. |

We now turn to homological algebra. Let M be a finitely generated,
graded right module over a graded Noetherian ring R. Then it will be
useful to have the graded analogues of (co)homology groups. In the
notation of [Mi), the category of graded right R-modules, gr-mod-R, is a
Grothendieck category; that is, gr-mod-R is a cocomplete, C;-category with
a generator. Moreover, gr-mod-R has projective and injective objects. One
consequence of this is that all the standard homological constructions
work perfectly well in this category—see [Gr] and [Mi}. Thus, if M and N
are graded (right) R-modules, define HOM (M, N) to be the group of all
graded R-module homomorphisms from A to N, which will be regarded
as a graded group in the natural way:

HOMg(M, N), = {6 € HOM(M, N):6(M,) C N, forall i € 7}.

We will write EXTZ(M, N) for the corresponding homology group. The
long exact sequences of EXT groups will be sequences of graded groups.
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Suppose that N is now a graded (S-R)-bimodule; that is, R and S are
graded rings and N = &, N, satisfies S;N, + N,R; C N, , for all i and
J. Then we may regard HOM( , N) as taking values in gr-S-mod. Thus,
EXTZ(M, N) will be a graded left S-module and the corresponding long
exact sequences of EXT groups associated to a graded exact sequence
0—- M, » M- M, — 0 will be sequences of graded left S-modules (this
all follows from [Mi, Theorem VIL.3.2] and the comments thereafter).
Similar comments apply to other long exact sequences of (co)homology
groups. We remark that if M is finitely generated, then [NV, Section
A.1.2] implies that Hom z(M, N) = HOM{(M, N) and Exti(M,N) =
EXTZ(M, N). Thus, in the definition of graded smoothness, etc., one
could equally well have used EXT in place of Ext. However, if M is not
finitely generated, then it is possible that Extix(M, N) # EXT;(M, N). No
such complications arise for tensor products, but we still write
TOR®(M, N) for the corresponding homology groups to emphasize its
graded structure.

The homological global dimension of a ring R will be written gldim(R)
and the homological dimension of an R-module M will be written hd(M ).
The (right) injective dimension of Ry will be written r-injdim(R). Note
that, by [Za, LLemma A}, if R has finite right and left injective dimension,
then r-injdim(R) = l-injdim(R), and we will write this common integer as
injdim(R). In the graded case, the graded homological dimension of M
equals hd(M). Similarly, by (Lvl, Lemma 3.3], r-injdim(R) equals the
graded right injective dimension of R and so we will not need the graded
analogue of either dimension.

Many of the results of this paper are proved by means of the following
spectral sequence: Let A4, B, S, and T be graded rings such that there
exists a graded ring homomorphism from A to B. Let M be a graded
(T-A)-bimodule and N a graded (S-B)-bimodule. Then there exists a
convergent spectral sequence of graded (S-T)-bimodules:

EXT{(TORA(M, B), N) = EXT;(M, N). (2.2)

Thus, each object is a graded (S-T')-bimodule and the various homomor-
phism used to define the spectral sequence are graded (S-T)-bimodule
homomorphisms. In particular, as a graded (5-7)-bimodule, EXT}(M, N)
is a subfactor of @,,,_, EXTZ(TOR}(M, B), N).

Unfortunately, we have been unable to find a reference for (2.2) in quite
this generality although, at the level of a spectral sequence of homology
groups, it is well-known (see, for example, [Ro, Theorem 11.65]). Thus, we
should outline the modifications to the proof in [Ro] that are required to

prove the above assertion.
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Take a free Z-algebra T such that T is a homomorphic image of T.
Thus, we may regard M as a graded left module over T. Equivalently, M
is a graded right module over 4 ®;, T°P. Take a projective resolution F. of
M as a right 4 ®, T°"-module. Thus, the complex F.®, B is a complex
of graded right modules over B ®, T°° and, by the graded analogue of
{Ro, Lemma 11.33] (and in the notation of the definition preceding that
lemma), there exists a proper, graded resolution M, of that complex. The
basic observation is that T is a free Z-module. Thus, by [CE, Chap. 1X,
Corollary 2.4, p. 166], the complex F.— M - 0 is also a projective
resolution of M as a (graded) right 4-module and M,, is a proper
resolution of graded right B-modules. However, the choice of our resolu-
tion implies that all the maps, and in particular the induced projective
resolutions of the cycles, boundaries and homology of F.®, B, are graded
left T-module homomorphisms. Now apply HOMg(__, N) to this com-
plex and compute the spectral sequence as in [Ro, Proof of Theorem
11.38). All the homomorphisms involved are therefore graded (7-S)-
bimodule homomorphisms and the resulting spectral sequence (2.2) is a
spectral sequence of graded (7-S)-bimodules. Finally, as the 7-module
structure of each object in (2.2) is induced from its T-module structure,
this implies that (2.2) is indeed a spectral sequence of graded (7-5)-bimod-
ules.

One can also prove this result in a more direct way by appealing to
Grothendieck’s original work. As above, it suffices to prove the result
for T. Let #(T, A) denote the category of graded (7-4)-bimodules which,
by the comments of the last paragraph, is a Grothendieck category with
projective and injective objects. Then, G =_ ®, B is a right exact
functor:?f(T-, A) - (T, B) and F = HOMg(__, N) is a left exact func-
tor #(T, B) — &(T, S). Thus, just as in the proof of [Gr, Theorem 11.4.1],
(2.2) is a spectral sequence with values in €(T, S), which is precisely our
assertion.

CoROLLARY 2.3. Assume that B is a semi-simple Artinian ring. Then
(2.2) collapses to an isomorphism (of graded bimodules):

HOM ,(TORZ(M, B), N) = EXT}(M,N). |

3. SmMooTH PI RINGs ARE GORENSTEIN

The aim of this section is to prove Theorem 1.3 of the Introduction; that
is, to prove that any right graded injectively smooth, graded, Noetherian
PI ring R is Auslander-Gorenstein and graded Macaulay. An intermedi-
ate step in the proof of this result is to prove that R satisfies the natural
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generalization of the Gor, condition defined in the Introduction. This is
defined as follows. Let R be a graded ring with injdim(R) = n < . Then,
R is gr-Gor, if j(S) = n, for every graded simple (left or right) R-module
S. Note that this does not coincide with the concept of (ungraded) Gor,
rings; the ring k[[ x]][ y] considered in Section 2 is again a counterexample.
However, we will never need to consider the ungraded condition.

If M is an (R;-R,)-bimodule for some rings R;, then M will be said to
have a property 2 if it has that property % as both a left R,-module and a
right R,-module. Thus, for example, M is a finitely generated bimodule, if
it is finitely generated as both a left R,-module and a right R,-module.
Given that the rings A4, S, T and the bimodules M and N in (2.2) are
Noetherian, then TOR#(M, N) is automatically a finitely generated bi-
module. One of the basic ideas in this paper is to find situations in which
(2.2) can then be used show that EXTZ(M, N) is also a Noetherian
bimodule. Unfortunately, this is not true in general, even for FBN rings.

ExampLE 3.1. Pick division rings T C B such that ;B is finite but B, is
infinitely generated [Co, Theorem 5.6.1]. (In the notation of (2.2), we set
A = B = S§.) Then, H = Hom 4z( By, By) is not finitely generated under its
natural right 7-module structure.

Proof. Pick {b;} € B such that Lb,T is an infinite direct sum and
consider 8, € H defined by 8,(1) = b,. If £8,T is finitely generated, then
6, =L7" '6a, forsome a, € T and b,, = 8,(1) = L,a,(1) = £0(a,1) =
Y81a, = Lb,a,, a contradiction. |}

i

A ring B will be called central semi-simple if B is a semi-simple
Artinian ring that is finitely generated as a module over its center Z(B).
Examples of division rings satisfying the hypotheses of Example 3.1 are
highly non-commutative; in particular, they cannot exist if B is central
simple. This, in turn, can be used to show that the question raised before
the example has a positive answer for PI rings.

Lemma 3.2. Let B be a prime, Noetherian PI ring and T a Noetherian
ring. Let L be a finitely generated (T-B)-bimodule, torsion-free as a right
B-module. Then L* = Hom yx(L, B) is a finitely generated (B-T )-bimodule.

Proof. (1) Set E = Endg(L). By replacing T by T/l-ann(L), we may
assume that L is a faithful left 7-module. Hence, we may identify T with
a subring of E, using the natural action of T on L. Since L is faithful
and Noetherian, so is ;L. Thus, [GW1, Theorem 8.9] implies that there is
an E-module embedding E — L for some r. Hence, E is a left Noethe-
rian T-module. Set § = TZ(E) c E and note that Z(E) is central in this
ring. Thus, S is a left, and hence a right Noetherian 7-module. Since L,
is a finitely generated, torsion-free module over a prime PI ring B,
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[MR, Proposition 3.1.15(ii)] implies that E is also a prime PI ring. Finally,
by [MR, Theorem 13.6.10], there exist elements z,,...,z, € E and an
E-module monomorphism

t t
E~ Y. z,Z(E) C ) zS.

i=1 i=1

Hence E is a Noetherian right module over both S and T.

Clearly, L* is a Noetherian left B-module. Moreover, L* is a right
E-module. The natural E-bimodule homomorphism L ® L* — E in-
duces an E-module injection L* = L' = Hom (L, E). Once again, as L
is a finitely generated left E-module, L' is a finitely generated right
E-module. By the last paragraph, this implies that its submodule L* is a
Noetherian right T-module. ||

The following well-known lemma will be used frequently.

LemmMma 3.3, Let Z be any ring and % be an Ore set in a Noetherian ring
R. Suppose that M is a (Z-R)-bimodule, finitely generated as a right
R-module and that I is an ideal of R. Then, for any i, there is an
isomorphism of (Rg-Z)-bimodules:

R, ® Exti(M,I) = Exty (M & R,, & R,).

Proof. See, for example, [BL, Proposition 1.6]. |

Lemma 3.4. Let R and T be Noetherian rings and suppose that M is a
finitely generated (T-R)-bimodule. Let N be a right R-module and x € T.
Then, the homomorphism x.: M — M, given by left multiplication by x,
induces a group homomorphism: .x : Ext"(M, N) - Ext"(M, N) given by
right multiplication by x. Similarly, it induces a homomorphism
x.: Ext™(N, M) — Ext"(N, M) given by left multiplication by x.

Remark. We-always use this result for finitely generated graded mod-
ules over graded Noetherian rings, in which case Ext"(N, M) =
EXT"(N, M) and so the result also applies to EXT"(N, M). However, the
result is easier to prove for Ext.

Proof. In either case, pick a resolution of N and study the map
induced by x. on that resolution. The proof of the first assertion is given in
detail in [Br, Lemma 2.1] and the second assertion is proved similarly. []

Let R, and R, be FBN rings and M a finitely generated (R,-R,)-
bimodule. In the next theorem, and elsewhere, we use the fact that
I-K dile(M) = r-K dimRz(M) (see [GW1, Theorem 13.15)). In particular,
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I-K dim(R,) = r-K dim(R,) and, in each case, the prefix can, and usually
will, be omitted.

THEOREM 3.5. Let R and T be FBN graded rings. Let M be a finitely
generated graded (T-R)-bimodule and N a finitely generated graded right
R-module. Assume that

( *) every graded prime factor ring R/P of R/r-ann( N )
with K dim( R/P) < K dim( M )satisfies a PI.

Then, EXTJ(M, N) is a graded, Noetherian right T-module, for all n > 0.

Proof. Given any graded submodule N, C N, then there exists an exact
sequence of right T-modules

EXTZ(M, N,) - EXTi(M,N) - EXTA(M,N/N,). (3.5.1)

Let « be an ordinal. The theorem is vacuously true if N =0, so, by
induction on Krull dimension, assume that the theorem is true (for any
rings satisfying the hypotheses of the theorem) if K dim(N) < a. Now
assume that K dim(N) = a. By a Noetherian induction, we may assume
that the theorem is true for any proper graded factor module of N and
hence, by (3.5.1), we may replace N by any non-zero graded submodule of
itself. Thus, by Lemma 2.1(i), we may assume that N is isomorphic to a
graded uniform right ideal //P of a graded prime factor ring of R. Since
EXT(M, Ny = EXT(M, N)7, as graded right 7-modules, we may re-
place N by a direct sum of copies of N. For some r > 1, Lemma 2.1(ii)
provides a short exact sequence of graded modules R/P — N -» K,
where K dim(K) < a. Hence, by (3.5.1) and induction on the Krull dimen-
sion, we may replace N by B = R/P. Note that the condition (*) still
holds. Now consider the spectral sequence (2.2). Here, the modules
L, = TOR’;(M, B) are finitely generated, graded (7-B)-bimodules. Thus,
if each EXTJ(L,, N) is a finitely generated right T-module, then so is
EXTR(M, N). Set L = L, for some q. Then l-ann (M)L = 0, and so, by
{GW1, Theorem 13.15 and Lemma 7.1],

K dimg(L) = Kdim,(L) < Kdim;(T/l-ann(M))
= Kdim, (M) = Kdimg(M).

Thus, hypothesis ( *) implies that, if L is not torsion as a right B-module,
K dim(B) = K dim(L) and so B is PL

Thus, we have reduced the theorem to proving that EXTZ(L, B) is a
finitely generated right T-module. Moreover, since K dim(B) < a, the
inductive hypothesis implies that EXTA(L, N) is a Noetherian right
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T-module for every finite generated, graded, torsion right B-module N.
Suppose, first, that n = 0 and let X denote the set of torsion elements of
L considered as a right B-module. Since HOMg(X, B) = 0, clearly
HOM (L, B) = HOM4(L /X, B), as (T-B)-bimodules. Thus, if L/X =0
there is nothing to prove, while if L /X # 0 then, by the last paragraph, B
is PI and the result follows from Lemma 3.2.

Thus, we may assume that n > 0. Let Q = Q(B) denote the (ungraded)
simple Artinian quotient ring of B. Then, by Lemma 3.3,

Q ® EXT(L,B) = Q ® Extj(L,B) = Ext}y(L & Q,Q) = 0.

Thus, EXTS(L, B) is a finitely generated, torsion left B-module. Since it is
also graded, Lemma 2.1(iii) implies that z EXTgZ(L, B) = 0, for some
homogeneous, regular element z. Consider the short exact sequence

z

0 B—> B B/zB — 0.

Applying HOM(L, __) to this sequence and taking cohomology yields the
following exact sequence of graded right T-modules:

6
EXT; (L, B/zB) —> EXT:(L, B) — EXTZ(L, B)
— EXT}(L, B/zB).

But, by Lemma 3.4, 8 is given by left multiplication by z and hence is zero.
Thus, there is an injection EXTS(L, B) — EXT;(L, B/zB) of right T-
modules. Therefore, by the inductive hypothesis, EXTZ(L, B) is a Noethe-
rian right T-module. ||

The following condition is crucial to many of the results of this paper.

ConDITiON 3.6. Let R be a Noetherian, graded ring. If M is a graded
left, respectively right R-module of finite length, then EXTZ(M, R) is a
right, respectively left, R-module of finite length.

This condition is also important when one studies the Proj of a con-
nected graded ring (see [AZ]). It does not hold for arbitrary Noetherian
rings, even connected graded ones (see [SZ]). However, Theorem 3.5
provides one situation where it holds.

CororLARY 3.7. Let R be a fully bounded, graded Noetherian ring such
that R/Q is central simple for all graded maximal ideals Q of R. Then (3.6)
holds.

Proof. By induction on the length of M it suffices to consider the case
when M is a simple right module. Let P = ann(M) and note that, as
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graded modules, R/P = M‘”, for some r. Since EXT commutes with
direct sums, we may replace M by R/P. Theorem 3.5 implies that
EXT}(M, R) is a Noetherian, and hence Artinian, right R/P-module.
Since it is trivially a finitely generated left R-module, Lenagan’s Lemma
[MR, Theorem 4.1.6] implies that EXTZ(M, R) is also left Artinian. J

Notation. Given a finitely generated, graded (right) R-module M, set
E/(M) = EXT4(M,R) and EY(M) = EXT4(EXT}{(M,R), R).

Note that E/(M) is a finitely generated, graded left R-module and that
E/(M) is a finitely generated, graded right R-module.

THeEOREM 3.8. Suppose that R is a right graded injectively smooth,
Noetherian PI ring or, more generally, a right graded injectively smooth
Noetherian ring satisfving (3.6). Then R is gr-Gor,,.

Remark. Recall that a right graded injectively smooth PI ring is
defined to have finite injective dimension. Thus, the theorem implies that
a Noetherian PI ring R is right graded injectively smooth if and only if it is
left graded injectively smooth and we can drop the prefix.

Proof. Let injdim(R) = n. We need to prove that E/(S) =0 < j <n,
for all simple, graded R-modules S. By definition, E"(S) # 0 for any
simple graded right R-module S while E/(M) =0 for every graded
R-module M and j > n. Let

m = min{j(M): M a graded left R-module of finite length} .

By [BE, (1.3)] or (3.8.1) below j(M) < = for each non-zero graded R-mod-
ule M and hence m < n. We assume that m < n and aim for a contradic-
tion.

For a finitely generated graded left R-module M, consider the spectral
sequence

'Ep-« = EXTZ(EXT{(M, R), R) = H?~9(M), (3.8.1)

where H?~9(M) = 0 if p # g and H*(M) = M. For a proof of this, see
[Lv1, (3.1)] and [Lv2]. We have used a non-standard indexing of ’E{"’ in
order to be consistent with the earlier definition of E#7. Let §, be an
Artinian left R-module such that j(§,) = m. Combined with the observa-
tions of the last paragraph, and following the notation of [Bj1, pp. 60-62],
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the only possible non-zero entries of the 'E2-9(S,) table are

E™"™(S,) E™"7Y(Sy) e ETT(S)
ErThn(Sy) ENTRTNS) e ETTRM(S,)
E""(Sg) EN"TI(S,) e EN(S,)
EO'"(S()) EO'"_](S()) T EO""(S())

In this table, the coboundary maps have bi-degree (-1, 2); that is, they
map EP9S,) to EP*29%1(S,). At the mth stage, the coboundary maps
have bi-degree (—m, m + 1).

As m < n and H?~9(S,) = 0 for p # q, the last paragraph implies that
E™"(S§,) = 0. But, by (3.6), E™(S,) is a non-zero, graded right R-module
of finite length. Thus, £7(S,) has a graded simple submodule L and one
has the following exact sequence:

E"(E™(Sp)/L) = E™™(Sy) = E"(L) = E""'(E™(S,)/L).

Since injdim(R) = n, the final term is zero, whereas £"(L) # 0, since R is
right graded injectively smooth. Therefore, E™”(S,) # 0. This contradic-
tion implies that j(M) = n for every graded left R-module M of finite
length. Thus, R is left gr-Gor, and hence left graded injectively smooth.
By the left-handed analogue of the above argument, R is also right
gr-Gory. |

REMARK 3.9. Suppose that R is a Noetherian gr-Gor, ring of injective
dimension n. Then E"(S) is simple for every graded simple R-module S.
Moreover, E™ provides a (contravariant) duality between the category of
graded right R-modules of finite length and that of graded left R-modules
of finite length. To prove this, use the arguments given in [Bjl, p. 76].

THeoREM 3.10. Let R be an graded injectively smooth, Noetherian PI
ring and set injdim(R) = n. Then
(i) R is Auslander—Gorenstein graded Macaulay ring.
(ii) K dim(R) = injdim(R).
(iii) Given any finitely generated, graded right or left R-module M,
then:
(a) M)+ Kdim(M) = a.
(b) K dim(E/™(M)) = K dim(M).
(c) Forallm < n, Kdim(E™(M)) < min{K dim(M), n — m}.
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Remark 3.11. Parts (ii) and (iii) of the theorem follow easily from
part (i). To see this, take a finitely generated, graded R-module M
with E"(M) # 0 (the existence of such a module is proved within the
proof of Lemma 3.12, below). Thus, the Gorenstein property implies that
JCE™{M)) = n and the graded Macaulay property implies that K dim(R)
=n + K dim(M) > n. On the other hand, for any graded, simple R-mod-
ule §, the graded Macaulay property implies that K dim(R) = j{S) <
injdim(R). Thus, part (i1) holds and part (iija) becomes the definition of
graded Macaulay. Part (iiib) now follows from [BE, Theorem 3.6] while
part (iiic) follows from part (iiia) combined with the definition of Auslan-
der-Gorenstein. We have included part (jii) as part of the theorem since it
is by proving this assertion that we show that R is Auslander-Gorenstein.

Proof. Suppose that (iii) holds. Then part (iiia), with M = R, shows
that (ii) holds. For any finitely generated, graded right R-module M and
any graded submodule N of E?(M), part (iiic) implies that K dim(N) <
n — p and hence part (iiia) implies that E4(N) = 0 for ¢ < p. By defini-
tion, this means that R is graded Auslander—Gorenstein which, by [Ek,
Theorem 0.1], implies that R is Auslander—Gorenstein. Part (iiia) implies
that R is graded Macaulay.

Thus, only part (iii) needs proof. Suppose first that M is a graded
Artinian module. Then, (iii) is a restatement of Theorem 3.8 and Corollary
3.7. By induction, suppose that (iii) holds for all modules M’ with
K dim(M') < a, for some ordinal & > 1. Let M be a graded right R-mod-
ule with K dim(M) = «. Given a short exact sequence 0 - M, - M —
M, — 0, then one has a long exact sequence of graded left R-modules:

E/"Y (M) - E/(M,) - E/{(M) - E/(M\) - E'*'(M,) (3.10.1)

Suppose that part (iii) holds for M, and M,. Then, K dim(M,) < « for
each k£ and K dim(M,) = « for (at least) one w. Thus, if j < n — «, then
part (iiia) implies that E/(M,) = E/(M,) = 0 and hence that E/(M) = 0.
If j=n—a, then E/7' (M) = 0 while Kdim(E’*"(M,)) <a. If w is
chosen so K dim(M,)) = a, then part (iiib) implies that K dim(E’(M,)) =
« and hence that K dim( E/(M)) = «. Thus j = j(M). Finally, if j > n — a,
then parts (iiib, iiic) imply that

K dim(E/(M)) < mkaX{K dim( E/( M, ))}

< min<mkax[K dim(M, )}, n —f}

IA

min{ K dim(M),n — j}.
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Thus, it suffices to prove part (iii) for M, and M,. By Lemma 2.1 and
induction, it therefore suffices to prove the theorem in the case when
M = R/P is isomorphic to a graded prime factor ring of R, again with
K dim(M) = a > 1. Pick a regular homogeneous element z € R/P and
consider the short exact sequence

Z.
0O—mM — M —M/:M-— 0,

where z. denotes left multiplication by z. For each j, Lemma 3.4 implies
that this induces the exact sequence of graded modules

E/(M/zM) — EN(M) —— E/(M) — E''(M/zM), (3.10.2)

where .z denotes right multiplication by z. Note that, as z is regular,
M/zM = R/(zR + P) is a torsion right R/P-module and so
K dim(M/zM) <a — 1.

Now consider (3.10.2) for various values of j and z. Suppose, first, that
j<n—a Then E/(M/zM) =0 = E/*'(M/zM), by induction. Thus, by
(3.10.2), E/(M)z = E/(M), for all regular, homogeneous elements z €
&g ,p(0). By Theorem 3.5,_E’(M) is a finitely generated, graded right
R/P-module and so, if E/(M) # 0, then E’/(M) has a graded simple
factor module S = E’(M)/L. Since R/P is not Artinian, r-anny ,5(S) # 0
and Sz =0 for some regular, homogeneous element z € R-anng ,p(S).
Thus, E/(M)z # E/(M), a contradiction. Therefore, E‘(M) = (.

Next, suppose that n >j > n — a. Then (as left R-modules),
K dim(E/(M/zM)) < min{n — j,a@ — 1} while K dim(E/*Y(M/zM)) <
min{n —j — 1, @ — 1}. Suppose that K dim(E/(M)) =y > min{n — j, @)
> 0. Recall that, as E = E/(M) is a Noétherian bimodule over the FBN
ring R, [GW1, Theorem 13.15} implies that the Krull dimensions of E as a
left or right R-module coincide. Moreover, by [NV, Proposition A.I1.5.8],
the graded and ungraded Krull dimensions of E also coincide. Thus, the
definition of graded Krull dimension implies that there exists a graded
right R/P-submodule F C E such that KX dim(E/F) =y — 1. Thus, as R
is FBN, [ = r-anng ,,(E/F) # 0 and we may choose z € I. Thus,

I-K dim( E /Ez) > I-K dim( E/EI) = r-K dim( E/El) > y — 1.

However, from (3.10.2), K dim(E/Ez) < K dim(E'* (M /zM)) <y — 2.
This contradiction implies that K dim( E/(M)) < min{n — j, «}, and (iic)
holds for j > n — a.

Finally, suppose that j = n — «. In this case, as E/(M) is a finitely
generated right R/P-module, certainly K dim(E/(M)) < a. If
K dim(E/(M)) < a, then K dim(E*(M)) < a holds for all k. But now
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the inductive hypothesis (applied to left modules) implies that
K dim(E"*(M)) < « for all [ and k. The spectral sequence (3.8.1) there-
fore implies that K dim(M) < a, a contradiction. ||

We end this section with some easy consequences of the results, or more
precisely the techniques, of this section. Suppose that R is a Noetherian
PI ring with injdim(R) = n < «. To have any hope of proving that R is
graded injectively smooth, one must first prove that R has at least one
simple module M with EXTZ(M, R) # 0. If R is flat over some central
subring, then this follows from [Br, Theorem D). However, as we show
next, Theorem 3.5 can be used to give a second proof of this result,
without the assumption on the central subring.

Lemma 3.12. Let R = &R, by an FBN, graded ring with r-injdim(R) =
n < ». Assume that either R is Pl or that R, is Artinian. Then there exists a
simple, graded right R-module S with EXT"(S, R) # 0.

Proof. By [Rw, Lemma 9.11 and Theorem 9.7] there exists a cyclic
module M = R/L such that EXT"(R/L, R) # 0. Now, regard R as a
filtered ring by using the natural filtration I'(R) = ®ij==(] R, and take the
induced filtration on M. Thus, g(M) = g{R)/gr(L) = R/gr(L). Then,
[Bj2, Corollary 3.12] implies that EXT"(R/gr(L), R) # 0. Thus, we may
choose a graded, finitely generated module M, with K dim(M) as small as
possible, such that EXT"(M, R) # 0.

As in the proof of Theorem 3.10, the exact sequence (3.10.1) and
induction allows one to replace M by R/P, for some graded prime ideal
P satisfying K dim(R/P) < K dim(M). If P is maximal, then the lemma
follows for § a simple summand of R/P. So, suppose that P is not
maximal and pick a homogeneous, regular element z € R/P. Then, by the
inductive hypothesis,

EXT"(R/(P + zR), R) = EXT"*!(R/(P + zR), R) = 0.
Thus, from the exact sequence (3.10.2),
EXT"(R/P,R) = EXT*(R/P,R)z.

We now consider the two cases separately. If R is PI, then
EXT"(R/P, R) is a Noetherian right R /P-module, by Theorem 3.5. As in
the argument after (3.10.2), this implies that EXT"(R/P, R) = 0, giving
the required contradiction.

Suppose that R, is Artinian. Since EXT"(R/P, R) is a Noetherian left
R-module, there exists an integer r,, such that EXT"(R /P, R), = 0, for all
r < ry. Choose r, maximal with respect to this property. Since R/P is not
Artinian, R*¢ P and so we may pick z € R*. Now, EXT"(R/P,R) is a
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graded R-bimodule and so

EXT"(R/P,R) = EXT"(R/P,R)z C EXT"(R/P,R) * R*

& EXT"(R/P,.R),.

r=ro+1

N

Thus, EXT"(R/P, R), = 0, contradicting the choice of r,. |

The graded Jacobson radical, written gr-J(R), of a graded ring R is
defined to be the intersection of the right graded-primitive ideals of R.
(Note that the right graded-primitive ideals are just the right primitive
ideals containing R*.) A graded ring R is called graded-local, respectively
graded-semilocal, if R/gr-J(R) is simple Artinian, respectively semisimple
Artinian.

CoroLLARY 3.13.  Suppose that R is a graded-local, Noetherian PI ring
and assume that injdim(R) < «. Then R is graded injectively smooth.
Consequently, R is Auslander—Gorenstein and graded Macaulay.

Proof. Combine Theorem 3.10 with Lemma 3.12. |

CoroLLARY 3.14. Let R be a graded injectively smooth, Noetherian Pl
ring. Suppose that x is a homogeneous element with x € gr-J(R). Let M be a
finitely generated, graded R-bimodule, such that xm # 0 for any non-zero
m € M. Then Kdim(M/xM) = K dim(M) — 1. In particular, for every
factor ring R of R and every regular homogeneous element x € gr-J( R), one
has K dim(R /xR) = K dim(R) — 1.

Proof. By [GW1, Lemma 13.6], K dim(M /xM) < K dim(M) — 1. Let
a = j(M) and injdim(R) = n. As R is graded Macaulay, {(M/xM) = n —
K dim(M/xM) > a + 1. Thus, by Lemma 3.4, the short exact sequence
0->M->M-—-> M/xM — 0 induces an exact sequence

0 — EX(M) — ES(M) —> E<*\(M/xM).

By Theorem 3.5, E“(M) is a finitely generated, graded right R-module. As
x € gr-J(R), this implies that E**'(M/xM) = E*(M)/E*(M)x # 0.
Thus, j(M/xM)=a + 1 and, by Theorem 3.10, K dim(M/xM) =
Kdim(M) - 1. 1|

If R is a semi-local, Noetherian PI ring, then the conclusion of Corol-
lary 3.14 still holds, but our proof of this fact is rather indirect.

Finally, we note that Theorem 3.10 provides strong information about
the injective resolution of R. Given a prime ideal P of a ring R, take a
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uniform right ideal M/P in R/P and write I, for the injective hull of
(M/P)y.

CororLaryY 3.15. Suppose that R is an (ungraded) injectively smooth,
Noetherian PI ring. Let 0 — R — I be the minimal injective resolution of
Ry. Then, for each s, I' = ®{(1,)}, where the sum is taken over all prime
ideals P such that K dim(R/P) + s = K dim(R). This sum has only finitely
many copies of 1., for each P.

Proof. By [GW, Proposition 8.13], each I* is a direct sum of I, for
some P. By [Br, Lemma 2.3], [, is a summand of I° if and only if
Ext*(R/Pg, R) is not torsion as a right R/P-module. But, by Theorem 3.5,
Ext’(R/Pg, R) is a Noetherian right R /P-module. Thus, Ext*(R/Pg, R) is
not torsion as a right R/P-module if and only if r-K dim(Ext*(R/P, R)) =
I-K dim(Ext*(R /P, R)) = K dim(R /P). By parts (iiib) and (iiic) of Theo-
rem 3.10 this happens if and only if s =j(R/P) = K dim(R) —
K dim(R/P).

Let C = Coker(I*~! — [°) and P be a prime ideal of R with s =
J(R/P). Then the last paragraph implies that Hom(R/P,I°”') = 0 and
hence that Ext*(R/P, R) = Hom (R /P, C). Suppose that I° contains an
infinite direct sum of copies of I,. Then /" is the injective hull of C and
so C contains an infinite direct sum, say X, of copies of a uniform right
ideal of R/P. But this would imply that X = Homg »(R/P, X) is
a non-Noetherian right R/P-module. Since Homy ,(R/P, X) C
Hom g(R/P,C) = Ext*(R/P, R), this contradicts Theorem 3.5. |}

4. OTHER DEerFINITIONS OF MAacauLay RiNGs

Recall that, by [Ek, Theorem 0.1], a graded Noetherian ring is graded
Auslander—Gorenstein if and only if R is Auslander—Gorenstein. More-
over, by [Bj2, Theorem 4.1}, if a filtered ring S has a Noetherian,
Auslander-Gorenstein associated graded ring then § is also
Auslander-Gorenstein. These sorts of results do not hold for the Macaulay
(or Cohen-Macaulay) condition, largely because there is in general no
connection between the Krull or Gelfand-Kirillov dimensions of a filtered
module M and its associated graded module gr{M). In this short section
we discuss the various types of Macaulay conditions that can be imposed
on a ring and the relationship between them.

If a graded, Noetherian PI ring R is Auslander—Gorenstein and graded
Macaulay, then R need not be (ungraded) Macaulay; the ring k[[x]][ y]
mentioned in Section 2 being the obvious counterexample. However, as
the next result shows, if one assume some finiteness assumptions, then R
will be Macaulay. Let C be an arbitrary commutative ring and S a
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C-algebra that is also a filtered ring; § = U, I;(S). Then S is called a
filtered C-algebra if the image of C in S is contained in I')(S). Similar
comments apply to graded rings. The ring S is called C-affine if S is
finitely generated as a C-algebra. The ring C is called Jacobson if
J(C/I) = 0, for every prime ideal [ of C.

ProrosiTion 4.1.  Let C be any commutative Jacobson ring and suppose
that R = U, o I'(R) is a filtered C-algebra that satisfies a PI. Assume that
the associated graded ring g{R) = &I (R)/I;.(R) is a PI Noetherian,
C-affine algebra that is Auslander-Gorenstein and graded Macaulay. Then R
is Auslander-Gorenstein and Macaulay. If gr(R) is Auslander-regular, then
so is R.

Proof. The fact that gr{R) is an affine C-algebra forces R to be an
affine C-algebra. Thus, if S is any simple R-module, then [MR, Theorem
13.10.4) implies that S is a C-module of finite length. Therefore, gr(S) is
also of finite length both as a C-module and as a gr( R)-module. Thus, by
[Bj2, Theorem 4.3] and Remark 3.11, j(S) = j(gr(S)) = K dim(gr(R)) =
injdim(gr( R)). By [Bj2, Corollary 3.12}, injdim{R) < injdim{gr( R)) and so
J(5) = injdim(R). In particular, as an ungraded ring, R is injectively
smooth and so Theorem 3.10 implies that R is Auslander—Gorenstein and
Macaulay. The final assertion follows from the fact that gldim(R) <
gldim(gr( R)) [B;j2, Corollary 3.12]. |

CoroLrLary 4.2.  Let C be any commutative, Jacobson ring and suppose
that R is a Noetherian, C-affine, graded C-algebra that satisfies a PI. If R is
graded injectively smooth then R is injectively smooth (as an ungraded ring)
and is Auslander—Gorenstein and Macaulay. |

This corollary has a curious consequence. Keep the assumptions of the
corollary and assume that gldim(R) < «. Then, the fact that R is graded
injectively smooth is equivalent to demanding that hd(S) = gidim(R) for
every graded simple module. Yet the conclusion of the corollary implies
that hd(§) = gldim(R) for every simple module. We do not know of a
direct proof of this observation.

Proposition 4.1 fails badly if R is not assumed to be PI; for example, use
the existence of non-holonomic modules [St2] over the Weyl algebra A,.
The usual way around this problem is to use the Gelfand—Kirillov dimen-
sion in place of the Krull dimension. More generally, if R is an Auslan-
der-Gorenstein graded ring and & is a dimension function in the sense of
[MR, Section 6.8.4], then R will be called (graded) 8-Macaulay if (M) +
8(M) = 8(R), for all finitely generated (graded) R-modules M. Thus, the
Macaulay rings of Section 3 are K dim-Macaulay while the connected
graded, Cohen—Macaulay rings of the Introduction are graded GK dim-
Macaulay rings. Let R be an Auslander-Gorenstein, Noetherian ring.

481:168/3-22



1008 STAFFORD AND ZHANG

Then the function §,, defined by 8,(M) = injdim(R) —~ j(M) for a finitely
generated module M, is always an exact, partitive dimension function (see
[Lvl, Proposition 4.5]). Thus, R is automatically §,-Macaulay. At first
glance, this might suggest that demanding that an Auslander-
Gorenstein ring be K dim-Macaulay is a faitly weak assumption. However,
this is far from the case; indeed, almost all of the results of Section 5 will
fail for Auslander-regular, Noetherian PI rings.

On the other hand, one would prefer to consider GK dim-Macaulay
rings rather than K dim-Macaulay rings, simply because Gelfand-Kirillov
dimension is usually more pleasant than Krull dimension. (Throughout
this discussion, whenever the GK dimension of a module over a ring R is
mentioned, we will assume that R is a k-algebra over a fixed field k£ and
the GK dimension is defined over that field.) If one restricts one’s
attention to k-afhine Pl algebras, then the distinction disappears:

LEMMA 4.3. Let R be a k-affine, Noetherian PI algebra. Then:
(i) GK dim(M) = Kdim(M), for any finitely generated R-module M.

(i1) Assume that R is also an Auslander—Gorenstein graded ring. Then
the terms ‘“‘graded Macaulay,” “Macaulay,” “graded GK dim-Macaulay”
and “GK dim-Macaulay ™ are all equivalent.

Proof. (i) Since R/ann(M) embeds into a finite direct sum of copies
of M, we may replace M by R/ann(M). Now [KL, Corollary 10.16]
implies that GK dim(R /ann(M)) = K dim(R /ann(M)).

(ii) This follows from part (i) and Proposition 4.1. |

In Section 6, we will show that K dim(M) = Gk dim(M) also holds
every finitely generated, graded module M over a connected graded, FBN
ring. One advantage of working with the GK dimension is that it works
well when passing from associated graded rings.

Lemma 44. Let R = U, I'(R) be a filtered k-algebra such that I'(R)
is a finite dimensional k-vector space. Assume that the associated graded
ring gi{R) is a Noetherian, Auslander—Gorenstein, graded GK dim-
Macaulay ring. Then R is a Noetherian, Auslander—Gorenstein, GK dim-
Macaulay ring.

Proof. Since gr(R) is Noetherian, gr( R)* is a finitely generated gr( R)-
module. Since I',(R) is finite dimensional, this implies that every I'(R) is
finite dimensional and that gr(R) is k-affine. Thus, R is Auslander-
Gorenstein and Noetherian by [Bj2, Theorem 4.1]. Moreover, for any
finitely generated R-module M, [MR, Proposition 8.6.5] implies that
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GK dim(M) = GK dim(gr(M)) while [Bj2, Theorem 4.3] implies that
j(M) = jgr(M)). Thus, M)+ GK dim(M) = GK dim(gr(R)) =
GK dim(R), as required. |}

CoroLiary 4.5. Let R = U, ,TAR) be a filtered k-algebra, such that
T'(R) = k. If gi(R) is a Noetherian, PI ring of finite injective dimension,
then R is an Auslander—Gorenstein, GK dim-Macaulay ring.

Proof. By the hypothesis on I',(R), gr(R) is a connected graded ring.
Thus, by Corollary 3.13 and Lemma 4.3, gr(R) is Auslander-Gorenstein
and graded GK dim-Macaulay. Now Lemma 4.4 implies that R is an
Auslander-Gorenstein, GK dim-Macaulay ring. |

If one works with filtrations that are not finite dimensional, then
GK dim(M) need not equal GK dim(gr{(M)) (see [MS]) and so the ana-
logue of Corollary 4.5 will presumably fail.

5. StrucTuRE OF Pl AusLANDER REGULAR RINGS

The results of Sections 3 and 4 show that a large number of Noetherian
PI rings are Auslander-regular and Macaulay. The aim of this section is to
show that these rings have very pleasant properties; in particular, we prove
Theorem 1.4 of the Introduction. For simplicity, we will only consider
ungraded rings in this section, unless we explicitly state otherwise. How-
ever, by Section 4, these results will apply to many graded rings—see
Remark 5.5.

An injectively smooth, Noetherian ring of finite global dimension will be
called smooth; equivalently, a Noetherian ring R is smooth if hd(M) =
gldim{ R) < =, for all simple R-modules M. Let § be a Noetherian P]
ring. Then we will let A; denote the set of prime ideals Q of S such that
K dim(S/Q) = K dim(S) —j. We will use the standard terminology of
localization theory, as defined in [GW1] or [Ja]. Note that if P and Q are
linked prime ideals of S, then P € A; = Q € A}, by [GW1, Corollary 12.6
and Theorem 13.13]. If 2 is a clique of prime ideals, set #({2) =
N{E(P): P € 2}. Let & be an exact dimension function on a ring R.
Then the nilradical N(R) is called right 8-wii if 8(M ® N(R)) < 8(R),
whenever M is a finitely generated, right R-module with (M) < 8(R).

Let R be an Auslander-regular Macaulay ring and M a finitely gener-
ated R-module. Then we will again write E‘(M) or E(M) for Ext%:.(M, R)
and E"(M) will usually be denoted by M*. Note that, by the Macaulay
and Auslander properties,

K dim(E‘(M)) = K dim(R) - j(E{(M)) < Kdim(R) —i, forall i.
((5.1))
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PropPOSITION 5.2. Let S be an Auslander—Gorenstein, Macaulay, FBN
ring. Then

(i) A, is precisely the set of minimal prime ideals of S. Moreover, S is
Krull-homogeneous; that is K dim(1) = K dim(S) for every non-zero (right
or left) ideal I of S. Also, S has a quasi-Frobenius, classical quotient ring.

(ii) If, in addition, S is Auslander-regular, then S is semiprime.

Proof. If I is a non-zero (right) ideal of §, then Hom (7, §) # 0 and
hence K dim(/) = K dim(S) — j(I) = K dim(§). Thus § is Krull-homoge-
neous. By [MR, Proposition 6.4.16] N(S) is right Krull-wii and so, by [MR,
Theorem 6.8.15], § has an Artinian quotient ring Q(S). Suppose that P is
a prime ideal of S such that K dim(§/P) < K dim(S). Then [MR, Propo-
sition 6.8.14(ii)) and Theorem 6.8.15] imply that P contains a regular
element of R. Thus, P cannot be minimal. Consequently, A, is the set of
minimal prime ideals of §.

Fix / = 1 and let P be a minimal prime of §. Then, by [GW], Theorem
8.9] and (5.1), K dim(S/l-ann(ELS/P))) = K dim(E{S/P)) < n =
K dim(S). Thus, by [MR, Proposition 6.8.14], xE'(S/P) = 0, for some
x € § with Kdim(S§/Sx) < n. But, by [MR, Theorem 6.8.15], x € #(0).
Therefore, by Lemma 3.3,

Ext}(Q(S)/PO(S),Q(S5))

= Q(S) ® Exty(S/P,5) =0, foralli> 1.

Thus, Q(S) is quasi-Frobenius. Finally, if gldim(R) < =, then
gldim(Q(R)) < o« and so § is semi-prime. [}

Suppose that S is any Auslander-Gorenstein, 5-Macaulay, Noetherian
ring, where 8 is an exact dimension function. If N(S) is 8-wii, then the
proof of the proposition will still work and so the conclusions of the
proposition will hold for S. Of course, by the comments in Section 4, any
Auslander—Gorenstein, Noetherian ring is §,-Macaulay and 8, is exact, by
[Lv1, Proposition 4.5). Unfortunately, all this shows is that §, is rarely wii.
The reason is that there exist many Artinian, Ausiander-regular rings that

are not semi-simple; for example, take § = (:‘] ).

Suppose that § is a semi-prime, Noetherian ring, with semi-simple
quotient ring Q(S). If [ is a finitely generated S-submodule of Q(S), then
we identify /* with its natural image /* C Hom ,(/Q(S), Q(§) € O(S).
Thus, I € I** and [* = I***,
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Lemma 5.3, Let S be a Auslander-regular, Macaulay Noetherian PI ring
that is not Artinian. Then

(i) If 12 is a cliqgue of prime ideals in A, then ) is finite and the
localization S, is an hereditary ring and a direct sum of prime rings.

(ii) If Iis a right ideal of S then 1* = S < j{(S/1)>2 < 1,=8§,, for
all cliques (2 of prime ideals in A,.

Proof. (i) By Proposition 5.2(ii), § is semiprime. Pick Q € A, and let
{1 be the clique of Q. Then, by Proposition 5.2 and the remarks before
that result, Q is a height one prime ideal of S and {2 is entirely contained
in A,. By [Rw, Lemma 1.7.21] there exists a central, regular element
z € Q. By [GWI1, Lemma 11.7], z € P, for every P € {). But, as z is
regular, K dim(S§/z5) < K dim(§) — 1 and hence each P € 2 must be
minimal over zS. Thus, Q is finite and hence localizable, by [MR, (4.3.14)
and Theorem 4.3.16]. Form the localization §,, and note that the maximal
ideals of S, are simply the {P,,: P € (2}. Hence, K dim(S,,) = 1. If i > 2,
then K dim(EL(S/Q)) < K dim(S) — 2, by (5.1). Hence LE'(S/Q) =0
for some ideal L of § with Kdim(§/L) < K dim(S) —~ 2. In particular,
SoL = S, By Lemma 3.3 this implies that

Extl (S0/Qq. Sa) = So 8 Exts(S/0,5) =0, foralli > 2.

Thus, every simple S,-module has homological dimension < 1 and so
gldim(S,,) < 1. By [MR, Theorem 5.4.6], this implies that S, is a direct
sum of prime rings and Artinian rings. However, if S, has an Artinian
summand, then it would have a maximal prime ideal that is also min-
imal. In other words, some P € A, would be minimal, contradicting
Proposition 5.2.

(ii) Set a = K dim(S). Then,

I* =8 = Ext)(S/I,5) = ExtY(5/1,8) =0 = j(5/1) > 2
o Kdim(S/I) <a— 2.

If Kdim(S/I) <a — 2, then I N&(P)+ & for each P € A, and so
I, = S, for each clique 2 C A,. Conversely, if K dim(S/I) = a — 1, then
there exists a right ideal J 2 I such that S/J is (@ — 1)-critical. But, if
L = ann(S /J), then [St1, Proposition 3.9] implies that L is a prime ideal
with K dim(§/L) = @ — 1. In particular, J N (L) = &. Thus, if 2 is the
clique of L, then I, CJ, + S, |
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THEOREM 5.4. Let R be a Auslander-regular, Macaulay, Noetherian Pl
ring. Then

(i) R is a direct sum of prime rings, each of which is Auslander-regular
and Macaulay.

(i) Assume that R is prime, but not Artinian. Then, for any clique of
prime ideals {) C A, R,, is an hereditary Noetherian prime ring. Moreover,
R = N Ry,, where the intersection is taken over all cliques {2 C A,.

(iii) If R is prime, then R is equal to its trace ring TR. Moreover, the
centre Z(R) of R is a Krull domain and R is integral over Z(R).

REMARK 5.5. By Theorem 3.10, this theorem applies to any smooth,
Noetherian PI ring R. In particular, it applies to any local, Noetherian Pl
ring of finite global dimension. By the results of Section 4, it also applies
to many graded smooth rings. For example, by Corollary 45 it applies to
any connected graded, Noetherian PI ring of finite global dimension.

Proof. (i) Suppose that R=R, & --- & R, is a direct sum of rings
and that M is any R,-module. Then, by taking a projective resolution of
M as an R,-module, it follows that Ext,(M, R) = Ext}(M, R)). Thus,
each R, is Auslander-regular and Macaulay. Therefore, it suffices to prove
that R is a direct sum of prime rings. If R is Artinian, then R is
semisimple, by Proposition 5.2(ii), and so we may assume that R is not
Artinian.

Let the minimal prime ideals of R be {P,,..., P} and set L =
P,n - N P. Given that P =P, is arbitrary and R is semi-prime,
L NP =0 and so it suffices to prove that R =P + L. Let {2 be an
arbitrary clique in A,. Thus, by Lemma 5.3, 2 is finite and localizable. By
[MR, Proposition 2.1.16(vii)], the minimal primes of R, are precisely the
(P),, for which (P), # R,,. Thus, L, is just the intersection of the
minimal prime ideals of R, other than P,. By Lemma 5.3(i), this implies
that (P + L), = P, + L, = R,. By Lemma 5.3(ii), this implies that R =
(P+ L) = P* @& L* (as left R-modules). Thinking of P* as Hom(P, R)
gives PXP)L = PYPL)=10, and so P*(P) cl-ann(L) = P. Hence,
LP*(P) =0 and LP* = 0. Thus, the identification R = P* @ L*, as left
R-modules, implies that P* ¢ r-ann(L) = P and similarly L* < L. Hence,
R =P & L, as required.

(ii) Lemma 5.3(i) implies that each R, is an hereditary ring. As R is
prime, R € R, € Q(R). Set R = (N R,,, where the intersection is over all
cliques 2 C A, . If t € R then, for all cliques 2 C A,, there exists ¢ €
#(£2) such that t¢c € R. Therefore, if I ={r & R:tr R}, the I, = R,,
for each 2 < A,. Thus, Lemma 5.3(ii) implies that t € I* = R.
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(iii) By part (it), Z(R) = N Z(R,,) where, as usual, the intersection is
over all cliques 2 C A,. Also, Z(R) € Z(R,,) < Z(Q(R)) = Q(Z(R)). By
[MR, Theorem 13.9.16] each Z(R,,) is a Dedekind domain, and hence a
maximal order in Q(Z(R)). Thus, Z(R) is also a maximal order in
O(Z(R)). The proof of [MR, Proposition 5.1.10(i)] implies that Z(R) is a
Krull domain. By {MR, Proposition 13.9.6] this implies that Z(R) = T, the
ring of traces, and so [MR, Proposition 13.9.5] implies that R is integral
over Z(R). 1

In [BwH] the authors define a ring R to be homologically homogeneous
if R is a Noetherian ring of finite homological dimension such that R is
integral over Z(R) and hd(R/M,) = hd(R/M,) whenever M, and M, are
maximal ideals of R with M, N Z(R) = M, N Z(R). Since we are inter-
ested in rings that need not integral over their centres, we will define a
ring R to be homologically homogeneous, or hom-hom, if R is a Noethe-
rian ring of finite global dimension such that hd(R/M,) = hd(R/M,)
whenever M, and M, are maximal ideals of R lying in the same clique.
When R is integral over its centre, this is formally weaker than the
definition in [BwH], but this is likely to illusory; the two definitions do
coincide for PI rings integral over their centres (see Remark 5.7). Hom-hom
rings need not be smooth—just consider the commutative rings k[x] &
kly, z] and k[x, y](x_ yn(x. yy—2lthough, as in the commutative case, they
are locally smooth.

THueOREM 5.6. Let R be a hom-hom, PI ring. Then

() R is a direct sum of prime rings.

(ii) R is integral over its centre and is Auslander-regular. Moreover, if
R is prime, then Z(R) is a Krull domain and R equals its trace ring.

(iii) Let 02 be a clique of maximal ideals of R. Then {2 is finite and
localizable. The localization R, is smooth and hence is both Auslander-regu-
lar and Macaulay.

(iv) Suppose that R contains a field k. If either char(k) =0 or R is
localization of a finitely generated k-algebra, then R is a finite module over
its centre.

Proof. (i) The idea of the proof is to take a clique £ of maximal ideals
of R and pass to the localization R,,. This will be smooth, after which the
proposition follows easily from Theorem 5.4. The catch with this argument
is that it is an open question as to whether infinite cliques are necessarily
localizable. To get around this problem we change rings.

Let § = R((x)) = X7_{r,x’ : r; € R} denote the ring of Laurent power
series in a commuting indeterminate x. By [GS], S is a Noetherian, PI ring
with gldim(S§) = gldim(R). Fix a finitely generated R-module M. Write
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M((x)) = M ®; § and identify M with the natural R-submodule of M((x)).
Note that M is an R-direct summand of M((x)) and that § is a flat
R-module. Hence, if wd g( X) stands for the weak homological dimension
of an R-module X, then

hd (M) = wdx(M) < wdM((x)) < wdgM((x)) < wdxM

(use, for example, [MR, Proposition 7.2.2]). Thus, hd (M) = hd ;M((x)).
Next, if £ is a clique of maximal ideals of R, then [St4] implies that
2((x)) = {Px)): P € O} is a clique of ideals of S. By {Wa, Theorem 8],
2((x)) is a classically localizable clique. Here, a clique I" of prime
ideals of a ring A is classically localizable if (among other things) (i)
#(') = N{#&(P): P TI} is an Ore set and (ii) the maximal ideals of
Ap = Ag, are precisely the {P;: P € I'}. For notational reasons, we
write the localization M((x)),,, as M((x)),. If M is a simple right
R-module then r-ann(M) € 2 for some clique of maximal ideals 2 of R
and so M((x)), # 0. Moreover, [GS, Lemma 1] implies that M((x)) is a
simple S-module. Thus, M((x)), = M((x)), as S-modules. Therefore, by
[MR, Proposition 7.4.2]) and the last displayed equation,

hd (M((x))0) = hdy(M((x))) = hdg(M).

We now return to the proof. Let {2 be a clique of maximal ideals of R
and form S, = R((x))g,, as above. Since hdz(R/P,) = hdz(R/P,) for
any P, € {2, the comments of the last paragraph imply that hdS“(M,) =
hdg (M,) for any simple S,,-modules M. In other words, S, is a smooth,
Noetherian PI ring. By Theorems 3.10 and 5.4, §, is a direct sum of prime
rings. Of course, the direct sum of the S,,, as {2 ranges over the cliques of
maximal ideals of R, is also a faithfully flat extension of R.

Suppose that the minimal primes of R are {P,,..., P} and let L =
P, N -+ N P. Once again, in order to prove that R is a direct sum of
prime rings, it suffices to show that R = P + L and P N L = 0. Since the
minimal prime ideals of § are just the P((x)), it foillows from [MR,
Proposition 2.1.16(vii)] that the minimal primes of S, are just those
PA(x)),, for which P{(x)),, # S,,. Thus, the fact that S, is a direct sum of
prime rings implies that (P + LX(x)),, = S, and (P N L)(x)),, = 0. Since
®, S, is a faithfully flat extension of R, this implies that P + L = R and
PN L =0 Thus, R = ® R/RPdi is indeed a direct sum of prime rings.

(iii) Let {P} be the minimal prime ideals of R and note that, by part
(i), each P, is generated by a central idempotent of R. Thus, if £ is a

¢

clique of maximal ideals of R, then [GW1, Lemma 11.7] implies that there
exists / such that P, C 0, forall Q € 2. Write P = P.. Forany Q,, 0, € {2,

one has 0,0, 2 P* = P. Thus, 2 = {Q/P:Q € } is a clique of prime
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ideals in R = R/P and R, = R It is also routine to see that R is a
hom-hom ring. Thus, we may replace R by R and assume that R is prime.

In this case, if {2 is any clique of R, then § C §,, and so the maximal
ideals of §,, form a single clique. By part (i) of the proof, S, is a smooth,
Noetherian PI ring and so, by Theorems 3.10 and 5.4, S, is integral over
its centre. By the proof of [BW, Proposition 3], this implies that every
clique of prime ideals in S, is finite. In particular, £2 is finite. Thus the
localization R, exists by [MR, Theorem 4.3.16]). By the argument used in
the first part of this proof, R, is smooth and hence Auslander-regular,
Macaulay, and integral over its centre.

(ii) We may again assume that R is prime. Thus, if £ is a clique of
maximal ideals of R, then R, € Q(R), the simple Artinian quotient ring
of R. Moreover, R = N\ ,R,,, where the intersection runs over all cliques
of maximal ideals of R. By Theorems 5.4, each Z(R,) is 2 maximal order.
Thus, just as in the proof of Theorem 5.4(iii), Z(R) = N Z(R,,) is a Krull
domain and R is integral over Z(R).

It remains to prove that R is Auslander-regular. Let M be a finitely
generated right R-module and N C Ext4(M, R), for some j. If i < j, and
(2 is a cliqgue of maximal ideals of R, then Lemma 3.3 implies that
R, ®; Exti(N, R) = Exty (N, R,,). However,

Np S Rp @ Exti(M,R) = Ext (Mg, Ry).

Since R, is Auslander-regular, this implies that R, & Ext%(N, R) = 0.
As (2 is arbitrary, this implies that Ext,,(N, R) = 0 and hence that R is
Auslander-regular.

(iv) Once again, we may assume that R is a prime ring, integral over
its centre and equal to its trace ring TR. Suppose, first, that @ € Z(R).
Then it is apparently folk-lore that our hypotheses force R to be a finite
Z(R)-module, and we thank L. W. Small for bringing this result to our
attention. The argument is as follows. Consider the reduced trace as a
map from R to the ring of traces, T € Z(R). Since the PI degree of R is
invertible in Z(R), this map is surjective and so R = Z(R)@® N, as
Z(R)-modules. In particular, IR 0 Z(R) = I, for any ideal [ of Z(R).
Since R is Noetherian, this implies that Z(R) is Noetherian. Finally, [Rw,
Corollary 5.1.4] implies that R is a finitely generated Z(R)-module.
Alternatively, suppose that R = S is a localization of a finitely gener-
ated k-algebra S. Changing notation slightly, write 7(.4) for the trace ring
of a PI ring A. Then [BS, Lemma 2] implies that R = T(R) = T(S),. and
[MR, Proposition 13.9.11] implies that 7(S) is an affine k-algebra and a
finitely generated Z(T(S))-module. Thus, we may replace S by T(S). By
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[BS, Lemma 1], we may assume that & consists of central elements. Thus,
R = S, is a finitely generated Z(S).-module. |

Remarks 5.7. (i) If R is a local Noetherian PI ring of finite global
dimension, then R need not be a finite module over its centre [JJ].

(i1) Let R be a prime, Noetherian PI ring that is hom-hom. Then, R
is integral over its centre, by Theorem 5.6. Let M, and M, be two
maximal ideals of R. Then, by [BW, Theorem Al], M, and M, are in the
same clique if and only if M, N Z(R) = M, N Z(R). Thus, for Noetherian
P1 rings, the definition of hom-hom in this paper coincides with that in
[BwH].

The structure of hom-hom rings integral over their centres has been
studied in [BwH] and a number of results reminiscent of the commutative
theory are proved there. Of course, by the above remark, these results
hold for all hom-hom rings.

CoroLLARY 5.8.  Let R be a Noetherian, PI hom-hom ring. Then

(i) for any prime ideal P of R one has (R/P) = height(P). If P is
maximal, then j(R/P) = hd(R/P) = height(P).

(it) If 02 is any clique of prime ideals of R, then {2 is finite and the
localization R, is Auslander-regular and Macaulay.

(iii) R (and Z(R)) satisfy the saturated chain condition; that is, given
prime ideals P C Q of R, then the length of any two chains of prime ideals
from P to Q are equal.

Proof. (i) Combine Remark 5.7 with [BwH, Theorem 3.6].

(ii) As in the proof of Theorem 5.6, we may assume that R is prime.
Given any P € (2, then [BW, Theorem A] implies that 2 is precisely the
set of prime ideals Q of R with PN Z(R) = Q N Z(R). Thus, [BwH,
Theorem 3.4] implies that R, is hom-hom. Theorem 5.6(iii) now implies
that R, is Auslander-regular and Macaulay.

(iii) This follows from [BwH, (2.6)]. |

A number of results concerned with r-sequences in a hom-hom ring are
also given in [BwH]. However, since these sequences necessarily consist of
central elements, the results are not as strong as those for commutative
rings.

Suppose that R is a local, Noetherian PI ring of finite global dimension.
Then, Theorem 5.6 and Corollary 3.13 imply that R is integral over its
centre. It follows from [BHM] and [Gy] that R = M (D), for some domain
D and that R is a maximal order in its quotient simple Artinian ring. The
next corollary generalizes those results.
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CoroLLARY 5.9.  Let R be a smooth, Noetherian PI ring. Then

(i) if R is stably free, then R is a domain.

(ii) If R has a trivial state space, then R is a prime ring and a maximal
order in its simple Artinian quotient ring.

Proof. The proof we give is the one outlined in [St3, Section 3]. The
state space St(R) is defined in [GW2] as the set of additive functions
s: K, (R) = R such that s(R]) =1 and s([P]) = 0, for all finitely gener-
ated projective modules P. It is called trivial if there exists a unique state.
This is the case, for example, if K,(R) = Z or R is a commutative domain.
By Theorems 3.10 and 5.4, R is a direct sum of prime rings. Clearly, each
summand of R contributes a non-trivial summand to St(R), and so R is
prime. Part (i) now follows from a standard argument; use, for example,
the proof of [Lvl, Theorem 4.8]. If % is an Ore set of regular elements of
R then, since gldim(R) < x, the proof of [GW2, Proposition 7.2} shows
that St(R) maps onto St(Rg). Thus, if 2 is a clique of height one prime
ideals of R, then St(R,) is still trivial. However, by Theorems 3.10 and
5.4, R,, is an hereditary Noetherian prime ring and so [GW2, Corollary
6.6] implies that R, is a Dedekind domain. The fact that R is a maximal
order now follows from Lemma 5.3(ii). ]

If R is a commutative, Noetherian domain of finite global dimension,
then R is automatically a maximal order (this even follows from Corollary
5.9). However, this is not true in the non-commutative case. For example,
any hereditary, Noretherian prime PI ring is automatically Auslander—

Gorenstein and Macaulay: a typical example is (§ ZZZ

Let R be a Noetherian PI ring. Then the results of this section may be
summarized as saying that, if R is Auslander-regular and Macaulay (and
hence if R is a ring of finite global dimension that is either local, or
connected graded, or smooth, or hom-hom), then R has very pleasant
properties. We end the section with a number of examples that show that
these pleasant properties will not hold if one deletes any of the hypotheses
on R. The first two examples show that the finite global dimension and

Macaulay hypotheses are necessary.

ExampLE 5.10. There exists a connected graded, Noetherian, PI ring
R that is Auslander-Gorenstein and Macaulay, but such that R is neither
a semiprime ring nor integral over its centre.

Proof. Let k be a field and A € k be an element transcendental over
the prime subfield. Set § = k{x, y}/(xy — Ayx), graded by total degree
in x and y. Since x € §, is a regular normal element, with S/x§ =
k[y]l, [Lvl, Theorem 5.10] implies that S is Auslander—Gorenstein and
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GK dim-Macaulay. The same result implies that R = S/x°§ is also
Auslander-Gorenstein and GK dim-Macaulay. Since R is now a
Noetherian Pl ring, Lemma 4.3 implies that R is also Macaulay. As A is
transcendental, Z(R) = k and so R is not integral over its centre. |}

ExampLE 5.11. There exists an Auslander-regular, Artinian (and hence
semi-local), PI ring R that is not integral over its centre.

Remark. We thank E. Kirkman and B. Zimmermann Huisgen for
their helpful comments concerning this example.

Proof. Let k = Q(x) be a transcendental extension of Q@ and o the
automorphism of k defined by x — (x + 1). The example is

a b ¢
R={{0 d e |:ia,b,c,d,e €k} cM(k).
0 0 a”

Let {e,} denote the standard matrix units of M,(k). Write O, = (e,, +
e;3)R and Q, = e,, R for the two indecomposable projective right R-mod-
ules and S, = e,y R, respectively S, = Q,/S,, for their simple factor
modules. Then, there exist short exact sequences

08 -0,—-5,~-0 and 0-0,-0, —S8 —0.

Since Q, is indecomposable, S, is not projective and so hd(S;) =i for
i = 1,2. In particular, gldim(R) = 2. Also, Z(R) = k” = Q which ensures
that R is not an integral Z(R)-module.

We next compute some Ext groups. Clearly, E*(S,) = E'(S,) while
E*(S,) = 0. By inspection, E(S,) = 0 while both £%Q,) and E’(S,) are
two dimensional &-vector spaces. Thus, from the exact sequence

0 - E°(S;) » E'(Q;) » E°(S)) = EX(S;) =0,
one finds that £'(S,) = 0. Now consider the exact sequence

&
0 ~“’E()(Sl) '—"E()(Ql) - E()(Qz) _’EI(SI) — 0.

Here, ¢ # 0 since the identity map on @, induces a non-zero map
@, — R. Since dim,(E%(@,)) = 2, this implies that dim (E'(S)) < 1.
Since hd(S,) = 1, certainly E'(S,) # 0 and so E*(S,) = E'(5,) is simple.

In order to prove that R is Auslander regular, an easy induction on the
length of a module shows that it suffices to prove that, for all simple
R-modules M and all submodules N of E(M), one has E/(N) = 0 for
J < i. As R is anti-isomorphic to itself, it suffices to prove this for right
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modules. From the computations of the last paragraph, it therefore
suffices to prove that E"(S,) = 0 = E'%(S,). This follows either from
direct computations or from the spectral sequence (3.8.1). Indeed, recall
(from the proof of Theorem 3.8) that the coboundary maps for this
spectral sequence have bidegree (—m,m + 1) at the mth stage. Since
gldim(R) = 2, this implies that there are no (non-zero) coboundary maps
involving E%(S,) or E'*(S,). Since H” 9(S,) = 0 if p # g, this forces
E"(S,) =0=E™S,. 1

We now turn our attention to prime rings. It is well-known that prime
Noetherian PI rings need not be integral over their centres and there exist
a great many methods for constructing such examples (see, for example,
[Rw, Chapter 5]). Most, if not all, of these constructions can be modified
so that the ring becomes a semi-local ring of finite global dimension. The
idea (which has also been used to effect in ([BuH]) is as follows. Let R be
such an example, with trace ring TR. By [MR, Propositions 13.9.6, 13.9.11,
and 13.9.5], R and TR have a non-zero ideal, say /, in common, TR is a
finite R-module, and TR is integral over its centre. Since trace rings can
be inconvenient to work with, let T be any overring of R having these
three properties. The first observation is that 7 and R /I have—or can be
arranged to have—very pleasant properties, which for our purposes means
that they should be semi-local and have finite global dimension. Now,
replace T by the 2 X 2 matrix ring T = M,(T) and R by

8 p)er(r 1)

Then, S is a finitely generated R-module, containing an ideal M,(1) of T.
Thus, S is a prime Noetherian ring, with Z(S) = Z(R). Consequently, S is
not integral over its centre. However, J is now an ideal of § that is a right

ideal of T satisfying 77 = T. In these circumstances, [MR, Theorem
7.5.13) implies that

gldim($) < gldim(7) + gldim(R/I) + 1. ((5.12))

Thus, the properties of S and R are very similar except that if T and R//
have finite global dimension, then so does S. We illustrate this procedure
with an example of Wadsworth and Small [Rw, Example 5.1.1].

ExamrpLE 5.13. There exists a semilocal, Noetherian, prime PI ring S,
of global dimension 2, such that § is not integral over its centre.

Proof. Set L = Q(x), for an indeterminate x. As in [Rw, Example
5.1.1], pick subfields L, and L, of L such that[L: L] = 2, for each i, but



1020 STAFFORD AND ZHANG
L, N L, = 0. Now take

yLI[y1l yLy]]
yL{[y]] yL[[y]]

L+ yL{[y]] yLI[y]l
yL{[¥]] L,+yL[[¥]]

CR

c T =My(L[[¥]]).

It is routine to check that R is a Noetherian, prime PI ring of Krull
dimension one. Moreover, Z(R) = @ + yQ(x)[ y]], over which R is cer-
tainly not integral. In this case T is not the trace ring of R, but certainly
TR is a finite module both over its centre L[[y]] and over R, while I is a
common ideal of R and TR.

Now construct § as above. Then gldim(7) = gldim(T) = 1 and, since
R/l =L, ® L, gldim(R/I) = 0. Thus, (5.12) implies that gldim(S) < 2.
By [MR, Theorem 13.9.16), gldim(S) > 2. Finally, we need to check that S
is semilocal. But, M2(1)_=yM4(L[[y]]) is an ideal of S that is also a
quasiregular ideal of T = M,(L{[y]D. Thus, 0= M,(I) £ J(S). Since
K dim(S) = 1, this implies that S is semilocal. J

A somewhat more complicated version of this example appears in [BuH,
Example 14]. Further examples of Noetherian PI rings R of finite global
dimension for which Z(R) has various bad properties can also be found in
[BuH]. The examples given there are not semi-local, but that hypothesis
can easily be arranged. All these examples can equally well be modified so
that, rather than assuming that the ring is semi-local, one assumes that the
ring is graded, say R = &, , R;, with each R; finite dimensional over the
base field. For an example of an Auslander-regular, Noetherian, prime PI
ring R that is a finite module over its centre, but such that Z(R) is not
integrally closed, see [St3, Example 3.5).

Finally, we note that the Auslander condition does not always hold for
PI rings of finite global dimension.

ExampLEe 5,14, There exists a semilocal, Noetherian, prime PI ring S,
of finite global dimension, such that § is not Auslander-regular.

Proof. Let K =(x,y)c C=Q[x, y]l, and set

J=(§ Ié)cS=(g ’é)cf“:Mz(C).

In this case, Z(§) = C and § is a finite Z(§)-module. As in the previous
example, it is readily checked that § is a semilocal, prime Noetherian ring.
Also, J is an ideal of S that is a right ideal of T with 7J = T. Thus, (5.12)
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implies that
gldim(S) < gldim(T) + gldim(S/J) + 1 = 3.

Note that J is a maximal ideal of S with (;J)* 2 7. Thus, by the dual
basis lemma, ¢J is projective and hence reflexive. However, J 2 Sx and

~ { Q¥ yQllyll . . . . .
S/5x = (u[[,vn 0([,»11)' It follows that Sx is prime ideal that is again

reflexive as a left module. Thus, by [Lvl, Proposition 4.5(iii)], § cannot be
Auslander-regular. |

6. FuLLy BounNpeED, NOETHERIAN RINGS

In this section we discuss the extent to which the results of Section 3 can
be generalized to work for FBN rings. (See also the note added in proof.)
There are two obstacles to such a generalization: First, one needs to find
circumstances in which (3.6) holds. Second, one needs to find ways of
proving Theorem 3.10 without the assumption that EXT{(R/Pg, Ry) is a
finitely generated right R/P-module. For both these questions, we have
partial answers.

We begin by considering FBN connected graded rings. Consider a
function f(n):Z — N. If there exists a positive integer ¢ and polynomial
functions p(n),..., p(n) € Q[n] such that f(n)=p(n) for all n=
stmod ¢), then f(n) is called a multi-polynomial function. Define deg(f) =
max{deg(p,):s = 1,...,t}. Given a graded ring R and a finitely gener-
ated, graded R-module M = &M,, set f,,(n) = dim, (M ,).

LEMMA 6.1.  Assume that R = ®R, is an FBN, graded k-algebra such
that R, is a finite dimensional k-vector space and let M be a finitely
generated, graded right R-module. Then

(i) the function f,,(n) is a multi-polynomial function for n > 0.
(i) GK dim(M) = K dim(M) € N. In particular, GK dim(R) < <.

Proof. (1) If M is Artinian, then M is finite dimensional over k£ and
the result is obvious. Thus, for some « > 0, assume that f,(n) is a
multi-polynomial function for any finitely generated, graded module N
with K dim(N) < a and every n > 0. Suppose that K dim(M) = a. Now,
fu(n) = fr(n) + foy ,x(n), for any submodule K of M. Thus, by induction
and Lemma 2.1, we may assume that M = I, where [ is a graded-uniform
right ideal of a graded prime factor ring R=R /P of R. Pick a homo_ge—

neous clement x € I of positive degree such that xI # 0. Since T is
uniform, xI =1 and L = I/xI satisfies K dim(L) < a. Now compute
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dimensions in the graded short exact sequence

X.

00— M M—L 0. (6.1.1)

If x € R, then f,(n) = fo,(n — m) = f,(n) for all n. For all n > 0, the
inductive hypothesis implies that f,(n) is a multi-polynomial function, say
of degree r, and so f,,{n) is a multi-polynomial function of dgree r + 1.

(ii) It follows immediately from part (i) that GKdim(M) =1+
deg( f,,) € N. Following [MR, Section 8.3.17], GK dim is called finitely
right partitive if the following condition holds for every finitely generated,
graded right R-module M: There exists an integer v such that, for any
descending chain M =M">M' > -+ DM™ with GK dim(M'/M~")
= GK dim(M ) for each i, one has m < v. Let f,,(n) =pfn), for n =
s(mod t) and some polynomial functions p(x) = L/®)A  .x’, as defined
before the statement of the lemma. Then the fact that f,,(n) is always a
non-negative integer implies that 1(s) = r(s)!- A, €N, for each s.
Since fy(n) = f;(n) + fy ,,(n), for any graded submodule L of M, this
implies that GK dim is finitely right partitive; just take ¢ = max{r(s)}.
Thus, [MR, Proposition 8.3.18] implies that GK dim{(M) > K dim(M), for
any finitely generated right R-module M.

It remains to prove that K dim(M) > GK dim{(M). As in the proof of
part (i), we can reduce to the case when M = ] and there exists a short
exact sequence (6.1.1). Moreover, by induction on Krull dimension, we
may assume that K dim(L) = GK dim(L). By part (i), GK dim(M) =1 +
GK dim(L). Thus, as M is critical, K dim(M) > Kdim(L) + 1 =
GKdim(L) + 1 = GK dim(M). |

It is a reasonable conjecture that Lemma 6.1 will hold for any connected
graded Noetherian ring R, at least when GK dim(R) < «. For other
special cases where it is known to hold see [ATV2, Proposition 2.21] and
[Lo). This lemma also provides slight evidence for an old conjecture about
FBN rings; that the set of prime ideals satisfies DCC (see [GW1, Question
3, p. 285)).

THEOREM 6.2, Let R be a graded injectively smooth, FBN, graded
k-algebra, such that R, is a finite dimensional k-module. Then R is
Auslander—Gorenstein and Macaulay (as a graded or ungraded ring). In
particular, GK dim(R) = K dim(R) = injdim(R).

Proof. Suppose that R is Auslander—Gorenstein and GK dim-Macaulay
as a graded ring. As R is Noetherian, certainly each R, is finite dimen-
sional over k. Hence, by Lemma 4.4, R is Auslander-Gorenstein and
GK dim-Macaulay as an ungraded ring and so, by Lemma 6.1, R is
Macaulay. Thus, we need only prove the graded result.
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The proof is similar to that of Theorem 3.10, so some of the details will
be left to the reader. By Corollary 3.7, R is a gr-Gor,, ring. As in the proof
of Theorem 3.10, it suffices to prove that the following conditions hold for
any finitely generated, graded right R-module M.

(a) (M) + GK dim{M) = n.
(b) GK dim( E'™XM)) = GK dim(M).
(c) Forall m < n,GK dim( E™(M)) < min{GK dim(M), n — m}.

Since R is a gr-Gor, ring, these conditions do hold if GK dim(M) = 0.
Thus, for some integer a > 1, assume that (a), (b), and (c) hold for every
finitely generated, graded R-module M' with GK dim(M') < a. Let
GK dim(M) = a. As in the proof of Theorem 3.10, we may assume that
M = R/P for some prime ideal P of R. Pick a homogeneous, regular
element z € (R/P),, for some r > 0, and consider the exact sequence

E((MJzM) — EX(M) —— E((M) — E/*'(M/zM). (6.2.1)

In this case, E/(M) = &,,, E’(M), is a graded (R-R/P)-bimodule and
so E{(M),z ¢ EX(M),,, for each k. Therefore, E/(M) # E/(M)z, unless
E'(M) =0, and so E(M) =0 if j <n — a. In order to complete the
proof it suffices to show that, for j = n — «, one has GK dim(E/(M)) < B
= min{GK dim(M), n — j}. Let X be the largest graded left submodule of
E/(M) that satisfies GK dim(X) < 8. By induction, GK dim(E/(M /zM))
< B and GK dim(E/*'(M/zM)) < B — 1. Thus, (6.2.1) induces an exact
sequence

0 — E/(M)/X —% E/(M)/X —> K — 0.

Here, K is a subfactor of £/*'(M/zM) and so GK dim(K)<B — 1.
Therefore, by Lemma 6.1, GK dim( EXM)) < GKdim(K) + 1 < 8. §

CoroLLaRY 6.3. (i) Let R be an FBN, connected graded ring with
injdim(R) < w«. Then R is Auslander—Gorenstein and Macaulay.

(ii) Let R be an FBN, connected graded ring with gldim(R) < «. Then,
R is a domain and a maximal order in its quotient division ring.

Proof. (i) By Lemma 3.12, R is graded injectively smooth. Thus, the
result follows from Theorem 6.2.

(ii) This follows from part (i) combined with [St3, Theorem 2.10]. |
One can generalize Theorem 6.2 in several directions. First, the result
actually holds for any FBN graded ring R of finite injective dimension for

which R, is an Artinian ring. To prove this, one needs to make two
changes. First, the Gelfand-Kirillov dimension may not be available, but

481/168/3-23
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in its place one may use the dimension function defined in the same
manner as the GK dimension, except that one replaces the dimension of
k-vector spaces by the length of R, -modules. Second, one has to prove
that R is a gr-Gor, ring; just as graded arguments were used in place of
Theorem 3.5 in the proof of Theorem 6.2, one proves this by using graded
arguments in place of Theorem 3.5 in the proof of Theorem 3.8.

The theorem and its corollary also hold for any connected, graded,
Neotherian ring R of finite injective dimension that satisfies the following
condition:

(*) In every prime factor ring R of R, there exists a non-zero, central,
homogeneous element x € R*.

The key point in the proof is that, for any critical R-module M vgith
ass(M) = ann(M) = P, there exists a short exact sequence 0 — M ——
M — L — 0, where ¢ is now given by right multiplication by a
central element x € R/P. Now mimic the proof of Theorem 6.2. If one
assumes that x is normal rather than central in (), then one can still
show that GK dim(R) = K dim(R) = injdim(R) and. if gldim(R) < e, that
R is a domain. (The same proof works, except that one assumes that M is
an R-bimodule and that the homomorphism ¢ is given by left multiplica-
tion by a normal element z from the appropriate factor ring of R.)

Finaily, recalil that, by Theorem 3.8, a graded injectively smooth FBN
ring will be Gor,, provided that every simple Artinian factor ring is central
simple. As the next result shows, these rings will frequently be
Auslander—-Gorenstein. Given a prime ideal P of a ring R, pick a uniform
right ideal K/P in R/P and write I, for the injective hull of (K/P);.

THEOREM 6.4.  Suppose that R is an (ungraded) Gor,, FBN ring such
that R contains an uncountable, central subfield. Then

(i) R is Auslander—Gorenstein and Macaulay. Thus, K dim(R) =
injdim(R).

(ii) Let 0 —— R —— I* be the minimal injective resolution of Ry and
fix an integer s > 0. Then I' = @®{l,), where the sum is taken over all prime
ideals P such that K dim(R/P) + s = K dim(R) (possibly with repetitions ).

We will not prove this theorem, but the basic idea is as follows. The
hypothesis that R contains an uncountable field allows one to apply the
results of [Br]. In particular, [Br, Lemma 2.3] implies that I* = &{/,)},
where the sum is taken over those prime ideals P such that ES(R/P) is
not torsion as a right R/P-module. By [Br, Theorem CJ, this forces
K dim(R/P) < injdim(R) — 5. Thus, this proves “half” of part (ii). In
order to prove the theorem, one first proves part (ii) and then uses that to
prove part (i).
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Note added in proof: In his thesis [Te], Kok-Ming Teo has proved that
every smooth FBN ring R is Auslander—Gorenstein and Macaulay. It
follows, for example, that Corollary 5.9 holds for smooth FBN rings.
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