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Abstract 

A new family of implicit, single-step time integration methods is presented for solving structural dynamics problems. The 
proposed method is unconditionally stable, second-order accurate and asymptotically annihilating. It is spectrally equivalent to 
Houbolt's method but is cast in single-step form rather than multi-step form; thus the new algorithm computationally is more 
convenient. An explicit predictor-correcter algorithm is presented based upon the new implicit scheme. The explicit algorithm is 
spectraily equivalent to the central difference method. The two new algorithms are merged into an implicit-explicit method, 
resulting in an improved algorithm for solving structural dynamics problems composed of 'soft' and 'stiff' domains. Numerical 
results are presented demonstrating the improved performance of the new implicit-explicit method compared to previously 
developed implicit-explicit schemes for structural dynamics. 

1. Introduction 

Step-by-step time integration algorithms are widely used in the computational analysis of structural 
dynamics. Efficient and accurate numerical integration methods have been and continue to be the focus 
of considerable attention because they have an inherent simplicity in solving multi-degree-of-freedom 
problems of structural dynamics and are the only tools to obtain solutions to general non-linear 
structural dynamics problems. 

Numerical dissipation is useful to control spurious oscillations in the computed solution that result 
from spatially unresolved high-frequency modes. One of the earliest algorithms to include numerical 
dissipation is the Houbolt method [1]. This algorithm has the additional benefit of asymptotic 
annihilation in which the high-frequency response is nearly annihilated in one time step. The Houbolt 
method has been available in numerous commercial finite element codes because its the asymptotic 
annihilation property has been found to very useful to stabilize computations involving highly non- 
linear phenomena. There are two distinct disadvantages to the Houbolt algorithm. First, it is cast in 
linear multistep (LMS) form and thus inherits the starting condition and time step size change 
difficulties of LMS methods. Second, the Houbolt algorithm has been observed to be overly dissipative 
in the low-frequency regime; this requires smaller time step sizes to be taken to minimize low-frequency 
dissipation. Numerous methods have been developed to maintain high-frequency dissipation without 
engendering excessive low-frequency dissipation (e.g. [2-11]). However, it was shown in [12] that if 
asymptotic annihilation is desired, then all asymptotic annihilation algorithms that can be cast in an 
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equivalent 3-step LMS form must be spectrally identical to the Houbolt method. To circumvent this 
'Houbolt barrier' usually requires additional algorithmic complexity and computational expense, i.e. 
additional steps in an LMS method or additional solution vectors in a one-step algorithm are needed. 
For example, the method of Park [4] is asymptotically annihilating but has better low-frequency 
dissipative properties that Houbolt's method; however, Park's algorithm is equivalent to a 6-step LMS 
method. 

The relative advantages and disadvantages of implicit and explicit time integration algorithms are well 
known; efforts to combine the best of both algorithms have been reported in [13-15]. These strategies 
are often called implicit-explicit methods or multi-time integration schemes; they are best suited to 
solving problems in which the critical time step size associated with an explicit integration method varies 
greatly amongst the different element domains. The essential idea is to use an implicit time integration 
algorithm to solve the 'stiff' part of the structure in which the critical time step size is small and to use 
an explicit time integration scheme in the 'soft', or relatively large time step size, part of the structure. 
An additional advantage of implicit-explicit time integration methods is that they can side-step the 
Houbolt barrier. 

In this paper, we present a family of implicit algorithms cast in single-step form that is spectrally 
identical to the Houbolt method. An explicit predictor-corrector algorithm is developed based upon the 
implicit single-step Houbolt (SSH) method; this explicit method is spectrally identical to the central 
difference method. An implicit-explicit SSH method is presented that is ideally suited for the class of 
stiff-soft problems since in the stiff part of the structure, the high-frequency spatial variation cannot be 
captured without using a time step on the order of the critical time step size. Thus, the high-frequency 
response of the stiff domain is damped out while the response of the soft domain is well-captured up to 
the usual spatial resolution. 

2. Implicit single-step Housbolt methods 

The equations of linear structural dynamics may be written as 

M~ + C~ + Kx f F (1) 

where M, C, and K are the mass, viscous damping and stiffness matrix, respectively, F is the applied 
load vector that is a given function of time, t, x is the displacement vector and superposed dots indicate 
differentiation with respect to time, The initial conditions are given as x(0) = do and .~(0) = v0. 

The most general form of the single-step algorithms may be written as 

amiMa,,+ t + ac Cv.+ 1 + o~kx£d.+ 1 + aroma . + acCv . + akKd ~ = % F~+1 + a:Fn , (2) 

dn+ 1 = d,, + A t e .  + fl  At2a,, + [3 t At2a~+L , (3) 

V. + i = V,, + y A t a .  + 71 A t a .  + t ,  (4) 

where d., v,, and a,, are the approximations to x(t,,), ~(tn), and .~(t,,), respectively; At is the time step 
size. To start the algorithm in a consistent manner (see [16] for details), 

aa = M - t  {Fo - C v  o - K d o }  . (5) 

For purposes of analysis, it is advantageous to reduce the coupled equations of motion and the 
algorithmic equations to a series of uncoupled single-degree-of-freedom (SDOF) systems; this is 
accomplished using standard modal decomposition techniques. The model problem thus becomes 

.f(t) + 2¢o~:~(t) + co2x(t) =f, (6) 

where co and 6 are the natural frequency and the viscous damping ratio, respectively. The initial 
conditions are x(0) = do and ~(0) = v 0. The SDOF form of the single-step algorithm may be written as 
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AtXn+ 1 = A.X,, + LF~ , 

where 

X. = {d., Atv., At2a.}r, 

Fn={f( t~) , f ( t~+l)}  T , 

(7) 

(8) 

(9) 0 ] -f i t  
At = 1 -7~ , (10) 

O[k l~'~ 2 ac,2~:~O 2 aml 

A, = ~ 1 , (11) 
- % O  2 -%2~:O 2 - %  

L = , (12) 

in which 1~ = to At. Provided A! -1 exists, (7) can be written as 

X.+ 1 =AX.  + f~F. , (13) 

where A =A~IA,  is the amplification matrix and/~ = A ~ L .  The linear multistep equivalent of (7) has 
the form 

3 
((~, + ~,2~a + ~O2)d~÷1_, + At2~f(t.+l_,)} = 0 ,  (14) 

i--O 

where ~,,/3,, ~ and ~ are expressed in terms of the algorithmic parameters am~, am, a~,, ac, ak,, ak, /3 2, 
/3, ~6, % % and a r. The accuracy properties of the algorithm are analyzed using (14). The analysis of 
the algorithm will proceed first by considering the unforced case. Then, non-zero forcing terms will be 
added. Without loss of generality, we let amt = 1 .  

2.I. Asymptotic annihilation 

It is convenient first to impose the asymptotic annihilation condition on the algorithm to reduce the 
number of independent algorithmic parameters. From [12], asymptotic annihilation requires that the 
roots of the characteristic polynomial have zero magnitude in the high frequency limit (1"2--~ ~). This is 
equivalent to requiring ~/1 = "~2 = ~3 =0  and t~kl/3 ~ ~0.  In terms of the algorithmic parameters, 
asymptotic annihilation requires 

,~, =o, (15) 

= v ,  (16) 

/31 = ~ + ~,~. (17) 

2.2. Second-order accuracy 

Stability and accuracy are analyzed using (14). Following [17], the local truncation error for (14) may 
be written as 

r(tn) = C~_2 At-2x(tn) + {C~_12(t~) + cd_,2~cox(tn)} At -1 
u(3)i, ~ 

+ {C~2(t,) + C~2~:Co~(tn) } At ° + {C, x ~,,., + C~2~coJ/(tn)} At + O(At 2) (18) 

where x satisfies (6), (~)= O3x/at 3 and 
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3 

c t , = E  a , ,  
i=O 

3 

c"_, = (1 - 
i = 0  

3 

C~ = ~ ((1-i)J+2ffti/(j  + 2 ) l -  ( 1 - i ) J ~ / j l ) ,  
i=O 

3 
Cd- ~ - Z ~ i  I 

i = 0  

3 

a ~ {(1 - i)J+l~i/(j + 1)[ - (1 - i)J'~/j!}, Cj = 
i = 0  

j ~ O ,  (19) 

j>~O, 

where the u and d superscripts correspond to the undamped and damped cases, respectively. The 
algorithm is second-order accurate for the unforced case provided C"_ 2 = C"-i = Co = C~ -- cd_l = Co d = 
C t = 0. For the undamped case, by employing (15)-(17), second-order accuracy is achieved provided 

1 1 
a m = - - ~ ,  ak, - 2fl t . (20) 

For the damped case, second-order accuracy requires 

213 +/31 2fl + 3/31 
a e =  4/3 2 ,  Olc'-- 4/3~ (21) 

I 

When f # 0, second-order accuracy necessitates 

%, = akt . a f  = a ,  . ( 2 2 )  

2.3. Two-parameter family of single.step Houbolt methods 

While the general single-step method has nine independent parameters, asymptotic annihilation and 
second-order accuracy impose seven equality constraints on the parameters; thus, there are two free 
parameters in the general family of SSH methods. It is convenient to let the two free parameters be T 
and ~'1. While particular values of ~, and y~ have no influence on the spectral properties of the method, 
they do influence the algorithm's overshoot and global error growth behavior. 

REMARK, Second-order accurate asymptotic annihilation is realizable using the WBZ-a method with 
a = - 1 and the generalized-a method with p® = 0. Both methods are identical to the SSH method with 
-/= - 1 / 2  and Yt =3/2. 

2.4. Overshoot analysis 

As noted in [18], even though an algorithm is unconditionally stable, excessively large oscillations in 
displacement and velocity may occur during the first few time steps of a calculation when non-zero 
initial conditions are imposed. To study the overshoot behavior of the SSH family, we consider the 
undamped, unforced case with non-zero values of d,  and vo (% is computed using the scalar form of 
(5)). In this case the initial vector Xo is given by 

Xo= {d o, Atvo,--~2d0}T. 

Substitution of (23)into the single-stepformwith n =0resul ts  in 

d I = (Cadd 0 +ce~ Atoo)/D, 

v I = (Cvddo/At+%~vo)/D , 

(23) 

(24) 

(25) 
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where 

D = - ( 1  + ½ 0 z ) ,  

Cdd = ½(33' + 3'1)O 2 -  1, 

Cdo - -  - - 1  , 

2 

3" 0 4 . . 1 _  
C°d - 2(3' + 71) 

23, 2 + 377, + 71 + 3' 2 ' 0 2  
2(7 + 3'i) 

3' O 2 _ 1 .  
c ° " = -  2(3 '+7,)  

(26) 

To avoid overshoot, the powers of O in the numerators of (24) and (25) should be less than or equal to 
tile powers of O in their denominators. Since Cad has the same order of O as D and Ca, , is of zero order 
in O, there is no overshoot in the displacement. However, velocity overshoot may occur unless 

7 = 0 .  (27) 

2.5. Numerical  analysis o f  the single degree-of-freedom equation 

In the two-parameter family of SSH methods, 7 and 3'. have no influence on spectral behavior but do 
affect the computed response. To illustrate their influence, we consider a SDOF problem with to = 1, 
At=0.05,  x(0)= 1 and ~(0)= 1. Fig. 1 shows time histories of the displacement error, I d , -  x(t,)[, 
computed using different values of 3' and 1',. Monotone growth in the peak displacement error occurs 
when/3 +/3, = 1/2. This condition can be seen as requiring the sum of the coefficients on At2a. and 
At2a.+, in the displacement update equation, (3), to be equal to the coefficient on the acceleration term 
of a Taylor series expansion of the displacement at t.+, about t.. In terms of 3' and 3',, using (16) and 
(17), the Taylor series condition is satisfied provided 

1 1 7 =~(~ - 7t). (28) 

For the remainder, we shall impose (28). The one-parameter family of single-step Houbolt methods is 
summarized in Box 1. 

Fig. 2 shows the time histories of the velocity error, Iv,,- .~(t,)l computed using the one-parameter 
SSH method with different values of 7,. When 3'1 = 3/2, the velocity error shows the smallest growth in 
the peak error. Analogous to the monotone behavior of the displacement error, the minimum velocity 
e r r o r  corresponds to the sum of the values of the acceleration coefficients in (31) equal to the coefficient 

m 

I 
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0 

' I 

"7 = - 1 / 2 ,  3'1 = 3 /2  

, : ' ,  , ,  ,, ,,,,, 

0 I0 

' , ' I ' I ' 

"7 = O, "71 = 1 /2  - 

"7 = O, .71 = 1  . . . . . . .  

' I I I ! 
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t 

Fig. 1. Dependence of SDOF displacement error on algorithmic parameters 7 and %. 
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Ma. + i - ½Me. + aq Cv. + l + a¢Cv. + ~, tKd. + t = a, iF. + l , 

d. +, = d. + Atv. + (} - /3 , )  at:a. + ~, a t "a . . , ,  

v . . ,  = v .  +½(½ - 7,) Ate. +7 ,  a t e . + , .  

~, =½(½ + % ) ,  or,, =a t ,  = (2/3,) -t  , 

1 +/3~ /3~ - 1 

a~l = (2B,)" ' a~ = (2/3t) - . . 

Box 1. One-parameter family of single-step Houbolt  Methods. 

(29) 

(30) 

(31) 

on the acceleration term of a Taylor series expansion of the velocity at t,+~ about t,. Note that this 
condition violates the no velocity overshoot condition, (27) (if (28) is enforced). Thus, depending on 
the problem, one should choose either % = 3/2 to minimize velocity error or 7~ = 1/2 to avoid velocity 
overshoot. 

3. Expl ic i t  predictor-corrected  method  

An explicit predictor-corrector algorithm may be constructed from the implicit SSH method having 
the form: 

Balance equation: 

Ma,,+ I - ½ M a ,  + t~,.tCv,,+ t + ac.Cv . + a, Ktt,,+l = a , F , +  l ; (32) 

Predictor: 

d,, + t = d,, + Atv,, + (½ - ~ l )  AtZa,, ; (33) 

Correctors: 

d,,+t = d,,+l + [31AtZa,,+l , (34) 

~(~ - 71) Ate,, + 71Ata,,+t , (35) [ / .+ t  ~ ' ~ .  + I I 

where expressions for the parameters are the same as those for the implicit $SH method. Provided C 

J 
g 

0.12 ' , , I 
I 

o, Io "h=I /2  . . . . .  /~ !'~i {~j 
~,=I ...... ' fl F! 

°.°° : AIII 
, ~ r, ," iX , , , ,  ,, ,, j 

f ~# I i 0.04 , . ,  i !  l !  f !  L, ,;..'!~A~] l / , ,  l l,-,,,, ,, .'-'~ ~7' t¢~ * It d ,I, , , , I ,  ,~ 1 

o ~ Y , Y  Y , 
0 10 20 30 40 50 

t 

Fig. 2. Dependence of SDOF velocity error on algorithmic parameters 7 and %. 
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and M are diagonal, the method is explicit in the usual central difference algorithm sense. We note that 
the damping term is treated implicitly in the same manner as the central difference method. 

3.1. Accuracy  and stability 

The accuracy of the explicit method may be determined from its local truncation error expression; in 
this case, second-order accuracy is maintained. Stability can be assessed by applying the Routh- 
Hurwitz criteria to the characteristic equation of the explicit method. If we restrict our attention to the 
undamped case, the characteristic equation of the explicit predictor-corrector algorithm is 

2A 3 + ( - 5  + 2~~2)A 2 + ( 4 -  O 2 ) A -  1 = 0 ,  (36) 

which has the factorized form 

(2A - 1){A 2 + ( - 2  +/~2)A + 1} = 0 .  (37) 

From the Routh-Hurwitz criteria, stability requires 

0<~to Ate<2, (38) 

which is identical to the stability criterion of the central difference method. Moreover, since the 
spurious root is constant (A 3 - -1/2) ,  the explicit predictor-corrector method has the same numerical 
dissipation (i.e. none) and period error as the central difference method. 

4. Implicit-explicit method 

4.1. Implementat ion  

The implicit SSH method defined by (29)-(31) and the explicit predictor-corrector method defined by 
(32)-(35) can be merged into an implicit-explicit algorithm of the SSH method. The balance equation 
of the implicit-explicit method, from (29) and (32), becomes 

Ma,,+ t - -~-Ma, + ac Cv,,+ t + acCV,, + °tkigldn+ t + aklgEd,,+ l = °tkiF,,+ i , (39) 

where 

M = M i  + M E, C = CI + C E , K = Kn + K E , 

where M ! C j and K v (respectively, M ~, C E and K ~) are the assembled mass, damping and stiffness 
matrices for the implicit (respectively, explicit) elements; it is assumed that M ~ and C ~are  diagonal. 
The predictor value, d,,+l, and the corrector values, d,,+n and o,+1, are given by (33)-(35). 

From (33)-(35) and (39), we obtain 

M*a,+ 1 = ak Fn+ 1 + ½Ma, --C(ak~V, + ac~(½ -- 3'1) Atan) - ak Kd,+l , (40) 

where 

M* = M + a~3" I ArC + ak~/31At2K x . (41) 

The effective mass matrix M* consists of banded and diagonal partitions corresponding to contributions 
from the implicit and explicit elements, respectively. This effective mass matrix structure is well suited 
to banded profile (or column) linear equation solvers. 

For the explicitly treated domain, the stable time step is determined using (38), where co is now the 
maximum element eigenvalue of the explicitly treated elements. The stiff part of the structure is treated 
implicitly; thus, the maximum uniform time step for the mesh can be greater than if the entire problem 
is treated explicitly. 

Since the algorithm used in the implicit domain is asymptotically annihilating, spurious oscillations 
from the stiff region are damped out quickly. On the other hand, the explicit predictor-corrector 
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algorithm has no algorithmic damping, so the response of the soft domain (essentially low mode 
response) is well approximated. 

4.2. Numerical example 

To illustrate the performance of the implicit-explicit SSH method, we consider the one-dimensional 
wave propagation problem of the rod described in [14] and [15] and shown in Fig. 3. The total length of 
the rod L is 10.5, the cross-sectional area A is 1 and the material density p is 0.01. The left and right 
ends of the bar (of length 0.5) have Young's modulus E t of 107; in between E 2 = 100. We shall refer to 
the ends and the middle as the stiff and the soft regions, respectively. The left end of the rod is fixed; 
there is zero initial displacement; the initial velocity is 1 for all interior points and the right end of the 
rod. 

It is quite cumbersome to obtain a usable form of the exact solution due to the material discontinuity. 
The exact solution can be computed using the central difference method with appropriate spatial and 
temporal discretization. Discretizing each of the stiff domains using one linear rod element, the critical 
time step in the stiff elements is 

At=h , IW~nlp  , (42) 

where h~ = 0.5 is the length of each stiff element. The soft domain is discretized so that each soft 
element has the same critical time step size as (42). This is achieved by setting 

hz=hiWrE:lEi . (43) 

For the problem at hand, 6008 elements are used in the soft domain and 2 in the stiff domain. The 
corresponding critical time step size is 1.5811 x 10 -s. The exact solution computed using the central 
difference method is shown in Figs. 4, 6 and 8 for different locations on the rod. 

Since comparisons of the implicit-explicit implementations of the HHT-a and Newmark methods 
have been made in [15], we shall confine our comparison between the implicit-explicit implementations 
of the HHT-a and SSH methods. We consider a finite element model with 21 linear rod elements of 
equal length (h t = h 2 = 0.5). The elements 1 and 21 with the Young's modulus E i are treated implicitly, 
while the other elements with E 2 are treated explicitly. For the implicit-explicit HHT-ot method, we set 
a--- -0.1;  the corresponding critical time step size is 0.00479. This value was obtained using (25) in 
[15]. For the implicit SSH method, we set Yt = 3/2; the critical time step size, computed asing (38), is 
0.005. This time step size is approximately 316 times larger than that required if the central difference 
method were used to solve the complete system. 

Fig, 5 shows the stress-time histories for x = 0.25. The oscillations in the stress response computed 
with the implicit-explicit HHT-a method have a relatively long duration after t = 0. It may be seen that 

I- 
I = 

1,,o=1 

F~ 

10.5 

n 

v I 

Fig, 3. Two-material bar wave propagation problem. 
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Fig. 4. Exact stress-time history at x = 0.25 computed using the central difference method. 
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Fig. 5. Stress-time histories at x - 0.25 computed using the implicit-explicit SSH and HHT-a methods. 
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Fig. 6. Exact stress-time history at x - 5.25 (bar midpoint) computed using the central difference method• 
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Fig. 7. Stress-time histories at x = 5.25 (bar midpoint) computed using the implicit-explicit SSH and HH'i'-t~ methods. 

the result from the implicit-explicit SSH method follows the trend for the oscillation of the exact 
solution relatively well, although the amplitudes of the spikes are reduced. The stress-time histories for 
x--5.25 and 10.25 in Figs. 7 and 9 also show improved performance for the SSH method. 

5. Conclusions 

A one-parameter family of single-step time integration methods has been presented that is spectrally 
equivalent to the well-known Houbolt method. Thus, the new methods possess second-order accuracy 
and asymptotic annihilation in a more convenient form than the linear multistep form of Houbolt. 
Particular choices of the parameters influence the global error growth and velocity overshoot of the 
method; we note that no displacement overshoot occurs regardless of the choice of the free parameter. 
An explicit predictor-corrector algorithm was given based upon the implicit 5SH method; it was shown 
that the behavior of the explicit method is equivalent to the central difference method. The implicit and 
explicit algorithms were then combined into an algorithm that is well suited for solving problems with 
stiff and soft domains; numerical results showed the improved performance of the method when 
compared to previously developed implicit-explicit time integration methods. 
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Fig. 8. Exact stress-time history at x = 10.25 computed using the central difference method. 
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Fig. 9. Stress-time histories at x = 10.25 computed with the implicit-explicit SSH and HHT-a methods. 
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