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SUMMARY 

A stem-loop region is present at the 3’ terminus of the chloroplast rbcL mRNA in all taxa surveyed to date. In 
spinach, this structure has been shown by others to be involved in modulating transcript stability and correct 3’ terminus 
processing, and is a conserved feature of other flowering plant rbcL mRNAs. In Chlamydomonas reinhardtii, an analogous 
structure has been shown by others to serve as a transcription terminator. Our sequencing data have shown that this 
region is highly divergent in several non-flowering land plants, as evidenced by representatives from the ferns, conifers, 
‘fern-allies’ and liverworts. To extend our analysis, a computer-assisted survey of the stem-loop region of the 3’ flanking 
region of published chloroplast rbcL genes was undertaken. The flowering plant rbcL inverted repeats (IR) were remarka- 
bly conserved in sequence, allowing for precise multiple alignments of both monocot and dicot sequences within a single 
matrix. Su~risingly, sequences obtained from non-cowering land plants, algae, photosynthetic protists and photosyn- 
thetic prokaryotes were extremely variant, in terms of both sequence composition and thermodynamic parameters. 

INTRODUCTION 

A well-characterized post-transcriptional mechanism 
involved in modulating chloroplast gene expression is 
the regulation of mRNA processing and concomitant 
transcript stabilization through the formation of 
thermodynamically stable stem-loop regions at the 
3’4lanking regions of many plastid-encoded mRNAs 
(Stern and Gruissem, 1987). These stem-loop structures 
are formed by intramolecular base-pairing between 
short IR sequences. The primary sequences of the IR 
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from different genes within a single plant species are 
quite variant (Stern and Gruissem, 1987). In contrast, 
the IR of a single gene (e.g., that of petD) is often highly 
conserved among different flowering plant species (Stern 
et al., 1989). 

The rbcL gene, encoding the large subunit of 
the ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco), contains an IR in its 3’ terminus that is in- 
volved in the regulation of the mRNAs stability in spin- 
ach (Schuster and Gruissem, 1991). The primary 
sequence of the rbcL IR from four taxa was shown to be 
highly conserved (Zurawski and Clegg, 1987), as is the 
coding sequence of the gene in flowering plants (reviewed 
in Clegg, 1993). A recent analysis of the rbcL coding 
sequences of several non-flowering land plants surpris- 
ingly revealed the fact that these sequences are too diver- 
gent to test hypotheses of phylogenetic relationships 
among major groups of land plants (~anhart, 1994). 
This present study was undertaken to determine the 
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extent of IR sequence divergence in selected taxa of non- 

flowering land plants, algae, protists and prokaryotes. 

EXPERIMENTAL AND DISCUSSION 

(a) Conservation of the flowering plant rbd. IR 

The results of our computer analysis on the rbcL stem- 
loop regions found in all taxa surveyed are summarized 
in Fig. 1. The flowering plant IR are very highly con- 
served among themselves, relative to the other taxa sur- 
veyed. The monocot structures have relatively high free 
energy values (ranging from AG = - 18.4 for rice to -25.1 
for mullet and sorghum) in contrast to the dicot struc- 
tures (AG = - 10.0 for alfalfa to - 14.3 for pea, spinach, 
tobacco and petunia). The only differences among the 
flowering plant IR sequences were three nt substitutions 
within the core sequences (Fig. 2). The overall length of 
the IR did vary, due to expansion and contraction of the 
different IR in the flanking regions distal to the loop. 
However, with the exception of these three substitutions, 
the monocot and dicot sequences were remarkably sim- 
ilar, allowing for a successful alignment within a single 
matrix (Fig. 2). 

In the flowering plant core IR nucleotide sequence 
GGCmCAAUCUUU(N,-N,)AARGAMUGaGCC (M- 
(m)=A,C; N=A,C,G,T, R=A,G) only the underlined 
base is divergent in the dicots surveyed (Fig. 2). For petu- 
nia there are two possible structures (Fig. 1). Based on 
comparisons with tobacco, which resides in the same 
family as petunia (Solanaceae), we would propose that 
the first representation best exemplifies the true in vivo 
structure. All the dicots examined (with the exception of 
broadbean) contain an additional IR sequence in an 
A + U rich region (Fig. 1). Given the predicted thermo- 
dynamic instability of the stem-loop structures (AC= 
+ 1.4 in alfalfa and pea, + 0.4 in spinach and - 2.1 in 
tobacco and petunia) these structures are unlikely to exist 
in vivo, and are more likely fortuitous occurrences. 

The A + T composition of land plant rbcL IR analyzed 
in this paper ranges from 54 (dicots) to 100% (Equisetum 
arvense). Land plant chloroplast DNAs, in general, tend 
to be rather A+T rich, as exemplified by tobacco, 62% 
(Shinozaki et al., 1986); rice, 61% (Hiratsuka et al., 1989); 
Murchantia polymorpha, 71% (Ohyama et al., 1986). This 
suggests that new IR can arise over time due to the accu- 
mulation of random nt changes in noncoding spacer re- 
gions. This could be a mechanism by which new IR arose 
in plastid genomes. Furthermore, the intergenic spacer 
regions downstream from rbcL in several grasses contain 
two regions of secondary structure that are mutational 
hotspots, one of these being the transcript-stabilizing 
structure (Morton and Clegg, 1993). Thus, mechanisms 
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Fig. 2. Alignment of Rowering plant rhcL major IK. Numerals in the 

left margin indicate the taxonomic origin of the IR sequences. and 

follow the convention in the legend to Fig. I. For Pe~uuitr /~~+rit/tr 

(No. 13) two different structures are predicted; both are shown. Upper 

case letters indicate those nt involved in intramolecular base pairing; 

lower case letters within the stem regions compose bulges, and those 

between the stem regions compose loops. Nucleotldes conserved 

between IR are underscored: gaps were introduced to maximize 

alignments. 

for generating new IR, as well as modifying pre-existing 

IR, are operating within the chloroplast. 

Zurawski and Clegg (1987) first observed that both the 

sequence and structure of IR present at the 3’ end of 

chloroplast mRNAs were highly conserved between 

different angiosperm species. This observation led them 

to the rather prescient conclusion that, among other poss- 

sible functions, the IR could serve as either mRNA 

processing signals or mRNA degradation endpoints. 

Subsequent biochemical studies of the role of different IR 

in spinach (e.g., those of petD, rhcL) have elucidated their 

functions as specific substrates for a complex series of 

biochemical processing events (Stern and Gruissem, 1987; 

Chen and Stern, 1991). It is reasonable to assume, given 

the highly conserved nature of these elements in other 

flowering plants, that similar biochemical processing 

events are present in these systems as well, and that the 

rhcL transcript in these taxa is subject to similar process- 

ing events as in the spinach transcript. Presumably alter- 

ations in the primary sequence or secondary structure 

(i.e., topology) would drastically alter the efficiency and 

accuracy of the processing events. 

The flowering plant rhcL IR surveyed to date (rice, 

wheat, alfalfa, pea, broadbean, spinach, tobacco and petu- 

nia) conform to the current orthodoxy, i.e., IR of the same 

gene from different taxa will have highly conserved 

sequences. reflective of the conservation of the mRNA 

processing apparatus across phylogenetic boundries. 

Thus, these IR sequences have been subjected to consider- 

able functional constraint, in terms of their evolutionary 

history. This observation is quite consistent with the 

biochemical studies mentioned above, in which precise 

nt sequences and/or stem-loop topologies are essential 

for the precise interaction of post-transcriptional regula- 

tory factors. Thus, those principles regarding mRNA pro- 

ccssing and stabilization derived from spinach can most 

likely be applied to the flowering plant chloroplast in 

general. 

(b) Sequence divergence of non-flowering land plant rhcL 

IR 

The rhcL IR of the non-flowering land plant represen- 

tatives (i.e., a conifer, Douglas fir; a fern, Angioptrris 

~ectll; three fern allies, Equi,setum urww, Isoetes melcmo- 

poda, and Lycopodium digitatum; and two liverworts, 

Bazxmia trilohuta and Morchantim polymorphc~) cannot 

be aligned with either themselves or with the angiosperm 

sequences (Fig. 1). Free energy values ranged from AC = 

- 6.2 (Eyuisrtum rrrrrrzse) to AC = ~ 42.1 (Lycopodium 

digittrtum), the lowest and highest thermodynamic values 

seen in the land plant IR to date. Thus, in marked con- 

trast to the situation in the flowering plants, the regula- 

tory role of these IR is not reflected in their scquencc 

conservation. If they do serve the same function as their 

flowering plant counterparts, then we must infer a rapid 

rate of evolution in the transcript stabilizing/processing 

mechanism for the rhcL mRNA. Or, these non-flowering 

land plant IR could be involved in a different process 

entirely, such as transcriptional termination. 

(c) Sequence divergence of algal, photosynsthetic protist 

and prokaryote rbcL IR 

The representatives sampled for the algae, photosyn- 

thetic protists and prokaryotes likewise are all highly di- 

vergent in nt sequence and thermodynamic parameters 

(Fig. 1 ). For example. the green algae, represented here 

by the genera Chlordlcr, Ch1um~domono.s. Spirogyx and 

Codium, range from AC = - 6.3 (Chlorell~~ N la) to AC = 

-41.5 (Spirogyro mauima). Most remarkably, two species 

of the same genus, Ch. rrinhdtii and C/I. moewusii, differ 

greatly in their primary sequence and free energy values 

(Fig. 1). Taxa from two other major algal lineages, 

EctoeLlrpus .siliculo.sus ( brown algae) and Cryptomontr.s @ 

(cryptomonad algae) contained likewise similar divergent 

IR (Fig. I ). 

The IR of the closely related organisms Euglrw 

grucilis (a photosynthetic protist) and AstrlsiLl longer (a 

non-photosynthetic protist), are remarkable for several 

reasons. First, the IR are encompassed within the coding 

region of the rhcL mRNA (Fig. 1). No other secondary 

structures were detected downstream from the rhcL gent 

in either taxon. Second, these structures have the lowest 

free energy values (Eugkw grwilis, AC = - 1.5: Astasitr 

longcl, AG = -3.3) of any systems to date. As with the 

structures in petunia. we question whether or not these 

could actually exist in vivo. If they do not, then these are 

the only rhcL mRNAs lacking a 3’ in vivo IR structure. 
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Not unexpectedly, the photosynthetic prokaryotes 

Chromatium vinosum, Rhodospirillum rubrum, Anacystis 

6301 and Anabaena 7120, (representing different evolu- 

tionary lineages) bore little resemblance to each other, 

and none to the sampled eukaryotes. 

(d) Significance of IR sequence divergence 

The rbcL/psaB transcript IR in Chlamydomonas 
reinhardtii serve not as transcript stabilizers or post- 

transcriptional processing signals, but instead as 

transcription terminators (Blowers et al., 1993). 

Experimentally, it has been shown that the spinach chlo- 

roplast RNA polymerase will recognize E. coli IR tran- 

scription terminators in vitro (Chen and Orozco, 1988 ). 

Thus, if the situation in Ch. reinhardtii is representative 

of the green algae, then these IR serve a biochemical 

function (transcription termination) that could be toler- 

ant of greater sequence divergence than are their angio- 

sperm counterparts. If these structures in systems outside 

the green algae are involved in the same general processes 

(e.g., transcriptional termination), it then appears that 

extreme flexibility in primary sequence of the IR is toler- 

ated. Further experimental investigations are required (i) 
to define the in vivo role of the non-angiosperm rbcL IR, 

and (ii) to determine the effects of sequence alterations 

on the functionality of these regulatory elements. 

The flowering plant IR are, most likely, homologous, 

given their high level of sequence conservation. It is 

difficult to determine, however, the true evolutionary ori- 

gins of the non-angiosperm land plant IR. If, for example, 

the non-flowering land plant IR are homologous with the 

flowering plant sequences, then the differences observed 

between the two sets are due to accumulated nt substitu- 

tions in the divergent IR. However, as exemplified by 

petunia, IR can arise de novo in the A +T-rich spacer 

regions of chloroplast genomes. Thus, it is possible that 

the non-flowering land plant IR arose independently 

within different lineages over time, perhaps replacing 

pre-existing IR that were subsequently lost. The present 

data do not allow us to distinguish between these two 

possibilities. 

(e) Conclusions 

(I ) The rbcL 3’ IR is highly conserved in the flowering 

plants surveyed to date, reflecting the documented in 

vitro biochemical function of this structure in the spinach 

mRNA, namely transcript stabilization and correct 3’ ter- 

minus processing. Given this high level of sequence con- 

servation across lineages representing at least 150 million 

years of evolutionary distance, we conclude that these are 

homologous structures in the flowering plants. 

(2) In the surveyed non-flowering land plants, algae, 

photosynthetic protists and prokaryotes, these IR are ex- 

tremely divergent in both nt sequence and predicted free- 

energy value. This is in marked contrast to the situation 

in the angiosperms. 

(3) The maintenance of these structures over the evolu- 

tionary distance encompassed by the lineages surveyed 

herein (with the possible exception of E. gracilis and A. 
longa) strongly suggests that they serve an essential pur- 

pose in the rbcL mRNA. In spinach (Stern et al., 1987) 

and the other surveyed angiosperms this function is as a 

transcript stabilizer and a 3’ terminus processing recogni- 

tion sequence. In the green alga Ch. reinhardtii, this struc- 

ture in vivo serves as a transcription terminator (Blowers 

et al, 1993). Further experimental evidence is required to 

define the in vivo role of these regulatory elements in the 

non-angiosperm taxa that contain the rbcL gene. 
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