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Abstract-A mechanical model for the prediction of mode I delamination failure of a laminated double 
cantilever beam (DCB) type specimen is presented. The volume of material ahead of the crack tip that 
experiences high stresses due to the presence of the crack tip was replaced by a nonlinear elastic spring 
foundation. The volume undergoing global deformation due to the external loading was replaced by a 
beam. The spring foundation was characterized by a covalent interatomic force law as a constitutive law 
and a non-uniform strain distribution throughout the spring length. Experimental data of fracture 
toughness for PEEK adhesive joints were used to partially characterize the spring foundation. Experimen- 
tal results from mode I fracture tests performed to verify the current model are presented. The current 
model matched the experimental results closely for PEEK and BP907 adhesive joints for a wide range 
of adhesive layer thickness. It also reproduced load vs displacement curves of E7TI/G40 and E719/IM7 
composite specimens very closely. The work presented contributes a new fracture model for prediction 
of delamination of laminated composite structures. 

1. INTRODUCTION 

DELAMINATION failure in laminated composites is a subject that has been receiving a considerable 
amount of attention as evidenced by the large number of papers devoted to this topic. The results 
of a combined experimental and analytical study are reported herein, where a novel and systematic 
way to model mode I delamination failure in continuous fiber unidirectionally laminated 
composites is considered. 

Fracture mechanics concepts based on a critical energy release rate have not lent themselves 
readily in applications to fracture problems of non-homogeneous structures such as layered 
materials. The complexity that is present in such a structure inhibits its application from being an 
easy task. The application even becomes impossible for a certain combination of materials in 
layered structures [l]. Besides, the meaning of a critical energy release rate and its proper 
interpretation is not well understood for this type of structure. Chai [2,3] experimentally showed 
that the fracture toughness, or so called critical energy release rate for a given material is not a 
true material constant but varies considerably depending on the thickness of the material. 
Additionally, two major difficulties associated with LEFM concepts arise in addressing problems 
of crack growth. First, for crack growth in any material (layered or otherwise), one has to adopt 
a “fracture criterion (or law)” to define the onset of crack growth. In an energetic setting, this law 
consists of an equation composed of the different components of energy release rates in some 
functional description, quite similar to yield criteria encountered in the theory of plasticity. Thus, 
for crack propagation, one has to compute the different components of strain energy release rate 
or in some cases the total strain energy release rate, depending on the growth law that is chosen. 
Once the geometry of the cracked body and the direction of crack growth are known, computing 
the components of strain energy release rate (or the total) for a homogeneous continuum is well 
understood [l]. However, in a strict 2-D setting, such as a crack front with curvature, it is not at 
all clear how one can compute strain energy release rates at every point along the crack boundary. 
It appears that the notion of a strain energy release rate, which, by definition is dependent on “per 
unit of future cracked area”, this latter area being a priori an unknown, finds a clear meaning only 
in a 1-D setting. Secondly, several complications arise pertaining to the issue of mode separability 
for a crack in layered materials. In fact, modes may be non-separable in layered materials, in 
general. In the literature, one finds many growth laws that have been used for studying 
homogeneous materials. None has been successfully applied to the study of layered materials. 
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Based on these considerations, one finds that current LEFM concepts do not necessarily deliver 
the proper tools to predict crack growth in layered materials. The purpose of the research that is 
reported herein is associated with the development of a fracture model that circumvents the use 
of LEFM and that which has the potential to address a wide range of crack problems of laminated 
composites. 

Due to the presence of a crack within a structure, the structure behaves in two different ways. 
One is a local behavior associated with the crack tip, and the other is a global behavior which is 
a reaction against external loadings. The spring foundation model can separate out the local and 
global behavior of the structure. Once they are separated out, the global behavior can be 
characterized easily using current available mechanics theories such as beam, plate, shell, 2-D or 
3-D elasticity theory. Some authors [4-l l] previously have tried to solve crack problems using 
spring models. Some of the models do not lend themselves to a clear physical interpretation of what 
the spring foundation is associated with. The present work has improved upon the beam on spring 
foundation models by taking the beam thickness as a spring length and using a non-uniform strain 
distribution throughout the spring length. The present work also uses a constitutive law for the 
spring foundation that is based on the interatomic potential law. 

The basic model is developed in Section 2.1 and the corresponding spring foundation is 
characterized in Section 2.2. Finite element implementation for the solution of the current model 
is illustrated in Section 3. Experimental details are reported in Section 4. The results from the 
current model are compared to the experimental results to validate the current model in Section 
5. Finally, Section 6 presents conclusions and discussions. 

2.1. Basic model 

2. MODELING OF MODE I FAILURE 

A DCB type specimen is used to model the mode I failure of laminated composites. Figure 
l(a) shows the specimen under mode I failure. The specimen is unidirectionally laminated and the 
crack is assumed to be propagating along the center of the resin rich layer, making the beam 
symmetric with respect to the beam centroidal line. This DCB specimen is approximated as a beam 
on a nonlinear elastic foundation, depicted in Fig. l(b). The nonlinear elastic foundation is 
represented by an infinite number of 1-D springs. Only one half of the beam is considered due to 
the symmetry. 

The DCB specimen reacts in two different ways against the external loading, as mentioned in 
the previous section. One is a local behavior originated from the crack tip and the other is a global 
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Fig. 1. (a) DCB specimen under mode I failure. 

Fig. I. (b) Beam on spring foundation model. 
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behavior of the beam structure caused by the external loading. Accordingly, the DCB specimen 
can be split into two parts corresponding to each behavior. One is the spring foundation 
representative of the local behavior and the other is the beam for the global behavior. As the 
external loading increases, at a certain point, the first spring at the crack tip reaches its endurable 
maximum strength and breaks permanently, defining what is meant by crack propagation. 

There are many well established theories to solve for the beam part. Euler-Bernoulli beam 
theory is adopted in this study for simplicity. Next, the spring foundation should be characterized 
to complete the current model. This is done in the following section in a systematic way. Since the 
microscopic behavior of the material near the crack tip is not fully known yet, some fundamental 
results from previous work will be used to help characterize the spring foundation properties, and 
a few assumptions will be made where needed. 

2.2. Characterization of the spring foundation 

There are two sources of information needed to characterize the spring foundation. One is the 
constitutive behavior of the material and the other is the strain-displacement relation throughout 
the spring length. The microscopic constitutive behavior of the material near the crack tip is 
somewhat different from the bulk behavior that is obtained from uniaxial tension tests performed 
in laboratories. Therefore, the bulk data of uniaxial tension tests may not necessarily be a proper 
characterization of the material near the crack tip. The material near the crack tip experiences high 
stress concentration. Besides, the resin rich layer which contains the crack tip is very thin and 
confined by two stiff plies up and down creating a constraining effect (essentially 3-D problem). 
Thus, it can be assumed that the material near the crack tip is more likely to behave according 
to the interatomic force law rather than the constitutive law obtained from a uniaxial tension test 
of the bulk material. 

The physical meaning of fracture is that a series of two adjacent atoms are separated out 
permanently. Polymeric material has many kinds of bond types in it which links monomers first 
and then polymer chains. Some examples are carbon to carbon bonds, hydrogen bonds and Van 
der Waals bonds. Therefore, the fracture of polymeric materials accompanies a breaking of some 
combination of the different types of bonds present. No matter what bonds are broken, there 
should be a separation of interatomic bonds. Many kinds of interatomic potential laws have been 
suggested by several former researchers [12], but they all have basically the same feature that the 
interatomic force increases to negative infinity at compression, and it increases up to maximum 
strength and then decreases thereafter, approaching zero at positive infinite tension. Morse’s 
interatomic potential law [12] is chosen in this study to represent the constitutive law of the 
microscopically behaving material near the crack tip. The energy of interaction U, between two 
atoms of separation r, is given by the Morse function as 

u = UO(e-2”“~‘o’ _ 2 e~e(r-‘“‘)~ (1) 

A slight modification of the Morse potential was made to derive a constitutive law by differentiating 
the potential with respect to atomic distance r and replacing a(r - rO) with strain. The result is eq. 
(2) and depicted in Fig. 2. 

The spring length is equal to the beam thickness in the current model. Every single spring is 
divided into two parts in a series. The first part is the representation of the resin rich layer which 
posseses the crack tip and experiences very large stresses and breaks eventually, and the second 
part is the representation of all the plies and resin layers above the resin layer after homogenization. 
The resin layer which possesses the crack tip is assumed to deform according to a nonlinear Morse 
function and the beam part representing all the plies above the resin layer is assumed to behave 
linearly. Therefore we can write down two constitutive relations for each part: 

em = a(e-fl<m _ e-2B’,), (2) 

bp = Epcp, (3) 

where m and p stand for resin layer and all the plies above the resin layer, respectively. The 
parameters CK and /I, in the first equation, can be determined using two conditions. The first 
condition is that the initial slope of eq. (2) be equal to the Young’s modulus of the material, and 
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Fig. 2. Stress-strain relation based on interatomic force law and its schematic of multilinear model. 

the second condition is that the maximum strength at which the slope of the constitutive equation 
becomes zero be equal to the ultimate tensile strength of the material. After applying these two 
conditions we get 

ct in the above equation is the material’s ultimate tensile strength, and the value of this strength 
is different from the value observed in laboratory uniaxial tension tests for bulk material. Griffith, 
in his early work [13], observed the size effect on the ultimate strength of a material using glass 
fibers by changing the fiber diameters. He found that the strength of the material approached the 
theoretical fracture strength as the fiber diameter tended to zero and that it approached the bulk 
strength as the diameter became larger. Smook et al. [ 141 observed a very similar phenomenon using 
high polymer fibers of UHMWPE (ultra-high molecular weight polyethylene), and he proposed an 
equation which curve-fits his data. Chai [2,3] observed the effect of resin layer thickness on the 
fracture toughness using adhesive joints. He found that as the resin layer thickness became very 
small, the fracture toughness increased instead of decreasing continuously. The reason for this 
volume effect on material strength can be attributed to the fact that as the volume decreases the 
flaw density also decreases, making the material much stronger than the bulk state. 

Although the diameter effect on the material strength in a uniaxial tension test is not perfectly 
analogous to the thickness effect on material strength in the resin layer confined by two stiff plies 
up and down in the laminates, the trend of the volume effect for both cases can be very similar. 
Therefore, Smook’s interpolation function for a polymer is employed in this study to describe the 
resin layer strength as a function of thickness with some modifications. The Smook interpolation 
function can be re-written as 

ct = lI(KJD + l/cr,), 

where D is a fiber diameter and e0 is the strength of a flawless fiber. As the diameter becomes very 
large, the material strength goes to zero from the above equation. Thus, this equation is valid only 
up to the diameter 120 pm which is the largest fiber diameter Smook used in his experiment. The 
resin layer thicknesses of all the specimens used in this study fall into this limit, making this 
equation applicable to our problem. As the diameter goes to infinity, the bulk strength of the 
material should be used as the value for 0,. This feature has been used in the previous work [4]. 
Two modifications are needed to make use of the above equation in the present problem. The first 
one is that the resin layer thickness 2t will be used instead of the diameter D. Secondly, a different 
value of rrO, the ideal strength of the polymer, obtained from a perfectly ideal condition, will be 
used. In uniaxial tension tests of polymeric fibers, as the diameter approaches zero one single chain 
remains. This is the perfect condition for the cakulation of the ideat~stre~ngthof the-poQmerm 
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which all the chains are fully aligned, fully packed and break simultaneously. However, this 
condition can never be achieved in the case of the resin layer. Even though the layer thickness 
approaches zero, the material failure will be still in a transverse direction ahead of the crack tip 
and furthermore there is still a finite width of the beam which violates the ideal condition of 
simultaneous breaking. Several ways of obtaining rough estimates for the ideal strength can be 
found. Kanninen [13] showed that for many materials the ideal strength is E/6. Knott [15] showed 
that the ideal strength as a rough estimate is E/10. Kelly and Macmillan [12] also showed several 
methods to estimate the ideal strength of a solid, and the results mostly fell into that range 
explained by Kanninen and Knott [ 13, 151. These values of ideal strength will be used in the above 
equation for (TV. Figure 3 depicts the above equation for PEEK with an ideal strength of E/6. 

Next, the strain distribution in the spring foundation is characterized. The stress distribution 
near the crack tip obtained from a 2-D asymptotic solution has a l/J singularity because the crack 
tip is assumed to be mathematically sharp. There is, of course, no such crack in reality. Taking 
this into account, the following equation is proposed as a modification of the 2-D asymptotic 
solution, where the parameter B prevents the stress singularity and makes the strain distribution 
more realistic (Fig. 4). 

A 

‘,= (B2+z2),,4, 0~~ <t 

where A, B and C are parameters to be determined. A strain distribution instead of a stress 
distribution is proposed because the algebra becomes impossible to carry out if a stress distribution 
is assumed (due to the nonlinearity). The parameter B also determines the sharpness of the strain 
distribution throughout the resin layer thickness. The smaller B is, the sharper the strain 
distribution becomes. As an extreme case, if B approaches zero there occurs a singularity at the 
crack tip, and if B approaches infinity the strain distribution becomes constant all throughout the 
resin layer thickness. 

The above two equations should satisfy two conditions. The first is that the stress at the 
interface should be the same. Secondly, the transverse deformation of the beam is equated to the 
deformation of the spring foundation since there is no transverse deformation of the beam itself, 
i.e. 

0 

om(z = t) = a,(z = t), 

thickness 

homogenized beam 

(9) 

Fig. 3. Volume dependence of material strength. Fig. 4. Strain distribution throughout the spring length. 
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After performing the algebra, the parameters A and C are determined as a function of TV. Thus 
the eqs (7) and (8) can be rewritten as 

where 4 and $ are given by 

Cm = $(~2 1 ;2)li4 ’ 

s 

I 

Ic/ = 
dz 

o (~2 + z2>‘4 

(11) 

(12) 

(13) 

Wang [16] investigated the crack tip stress field in a DCB adhesive specimen using a finite 
element analysis. He showed that the slope of the strain distribution away from the crack tip 
depends on both the adhesive layer thickness and the ratio of Young’s modulus of the adherent 
to that of the adhesive. Near the crack tip, the slopes are independent of the thickness and the ratio 
of Young’s moduli due to the stress singularity. Thus we can assume B as a function of the resin 
layer thickness and the ratio of the Young’s modulus, 

(15) 

In this equation, 5, q and r are constants, q and r have been determined to be -0.5 and 0.2, 
respectively by matching the slopes of Wang’s results near the interface to eq. (11). 5 is still an 
unknown constant which will be determined later. 

3. FINITE ELEMENT IMPLEMENTATION 

The finite element method was employed to solve the beam on a nonlinear elastic foundation 
model. A finite element code was written for this purpose, which can incorporate material 
nonlinearities. In the following paragraphs, a brief explanation is given of how the element matrix 
equation was derived using the potential energy theorem. 

A multi-linear constitutive law model, depicted in Fig. 2, was used to model the material 
nonlinearity of the spring foundation. A nonlinear spring has in general a 1-D constitutive law as 

G = g(r). (16) 

If we suppose the strain of the spring foundation is currently at c* in an incremental way (Fig. 2) 
a linear constitutive law at the next increment can be written as 

a=E,ci-E2, (17) 

where E, and E, can be calculated as 

4 = s’(t *), (18) 

E2 = g(c *) - c *g’(c *). (19) 

For the present problem, g(E) will be replaced by eq. (2). Now the potential energy for the 
linearized system can be written as 

H = u%,, + USpring - we, (20) 



Mode I failure of laminated polymeric composites 23 

Specimen 

E7Tl/G40 
E719/IM7 

Table 1. Dimensions and material properties of the DCB specimens 

L b 2h 2r Eb* Frac. energy 

(mm) (mm) (mm) (mm) &?a, CGE6,) @pa) (N/m) 

200 15.5 9.3 35 4.1 286.8 I16 335 
200 15.1 6.45 6 3.3 304.1 I35 1130 

*Shear factor is included. 

where U denotes the strain energy and W, is the external work potential. Each of them are as 
follows; 

U,,,, = ;EI 
s 

L (w I’)’ dx, (21) 
0 

L I cm 

USpring = b 

sss 

L h cp 

CT,,, dc, dz dx + b 
0 0 c& sss 

op de,dz dx + lJ*, (22) 
0, 0 

W,=w,F,+8,M,+uJzFz+9?M?, (23) 

where U* is the strain energy the resin layer has absorbed up to t*. Now the deflection u’ can be 
approximated using beam shape functions. 

w(x)=w,N,+8,Nz+u’,N,+82N,, (24) 

where ZV-N4 are Euler-Bernoulli beam shape functions. After substituting the approximated 
deflection w(x) into eqs (21) and (22), the stationary potential energy theorem is applied to obtain 
an element matrix equation by differentiating the resulting energy equation with respect to nodal 
displacements, IV-O,. Each component of the element matrix equation is as follows; 

L 

I(?=" = EI 
1, 

s 
N:‘NI’ dx, (25) 

0 

K$- = 2b$, 
J 

L 

N, N, dx, (26) 
0 

Ri=b$, 
s 

L 

N, dx, (27) 
0 

where the indices i,j range from 1 to 4. Ri are the equivalent nodal loads created from the 
nonlinearity of the spring foundation. $, and Sz are as follows; 

$,=I El s 0 2l+F(LP + z2)‘:2 
dz + $ (log(h) - log(t)), 

I 

$2 = 
s 

-4 
o $(BZ + z2)& 

(28) 

While deriving eqs (25H27) from eqs (21)-(23), w * was taken to be a constant to save computation 
time, however, with a much finer mesh [4]. 

A mesh was generated in such a manner that the element numbering is dense near the crack 
tip and becomes sparse gradually with distance from the crack tip. The resulting global equation 
was numbered diagonally to save computer memory and computation time, and was solved using 
a banded matrix solver. The numerical loading was done by incrementing the crack opening 
displacement at the end of the beam. The loading stopped when the first spring at the crack tip 
had reached the endurable maximum strength. At this stage, the program calculates how much the 
crack has propagated and re-meshes according to the new crack length. After reaching the final 
crack length in this manner where the loading switched to unloading in the experiment, the 
numerical loading also switched to unloading making a loading and unloading curve at the very 
end. The smallest mesh size at the crack tip was about 10 pm and the increment of displacement 
was 1 pm. The computation time taken for one loop of loading and unloading was approximately 
l-2 h by a NeXT workstation computer. 
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Fig. 5. Load vs displacement curves for E719jIM7 DCB specimen. 

4. EXPERIMENTS 

Mode I fracture tests were performed to validate our current spring model (Figs 5 and 6). The 
DCB type specimens were prepared by cutting E719/IM7 and E7Tl/G40 unidirectional 48 ply 
laminated composite plates obtained from BP Chemical Corp. The dimensions and material 
properties of each specimen are shown in Table 1. The grips were specially designed to minimize 
any unnecessary moment and shear arising from the loading (Fig. l(a)). The ioading was done 
slowly at a speed of 0.4 mm/min on a screw driven Riehele testing frame, simulating static 
conditions. The crack opening displacement at the DCB ends was measured via an LVDT and the 
corresponding load was measured via a 200 lbf load cell. The instantaneous location of the crack 
tip was marked on one side of the beam which was pre-painted white to help read the crack tip 
more accurately with the aid of a magnifying glass. Both the data and time were acquired via an 
in-house data acquisition system. Figures 5 and 6 show the results of pulling force vs crack opening 
displacement curves for both specimens. 

After the tests, the sides of each cracked specimen were examined using a microscope along 
the crack line. It was found that the failure was fully interlaminar (not intralaminar) and cohesive 
even though the crack did not always propagate along the center of the resin layer. The thickness 
of the resin layer for each specimen was measured by taking the average of several measurements 
along the resin layer possessing the crack. The resin layer thickness of the E719/IM7 specimen was 
found to be 6 pm and that of the E7Tl/G40 specimen was 35 pm. Fracture toughnesses of each 
specimen were calculated using the energy method [17] by dividing the area of the loading and 
unloading cycles by the area of the cracked surface. Three point bending tests were done to obtain 

200 

a =.52.6mm 

V’ 

0 0.004 

Fig. 6. Load vs displacement curves for E7Tl/G40 DCB specimen. 
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Fig. 7. Comparisons between Chai’s data and current model for PEEK adhesive joint 

the elastic moduli in the beam direction of each beam. The elastic modulus in the transverse 
direction was calculated using Halpin and Tsai’s experimental formula [18]. 

Chai’s data [2,3] as well as experimental data obtained by the authors was used in the 
development and verification of the current model. Chai performed a series of mode I fracture tests 
using adhesive joints to examine the thickness effect on fracture toughness. He used aluminum 
beams as adherend and PEEK (thermoplastic) and BP907 (toughened thermoset) resins as 
adhesives. The failure was all cohesive for these resins, thus making his data applicable to the 
current model. Chai’s [2,3] data are reproduced in Figs 7 and 8 for the thickness range in which 
crack propagation was stable. The current model showed only stable crack growth. Thus, only the 
thickness range for which the crack growth was stable was compared to the present model 
predictions. 

5. RESULTS 

The current model simulated several experiments; Chai’s adhesive joints and mode I tests of 
the authors’ laboratory specimens. First, the current model was applied to Chai’s PEEK adhesive 
joints to determine the value of r which was an unknown in Section 2. The unknown constant 5 
was chosen to be 1.3 x 10e9 by using a trial and error method until the simulation output matched 
Chai’s data most closely. Figure 7 shows the comparisons between Chai’s experimental data of 
PEEK adhesive joint and the output of the current model. E/6 was used as an ideal strength. The 
current model reproduced Chai’s data very closely for a wide range of adhesive thickness. Once 
the value for 5 is obtained, this value was retained as a constant for any material. 

10-5 

bond thickness [ml 

Fig. 8. Comparisons between Chai’s data and current model for BP907 adhesive joint. 
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The current model was next applied to a specimen made of E719/1M7 in which the resin E7 19 
has similar chemical properties to PEEK in that they both have linear or near linear chains. The 
simulation result is shown in Fig. 5. The same formula of E/6 was used as an ideal strength and 
the same value of < was used as in Chai’s PEEK adhesive joint. The result shows an excellent 
agreement with the experimental data of loading vs crack opening displacement curves for crack 
lengths where the beam theory becomes more valid, which is toward the last loading and unloading 
curves. The fracture toughness from the experiment is 1130 J/m*, and that from our simulation is 

1225 J/m’. 
Next, the current model was applied to Chai’s BP907 adhesive joints. The resin BP907 is a 

toughened epoxy, so it has a different chemical structure from thermoplastic. Due to the nature 
of cross links, the ideal strength of a thermoset is expected to be somewhat lower than that of a 
thermoplastic. At the final stage of material failure, the thermoset material does not form a chain 
alignment, whereas thermoplastics form such an alignment producing a breaking of strong CC 
bonds. Thus a slightly lower value of ideal strength of E/S was used for this resin (BP907). The 
same value of 5 as before was also used here. Figure 8 shows the results of a simulation output. 
The results agree with experiment very closely for a wide range of practical adhesive thickness. 

Finally, the current model was applied to the E7Tl/G40 specimen. E7Tl is a regular 
thermoset. Thus an even lower ideal strength than BP907 was used. Figure 6 shows the simulation 
results for this specimen after substituting an ideal strength of E/l0 and the same value of < as 
before into the current model. The result is in excellent agreement with experiment in the region 
where beam theory becomes more valid. The fracture toughnesses calculated from experiment and 
simulation are 335 J/m* and 360 J/m2, respectively. 

6. CONCLUDING REMARKS 

The mechanical model to simulate mode I failure in a unidirectional polymeric composite DCB 
type specimen reproduced Chai’s experimental data very closely for a wide range of practical resin 
layer thickness. It also matched laboratory fracture test results obtained by the authors very closely 
for large crack lengths for which beam theory becomes more valid. The use of a better beam theory 
would result in better predictions for shorter crack lengths. 

The strength of the current model is that a global behavior of the beam created from external 
loading and a local behavior due to the presence of the crack tip are separated out. We already 
possess well established mechanics theories for modeling global behavior of structures (beams, 
plate, shell, 2-D and 3-D elasticity theories, etc.). Once the spring foundation is well characterized, 
the delamination problem of composite structures can be readily analyzed utilizing the present 
model. 

The axial and shear energy near the crack tip were not explicitly taken into account in 
this model, but they were included while characterizing the spring foundation through the 
parameter 5. 

If a mode II spring foundation is added to the current mode I spring foundation model, mixed 
mode problems can be solved without having to consider mode mixity. This new model can easily 
be used to predict the evolution of any shape of 2-D crack geometry. Indeed, the instantaneous 
planform shape of a growing crack is an output of the current model in a 2-D setting. Thus, with 
the use of the current model, “where” and “how much” the crack propagates by will be a part 
of the solution that is obtained. 

Note added in prooJ Subsequent to the work reported here, Timoshenko beam theory has been employed to model 
the crack flanges, and the agreement between theory and experiment has improved considerably. Figures 5 and 6 with 
Timoshenko theory are shown in ref. [19]. 
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