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Abstract 

Compton, K.J., Stratified least fixpoint logic, Theoretical Computer Science 131 (1994) 95-120. 

Stratified least jixpoint logic, or SLFP, characterizes the expressibility of stratified logic programs 

and, in a different formulation, has been used as a logic of imperative programs. These two 

formulations of SLFP are proved to be equivalent. A complete sequent calculus with one infinitary 

rule is given for SLFP. It is argued that SLFP is the most appropriate assertion language for 

program verification. In particular, it is shown that traditional approaches using first-order logic as 

an assertion language only restrict to interpretations where first-order logic has the same expressibil- 
ity as SLFP. 
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1. Introduction 

Although the logical foundations for both logic programming and program verifi- 

cation have been widely studied (see [4,26,7,29]), there is a close connection between 

the two that has generally gone unnoticed. We shall study a logic that was introduced 

independently by researchers in these two areas for quite different reasons. In logic 

programming, this logic characterizes the expressibility of stratified logic programs. 

For that reason we will call it stvat$ed least jxpoint logic or SLFP. This logic is 

equivalent to the formally continuous p-calculus introduced by Park [38]. We prove 

this equivalence, which is not immediately obvious, and then present a sound and 

complete sequent calculus (or Gentzen-style deductive system) for SLFP. From this 

we will derive some implications for program verification. We then argue that SLFP, 

and not first-order logic, is the most appropriate assertion language for program 

verification. Finally, we prove some results about the expressibility of SLFP showing 

that a widely used approach to the difficulties of using first-order logic as an assertion 

language really just restricts to structures where first-order logic has the same 

expressibility as SLFP. 

Stratified logic programming was devised as a means to introduce a limited form of 

negation in logic programming. The idea was first discovered by Chandra and Hare1 

[12] and has been investigated, and sometimes rediscovered, by many others (see 

[S, 6, 9, 36, 39,441). 

For Chandra and Harel, the idea arose naturally from consideration of a logic they 

called YE. We will call it existential least jixpoint logic or ELFP. This logic expresses 

the queries of (unstratified) logic programs. It has a least fixpoint operator, but allows 

only existential quantification. Also, negation may be applied only to atomic formulas 

containing no relation variables. In logic programming, this corresponds to forbid- 

ding negation of intensional symbols. (Definitions pertaining to logic programming 

are given in Section 2.) No problems arise with the queries expressed by such 

programs because intensional relations are defined by a least fixpoint construction 

from extensional relations and their complements. 

An obvious generalization is to consider programs whose relation symbols may be 

divided into strata so that the intensional relations in one stratum are defined by 

a least fixpoint construction from relations and complements of relations defined in 

lower strata. This kind of reasoning led Chandra and Hare1 to the notion of stratified 

logic programming. They did not go on to formulate a logic that corresponds to 

stratified logic programs as ELFP corresponds to logic programs without negation of 

intensional symbols, but it is straightforward to do so from their paper. (They 

mistakenly asserted that stratified logic programs have the same expressive power as 

least fixpoint logic; Dahlhaus [lS] and Kolaitis [28] gave a counterexample to this 

assertion.) 

Park [38] formulated the formally continuous p-calculus for entirely different 

reasons than Chandra and Harel. Rather than extending the expressibility of a more 

limited logic, such as ELFP, he sought to restrict the expressibility of a more general 
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logic, the p-calculus or least fixpoint logic. This logic is obtained by adding to 

first-order logic the capability to describe least fixpoints or inductive definitions. Park 

had used the ~-calculus earlier [37] as a formalism to express induction principles for 

program proving. Later Aho and Ullman [2] rediscovered this logic and proposed 

that it be used as a database query language. In Park’s formulation this logic has 

relation variables which interpret inductively defined relations: one may specify the 

least relation P(R) holding whenever 9(P, 2) holds. To guarantee the existence of such 

a relation, P is required to occur only positively in 9 (i.e., always within the scope of 

an even number of negations). This is a sufficient condition for the function Fg (I’), 

which maps P to the set of values ir satisfying 9(P,&), to be monotone. 

The least fixpoint construction justifies the term inductive definition: the least 

fixpoint of Fg results from repeated application of Fs starting from the empty relation. 

It may be necessary to apply F8 a transfinite number of times, taking unions at limit 

ordinals. If Fs happens to be continuous (i.e., F8(unew I’,)= u,,, &(I’,,) whenever 

PO c PI G ...) then this construction converges by stage o. This is often desirable from 

a computational viewpoint. Park’s idea was to further restrict the syntax of the 

p-calculus so that Fg will always be continuous, not just monotone. He required that 

negation be applied only to formulas with no free relation variables. This gives a logic 

between ELFP and least fixpoint logic. De Roever described a similar logic around 

the same time and made the observation that the sentences of his logic were “syntacti- 

cally continuous” (see [ 191). 

It is not difficult to see that ELFP is strictly less expressive than SLFP even on finite 

structures. Blass and Gurevich [ll], for example, show that ELFP sentences are 

preserved by extensions. But since SLFP contains first-order logic, there are SLFP 

sentences that are not preserved by extensions. Dahlhaus [lS] and Kolaitis [28] 

proved that on finite structures SLFP is strictly less expressive than least fixpoint 

logic. In their proofs they considered the “existential fragment” of least fixpoint logic. 

This fragment is equivalent in expressive power to SLFP. 

Kolaitis also showed that SLFP is strictly less expressive than least fixpoint logic on 

infinite structures. We will give another proof of this in Section 5 as a corollary to 

a result on the expressive power of SFLP. Our result is analogous to a theorem of 

Aczel [l] on systems of positive existential inductive definitions. These are equivalent 

to ELFP formulas containing a single simultaneous inductive definition. Chandra and 

Hare1 showed that every ELFP formula is equivalent to a formula with just one such 

inductive definition, so Aczel’s result may be viewed as a result about ELFP definabil- 

ity. From this perspective, it says that in existentially acceptable structures, the 

ELFP-definable sets are precisely the 1: sets. A structure is existentially acceptable if 

it contains an existentially definable copy of the natural numbers and an existentially 

definable relation coding all finite sequences of elements. We will show that on 

existentially acceptable structures the sets definable by SLFP sentences corresponding 

to programs with n strata are the C,O sets. 

Aczel’s result was inspired by a result of Moschovakis [35] stating that on 

acceptable structures the inductively definable sets are the II: sets. Acceptable structures 
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(sometimes also called arithmetical structures in program verification) are defined in 

the same way as existentially acceptable structures except that the condition of 

existential definability is relaxed to first-order definability. We will show that on the 

acceptable structures the SLFP definable sets are the first-order definable sets. This, 

combined with a result of Blass and Gurevich [11] showing that weakest precondi- 

tions and strongest postconditions for a programming language with recursive pro- 

cedures are expressible in ELFP, explains why acceptable structures often arise in 

program verification (see, e.g., [ 14,231). 

Hoare [24,25] originally used first-order logic as the assertion language for pro- 

gram verification. Attempts to find a complete Hoare logic for program verification 

uncovered a variety of problems. Cook [16] found a way around some of these 

problems by showing that if interpretations (structures on which programs operate) 

are required to be expressible (i.e., strongest postconditions are first-order definable), 

then Hoare logic is complete for proving partial correctness. Unfortunately, Lipton 

[32] showed that expressible interpretations are quite restricted. One approach to this 

difficulty has been to use logics other than first-order logic as the assertion language. 

In this direction Stavely [41] considered monadic logic with second-order quantifica- 

tion, Back [7, S] considered L,, w, and Leivant [31] considered full second-order 

logic. These have certain theoretical advantages, but are unsuitable for practical 

program verification. Monadic logic is expressively meager and second-order logic 

does not have a complete deductive system. Sentences of L,,, may not even be 

recursively enumerable, let alone finite. 

It is natural, in light the expressibility result of Blass and Gurevich, to ask if ELFP 

is a reasonable assertion language. ELFP seems at first to hold promise as an 

assertion language since it has a deductive system, although, as with L,,,, an 

infinitary one. However, besides the obvious drawbacks of an assertion language with 

no universal quantification, ELFP has a very conspicuous deficiency: program cor- 

rectness is not a logical property with respect to ELFP. By this we mean that a pair of 

structures may satisfy precisely the same ELFP sentences, but still there may be an 

asserted program true in one and false in the other. When we consider the modifica- 

tions needed to rectify this, we discover that we must be able to negate formulas 

with no free relation variables. This leads directly to SLFP. Both partial 

correctness and total correctness are logical notions with respect to SLFP. This 

demonstrates the superiority of SLFP over first-order logic as an assertion language. 

Partial correctness is a logical notion with respect to first-order logic, but total 

correctness is not. 

The infinitary nature of the deductive system for SLFP cannot be avoided. Neither 

ELFP nor SLFP is compact (see Compton [15]), so neither has a finitary deductive 

system. The sequent calculi we present for these logics contain just one infinitary rule. 

Since they do not contain the cut rule (see Takeuti [42]), it will follow that the 

infinitary rule can sometimes be avoided. As an example, we show rather easily that 

there is a finitary deductive system for total correctness proofs of programs with 

first-order assertions. 
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The idea of using infinitary rules for programming logics and, in particular, of 

embedding the logics in L,,,, has a long history. Engeler [20,21] was the first to do 

this in formulating an extension of first-order logic in which algorithmic properties 

could be expressed. Salwicki [40] took up and extended these ideas. Infinitary rules 

for programming logics have been used extensively since that time (see the summaries 

in Hare1 [23] and Kozen and Tiuryn [29]). We will suggest ways of dealing with 

infinitary rules. 

2. Description of the logic 

To describe SLFP, let us first look at a standard textbook example: a Datalog query 

about membership of a pair (c, d) in the reflexive, transitive closure of a binary relation 

E. (Datalog is pure Prolog with no function symbols.) 

P(x,y) +- x=y. 

P(x, Y) + E(x, z), P(z, Y). 

-? P(c,d). 

This program consists of two rules which constitute an inductive definition of 

a relation P, followed by a query about membership in P. In ELFP we would write: 

[P(x,y)-x=y V %(E(x,z)A P(z,y))]P(c,d). 

The part of the formula within the square brackets is an inductive definition of the 

relation P. This definition is used in the formula that follows. (Blass and Gurevich use 

the notation LET ... THEN rather than [ ... 1.) Notice that an inductive definition 

binds variables just as a quantifier does, so it goes before the formula. 

Now suppose that we wish to make a query as to whether there are at least three 

components. We would like to add the following to the program above. 

QO +- lP(x,~),lP(~,z),lP(z,x). 

-? QO. 

This would not be allowed in Datalog because negation is forbidden. This restric- 

tion avoids problems of convergence in examples such as 

One solution to this problem is to divide the rules defining relations into strata. 

Within each rule the only symbols that may be negated are those defined in lower 

strata. Thus, the query about three components would be allowed since the definition 

of Q may occupy a higher stratum than the definition of P, but the program where 

P appears negated within its own definition is not allowed. This is the essential idea 

behind stratified logic programs. 
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Let us make this precise. Fix a vocabulary V of constant, function, and relation 

symbols. The symbols in I/ are the extensional symbols. Also fix a set of relation 

symbols, disjoint from P’. These are the relation variables or, in data base parlance, the 

intensional symbols. Element variables will be specified by lower-case letters such as 

X,.Y,Z,Xl,X2r while relation variables will be specified by upper-case letters such as 

P and Q. Each relation variable P has a specified arity and we assume that we have 

a potentially infinite number of relation variables of each arity. We now form terms in 

the usual way using function and constant symbols in V and element variables. We 

form atomic formulas by applying either intensional or extensional relation symbols to 

tuples of terms, or by equating two terms. 

Definition 2.1. A rule is an expression of the form P(%)+-qI, . , qk, where P is an 

intensional symbol, the elements of 2 are distinct, and each Cpi is an atomic or negated 

atomic formula. P(R) is the head of the rule and the formulas Cpi form the body of the 

rule. 

This definition may appear to be more restrictive than the usual definition in logic 

programming where arbitrary terms rather distinct variables may occur in the head of 

a rule. However, since we allow equality, it can be shown that a rule of the form 

P(tl,...,tj)C(P1,...r cpk may be replaced with 

P(x 1, ... > Xj) c X,=t,,...,Xj=tj, cP1,...,(Pk. 

As we saw in the transitive closure program, the body of each rule is viewed as 

a conjunction of formulas and variables in the body that do not appear in the head are 

existentially quantified. We then take the disjunction of bodies with the same head 

before computing the least fixpoint. 

Definition 2.2. A general program is a finite set of rules in which every intensional 

symbol that occurs appears at least once at the head of a rule. 

The dependency graph of a general program is a directed graph whose vertices are 

the relation variables of the program, with (P, Q) as an edge whenever there is a rule in 

the program with P at the head and Q somewhere in the body. An edge (P,Q) is 

negative if there is a rule in the program with P at the head and Q negated somewhere 

in the body. P is dependent on Q if there is a path from P to Q in the dependency graph 

and negatively dependent if there is a path from P to Q containing a negative edge. 

A logic program is a general program in which no occurrence of an intensional symbol 

is negated. This is equivalent to saying that the dependency graph contains no 

negative edges. A strutijied logic program is a general program such that no cycle of its 

dependency graph contains a negative edge; i.e., no relation symbol is negatively 

dependent on itself. 

A query is a pair (9, P(Z), where 9’ is a logic program, P is intensional symbol 

occurring in Y, and R is a sequence of distinct element variables. A stratified query is 

defined in the same way except that Y is a stratified logic program. 
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We can now give the semantics for a stratified logic program 9. The intensional 

symbols of 9 (and thus, using their head symbols, the rules in Y) may be stratified (or 

partitioned into a linearly ordered set of classes) so that a relation variable in 

a particular stratum depends only on variables in its own or lower strata, and depends 

negatively only on variables in lower strata. The interpretations of relation variables 

are then given by the usual least fixpoint construction beginning at the lowest stratum 

and working upward. Apt et al. [6] show that the resulting interpretations of 

intensional symbols are independent of the stratification used. 

The stratified query (Y,P(?)) is interpreted by the set of tuples satisfying P(Z) when 

P is interpreted according to 9; i.e. for each I, P(Z) is assigned a truth value. When 

P is a 0-ary relation, Y simply assigns to P a truth value which is considered the 

interpretation of (9, P). 

It is useful to have a canonical stratification for a stratified logic program 9. Let 

V n+1 contain the intensional symbols P such that in the dependency graph the 

maximum number of negative edges along any directed path beginning at P is n. It is 

not difficult to see that the canonical stratification is of minimal size. The depth of 

a stratified query (Y,P) is the number of elements in the canonical stratification 

of 9. 

Now let us define the ELFP and SLFP formulas. As before, we assume that we have 

a fixed vocabulary V and a set of relation variables. 

Definition 2.3. The set 9 of ELFP formulas q over V is the least set containing the 

atomic formulas and satisfying the following conditions. 

(i) If $ is a formula in 9 containing no relation variables or quantifiers, then (1 $) 

is in 9. 

(ii) If $ and 9 are in 9, so are (rl/ V 9) and (tj A 9). 

(iii) If $ is in 9 and x is an element variable, then (3x $) is in p”. 

(iv) If $ and 9 are in g, P is a relation variable of arity k and I =(x1, . . . , xk) is 

a sequence of distinct element variables, then ([P(Z) = $I$) is in 9. The initial part of 

the formula, viz., [P(Z)= $1, is called an inductive dejinition. 

We follow the usual conventions for deleting parentheses in formulas. 

Definition 2.4. For each ELFP formula cp definefree( the set of free variables in cp, 

and the free occurrences of variables in cp. When cp is atomic, free(q) is the set of 

element and relation variables in cp; all occurrences of variables in cp are free. Free 

variables in formulas constructed using logical connectives and quantifiers are 

handled in the usual way. Finally, 

The free occurrences of variables in [P(Z) s F,] $ are the free occurrences of variables 

offree((P,xi, . . . , Xj> in 9 and the free occurrences of variables fromfree - {P} 

in $. As usual, a sentence is a formula with no free variables. 
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Let us now give the analogous definitions for SLFP. Strictly speaking, the notions 

of formula and free variable should be defined by simultaneous induction. 

Definition 2.5. Inductively define the set B of SLFP formulas by making two 

modifications in the definition of ELFP formulas above. First, condition (i) is replaced 

with the following. 

(i’) If $ is a formula in 9 containing no free relation variables, then (1 $) is in F-. 

In addition, it is convenient (though it does not increase expressive power) for 

formulas to contain universal quantifiers. We add the following condition. 

(v’) If $ is a formula in Y containing no free relation symbols and x is an element 

variable, then (Vx II/) is in 9. 

To define the notion of a free variable and a free occurrence of a variable in an SLFP 

formula, add the obvious condition to cover universal quantification. 

When we write q(x/t) we mean that term t has been substituted for all free 

occurrences of the element variable x in qn. All uses of this notation are subject to the 

proviso that occurrences of variables in t be free wherever t is substituted. In the case 

where t is just a single variable y we often write q(y) rather than q(x/y). The notation 

lcp is defined only when cp contains no free relation variables. The notation cp(P/p) 

means that all subformulas of cp containing free occurrences of the relation variable 

P are replaced by formula p. (To be precise, we should specify a sequence of k distinct 

element variables in p, where k is the arity of P; the correspondence between element 

variables of P and element variables of p will always be clear from the context.) All 

uses of this notation are subject to the proviso that free occurrences of variables in 

p remain free wherever p is substituted. 

We now give the semantics of ELFP and SLFP formulas. As usual, we define by 

induction on 40 the relation 2IJ= cp [cl] (2I satisJies cp at a), where a is an assignment in 

2I. More precisely, suppose CP has free relation variables PI, . . . , Pk, with respective 

arities j, , . . . ,jk, and free element variables x1,x2, . . ,x1. Fix a structure 2I. An 

assignment CI for cp can be represented as a sequence (R,, R1, . . . , Rk, al, . . . , al), where 

each Ri is a ji-ary relation on ‘$I and each Ui is an element of ‘Ql. With cp we will 

associate a function F, mapping sequences (R 1, R,, . . , Rk) to I-ary relations on ‘?I: 

F,(~~,RZ,...,R~)={(~,,...,~~)I’UI=~~C~,,R~,...,R~,~~,...,~,~). 

Simultaneously with our definition of satisfaction, we also show that F, is continu- 

ous; i.e., that 

for all chains (Rip ) /I < 2) of ji-ary relations. Notice that if F,,, is continuous, it is 

monotone as well; i.e., F,(R,, . . . , Rk) G F,(R;, . . . , R;) whenever RI E R\, . . . , Rk C R;. 
By a continuous (or monotone) formula, we mean a formula cp such that F, is 

continuous (or monotone). 
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If cp is atomic, then (211= cp [z] is defined in the usual way and F, is clearly 

continuous. Also, if q is a disjunction, conjunction, negation, or quantified formula, 

%I= ~[a] is again defined in the usual way, and it is not difficult to see that q is 

continuous. (Notice, however, that it is crucial that negations are not applied to 

formulas with free relation variables.) 

We now define 2I I= cp [a] when cp is of the form [P(? ) = 8]$ assuming 9 and $ are 

continuous and their truth values have been defined for all assignments. Now let 3 be 

the free element variables of 9 other than those in 2 and let 0 be the free relation 

variables of 9 other than P. We can write 9= $(Z,y,P, 0). Suppose that CI assigns 

values 6 to the variables j and 3 to the variables 0. Let G&R)= 

(2 ( ‘i!l/= 9[& 6, R, s]}. Then (2, ~)EF~(R, 3) if and only if a’EGg,S(R). GI;,s is a mapping 

from k-ary relations to k-ary relations. It is not difficult to see that if Fg is continuous, 

then so is Gg,s. In particular, GI;.s is monotone and hence has a least fixpoint by the 

Least Fixpoint Theorem (or at least by one of the theorems that go by this name; see 

Lassez et al. [30]). 

The well-known construction of the least fixpoint of a monotone function is as 

follows. Let Gi 3(R)= R, Gff,i’(R)= Gi;,s(G&(R)) and if /I is a limit ordinal, 

Ga S(R)= U,,,G&(R). By induction Gi;“S(@ E G$,s(@) whenever fi<y. On each struc- 

ture there is a smallest ordinal K (called the closure ordinal of the inductive definition 

[P(Z)= sl]) such that G&(0)=GX,s(O) w h enever /i’3 K. GX s(0) is the least fixpoint of 

Gs,~. Since Gg,s is continuous, it follows that K <o (see [3d]). Thus 2I I= cp [z] holds in 

case ‘?I+ II/[&J, where CI’ is identical to x except that it assigns Gc#& to P. 

It will be useful to define, for each nonnegative integer m, the formula 

9I I= [P(Z) = 91, $ [a] just in case 2Il= Y [a”], where 1” is identical to M except that it 

assigns Cm(@) to P. We regard this formula as an abbreviation. Construct a sequence 

offormulasp,,p,,p,, . . . , where p,, is the formula 3x (1 x = x) and pm + 1 is the formula 

&P/p,). Then [P(I)= a&, $ is an abbreviation for $(P/p,,J. Call this formula (Pi. 

It is easy to see that since F, and Fti are continuous, so are the functions Fqm. 

Moreover, by the discussion above and the continuity of $Y the sequence 

Frpo,FV,,FP2> . . . is a chain (in the partial order of function dominance) with supremum 

F,. Since the supremum of a chain of continuous functions is continuous, FV is 

continuous. (See Theorem 4.18 of Loeckx and Sieber [33].) It follows that 

[P(g)= $1 t,b is equivalent to the infinite disjunction 

v cm=an1CI. 
rnEW 

We summarize our observations in the following theorem. 

Theorem 2.6. The following hold for ELFP and SLFP. 

(i) All formulas are continuous (and hence monotone). 

(ii) The closure ordinal of any inductive dejinition is at most CO. 
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(iii) [P(Z) = $1 * is equivalent to V,,, [P(2) = 81m II/. Thus every sentence is equiua- 

lent to a sentence of L,,,. 

This theorem is due to Park [38]. Part (ii) of this theorem was observed by Aczel [l] 

for systems of existential inductive definitions. Blass and Gurevich [ 1 l] observed that 

(ii) is true for ELFP formulas. 

In practice we extend the definitions of ELFP and SLFP to cover simultaneous 

inductive definitions, as Blass and Gurevich did in their definition of ELFP. By this we 

mean that rather than a single relation variable P and formula 9, we allow multiple 

relation variables and formulas in inductive definitions. Thus, we allow formulas of 

the form 

where we make the obvious modifications to define several relations simultaneously. 

This does not change the expressive power of the logic, nor any of the results above. 

A formula with simultaneous inductive definitions may always be transformed into an 

equivalent formula with only simple inductive definitions. This was first proved by 

Chandra and Hare1 [12]; their proof was based on a similar result of Moschovakis 

[35] for inductive definitions. Exactly the same construction works for SLFP. We also 

define the formula 

analogously to the formula [P(Z) = 91, $. 

Definition 2.7. The negation rank of an SLFP formula is defined as follows. The 

negation rank of a formula containing no quantifiers or inductive definitions is 1. The 

negation rank of cp V $ and cp A rc/ is the maximum of the negation ranks of cp and $. 

The negation rank of 

is the maximum of the negation rank of 9r, . . ,& and $. The negation rank of 3x cp is 

the negation rank of cp. If cp contains a quantifier or inductive definition, the negation 

rank of 1 cp is one more than the negation rank of cp. 

Now we show that SLFP formulas have the same expressibility as stratified queries. 

Let us say precisely what we mean by the equivalence of SLFP formulas and stratified 

queries. Suppose that s(3) is a SLFP formula over a vocabulary V with free element 

variables I and I” as its set of free relation variables. Suppose that (Y,P(Z)) is 

a stratified query whose set of extensional symbols is Vu V’. Then 9 is equivalent to 

(9,P(1)) if for every fixed interpretation of the symbols in Vu V’, the tuples of 

elements satisfying 9(Z) are precisely the tuples of elements satisfying (9, P(2)). 
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Theorem 2.8. Let n be a positive integer. For every stratijied query (Y, P) of depth n, 

there is an equivalent SLFP formula q of negation rank n with no free relation variables. 

Conversely, for every SLFP formula of negation rank n, there is an equivalent stratijed 

query of depth n. 

Proof. The first half of the theorem is proved by induction on n. The base case n = 1 is 

easy. It was essentially proved by Chandra and Hare1 [12]. 

Suppose that (9, P(2)) is a stratified query of depth n and that the theorem is true 

for all stratified queries of smaller depth. We must produce an SLFP formula (p&Z) of 

negation rank at most n equivalent to (Y, P(2)). 

Let Vi, . . . , V, be the canonical stratification of the intensional symbols in 9’ and 

Yi be the set of rules in Y whose heads are in vi. Notice that 9” = Y1 u ... u Yn_ 1 is 

a stratified logic program of depth n- 1 and that any relation symbol in 

V’ = Vi u ... u V,- 1 has the same interpretation in 9” as in 9. Thus, if P is in V’, we 

know by the induction hypothesis that there is an SLFP formula qp equivalent to the 

a query (Y’, P). Note that ‘pp has no free relation variables and has depth at most n - 1. 

Now consider the case where P is in V,. Let PI, . . . , Pk be the relation variables in 

V,, where P is PI, say. Without loss of generality, we may suppose that the heads of all 

rules where Pi appears are of the form Pi for fixed sequences of variables Zi. 

Consider one such rule. It has a sequence of atomic and negated atomic formulas in its 

body. In each formula of the body that mentions a relation symbol Q from V’, replace 

Q with the formula qe described in the previous paragraph, then take the conjunction 

of the resulting sequence of formulas and existentially quantify all element variables 

not appearing in Ii. For each rule with Pi at the head this gives an SLFP formula. Its 

negation rank is at most n since we have applied negation at most once to the 

formulas of depth at most n- 1. The free relation variables in each such formula are 

included in PI, . , Pk. Now take the disjunction of all such formula over rules with 

Pi at the head to form a formula Si of depth at most n. The formula cp given by 

is of depth at most n and is equivalent to (Y,P(Z)). (At this step the status of the 

symbols Pi changes. They are relation symbols in the vocabulary of $i and relation 

variables in q.) 

Let us prove the other half of the theorem. We show by induction on formula 

complexity that every SLFP formula cp of negation rank at most n is equivalent to 

a stratified query (Y,P(?)) of depth at most n. We require also in our induction 

hypothesis that no intensional symbol in Y be negatively dependent on a free relation 

variable in 9. (Recall that the extensional symbols in Y are the symbols in the 

vocabulary of cp together with the free relation variables in cp.) 

The induction hypothesis is clear for atomic formulas. 

Let 9 and $ be SLFP formulas equivalent to stratified queries (pi, PI (?GI)) and 

(Yz, P2(Z2)), respectively, as in the statement of the induction hypothesis. We consider 
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the various operations for building SLFP formulas from 9 and $. We may suppose 

that Y1 and Yz have disjoint sets of intensional variables. 

The formula 9 V I) is equivalent to (9, P(P)), where 2 contains all the variables in 

I1 and Iz, and 9’ contains all the rules in Yi and 9, and, in addition, the rules 

p(?)tP,(%i) and P(s)+-P,(Z,). To obtain a stratified program for 8A $ we do 

the same thing except that we instead add the rule P(I)+P,(I,), P2(Z2). Notice 

that in both these cases the depth of Y is the maximum of the depths of .4p1 and Ypz. 

Also, no new negative dependencies on free relation variables in 9 and II/ arise in 

constructing Y. 

Formula 3~8 is equivalent to (9, P(Z)), where I contains all the variables in 

JIi except y and 9’ contains the rules in Y1 and the rule P(~)+Pl(~-,). Here depth is 

unchanged and no new negative dependencies on free relation variables arise in the 

construction of 9. 

Now 1 8 is defined only if 9 has no free relation variables. Thus, it is equivalent to 

(9, P(Zl)), where .4p contains the rules in 9, and the rule P(Z)+-1 P1(I,). Here depth 

increases by one, as does the negation rank of the formula. Also, no intensional 

symbol in Y can be negatively dependent on a free relation variable in 1 9 because 

there are none. 

Finally, consider the formula [P(Z)= 9]$. To avoid trivialities we may suppose 

that P is free in both 9 and $. By the induction hypothesis, 3 and $ are equivalent to 

the stratified queries (Yl,P1(Zl)) and (Y2,P2(Z2)), respectively. P is an extensional 

variable in both Yi and Y2. It might seem that we should form a new stratified 

program Y by taking the union of 9’i and Y2 and adding the rule P(Z)+PI@,) (so 
that P becomes an intensional variable whose interpretation is a fixpoint). The 

problem with this is that the semantics of inductive definitions differs between SLFP 

and stratified programs. In SLFP the free variables of 9 not in I are free in the 

inductive definition [P(Z) = 91. In a stratified program, the variables in I, not in 2 are 

existentially quantified in the rule P(Z)-P1(Z1). We resolve this difficulty by increas- 

ing the arity of P so that there are no existentially quantified variables in the stratified 

program. 

Let 3 be the sequence of variables of Zi and g2 not in I and let P’ be a new relation 

variable whose arity is the length of (Z,?). Replace occurrences of P(Ti') in 9 and 

Ic/ with P'(_?, j) to obtain new formulas 9’ and $’ with the same negation ranks. (It may 

be necessary to change some of the bound variables in 9 and $ to avoid conflicts.) 

There is a natural correspondence between the subformulas of $ and $‘. 

Let us show that [P(Z)= 8]$ is equivalent to [P'(Z,$)- #I$'. Let 

Gi;,~(R)={21‘2I+ S[&&R,S]} and H~(R’)=((6,&)]2t+ 9’[&6,R’,S]}. By induc- 

tion on n,LiEGLS 
(2, &H$(@). 

, (8) if and only if (2, ~)EH~(Q)). Hence, ZE Gts(@) if and only if 

Now we need to show 

2I I= I,Y [& 6, H; (fj), 31. 
that 2I + $ [Z, 6, Gr3(0), 31 if and only if 

Th is is proved by induction on the structure of $ and I,V. More 

precisely, we show that subformulas of $ are equivalent to corresponding subformulas 

of I+V under the assignments indicated. (For some subformulas these may be partial 
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assignments due to the presence of additional free variables, but it still makes sense to 

speak of equivalence of corresponding subformulas.) The base case of the induction 

follows from the previous paragraph. The induction steps for connectives, quantifiers, 

and inductive definitions are straightforward. 

There are stratified queries (Yi,P;(I,)) and (9’4p;,P;(Z2)) equivalent to 9’ and I/I’. 

We may suppose that 9’; and 9’; have disjoint sets of intensional variables. Also, by 

the induction hypothesis, we know that in 9; symbol Pi is not negatively dependent 

on P’. 

We now form Y’ by taking the union of 9; and 9; and adding the rule 

P’(Z, j) cP; ($3). This is a stratified program because no negative dependencies have 

been introduced. There is no implicit existential quantification in the added rule, so 

(Y’, P’) is equivalent to [P(2) z9]$. Also, no intensional symbol in Y’ is negatively 

dependent on any free variable in [P(Z)= $1 II/. The negation rank of 9” is the 

maximum of the negation ranks of 9’; and 9’“;. 0 

The following example illustrates how the second half of this proof works. Consider 

a structure with a ternary relation E(x, y, z). We regard this as a collection of edge 

relations indexed by z. The following SLFP formula defines the set of indices z such 

that E(. , . , z) is connected: 

~x,Ycw,y)=x=Y v ~W(x,w4 A W,Y))l~(X,Y). 

To find an equivalent stratified program we must first write an equivalent formula 

Vx,y[P’(x,y,z)=x=y v 3w(E(x,w,z) A P’(w,y,z))]P(x,y,z). 

What we have done is analogous to the programming practice of replacing global 

variables in procedures with parameters. The stratified program is 

P'(x,y,z) + x=y. 

P'(x,Y,z) + E(x,w,z),P'(w,~,z). 

Q(x, Y,Z) + ~P'(x,Y,z). 

R(z) + Q(x>Y,z). 

S(z) + lR(Z). 

-? S(z). 

3. A deductive system for SLFP 

We now present a sequent calculus, denoted LS, for SLFP. The rules of this calculus 

are not difficult to formulate now that we have Theorem 2.6 showing that SLFP 

formulas may be easily translated into L,,, formulas. We need only make suitable 

modifications of a deductive system for L,,,. Karp [27] was the first to prove the 
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completeness of a deductive system for L,,,. Our system is based on a sequent 

calculus for L,,, due to Lopez-Escobar [34]. One notable feature of this calculus is 

a pair of proof rules for equality that circumvent some of the usual problems with 

equality in cut-free sequent calculi. Lopez-Escobar attributes this rule to Maehara 

and Takeuti. (We would not encounter difficulties in subsequent sections if we 

followed the traditional approach of allowing equational cuts, as in [42] for example. 

Indeed, we could allow quantifier-free, definition-free cuts. But we do not need to state 

special exceptions in the definition of cut-freeness and the proof of completeness for 

systems with the Maehara-Takeuti equality rules proceeds a little more smoothly. See 

um 
We observe the following conventions. Lower-case Greek letters denote SLFP 

formulas. Upper-case Greek letters denote sets of SLFP formulas. r, d denotes r u A. 

r, q denotes Tu { cp}. A sequent is an expression of the form rk A. In general, 

a formula cp occurring as part of a sequent denotes the set {cp>. Finally, t1 A t, 

indicates that either t1 = t2 or t2 = t1 may be used. 

We may regard the rules of the calculus as inductively defining a binary relation 

E holding between sets of SLFP formulas: the lower sequent (located below the line) 

holds if the upper sequents (above the line) hold. The axioms of the calculus are the 

base cases for the induction. Gentzen’s sequent calculus LK used sequences of 

formulas rather than sets. By working with sets we may ignore two of the so-called 

“weak” rules of inference, viz. the rules of contraction and exchange (see Takeuti [42]). 

The rule ([I F) in our calculus is infinitary: it has countably many upper sequents. 

In Compton [15] it is shown that ELFP is not compact, so SLFP is also not compact. 

It follows that we must have some sort of infinitary rule in any complete sequent 

calculus for SLFP. 

As usual, r t cp will mean that every model of r satisfies cp and r I= A will mean that 

every model of r satisfies some formula in A. (When A is empty, this is interpreted to 

mean that r has no models). 

Definition 3.1. The axioms of LS are sequents of the form cp t cp, where cp is a formula 

of ELFP, and 8 I- t = t, where t is a term. 

Definition 3.2. The rules for LS are as follows. (All sentences and sets of sentences are 

from SLFP.) 

l-t-d TtA 
(*k_) ~ 

T,Cl-A 
(k*) ___ 

l-tA,C 

(tl) 
r,*t-d 
rtA,l$ 
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(k A) 
l-t-A,* l-l-A,9 

rl-A,l$bA$ 

(t-V) 
r t4bw 

i- ä ~VY$(Y) 
x#free(ruA) 

(Cl w 
r,[P(I)=q,$ Ed (mm4 r kA,[P(I)~9],,,$ 

r,[P(2)=9]$ tA (t--c3) r t-A,[P(I)=lqlj 

Rules (* k) and (k- *) are, respectively, the left and right weakening rules. Rules (S E) 

and ( t S) are the left and right substitution rules. The other rules introduce the various 

operations on formulas on the left and right sides of sequents. Notice that in the rule 

(k [I) there is just one upper sequent: m is a fixed nonnegative integer. We have stated 

the rules ([I l-) and (F [I) for formulas with simple inductive definitions, but we 

intend the rules to apply also to formulas with simultaneous inductive definitions. 

Definition 3.3. The sequent calculus LE for ELFP is defined exactly as above except 

that the rules (V t-) and ( F V) are deleted and all sentences and sets of sentences are 

from ELFP. The set of theorems of LS is the least set of SLFP sequents containing the 

axioms and closed under the rules of inference of LS and similarly for LE. 

We have not included the familiar cut rule 

in either LE or LS. In Compton [15], we prove completeness of LE without the cut 

rule. The same proof works for LS. We have the following results. 

Theorem 3.4. (Soundness and completeness theorem for LE and LS). (i) Suppose 

r and A are sets of ELFP sentences. Then r Ed is a theorem of LE if and only if r /= A. 

(ii) Suppose r and A are sets of SLFP sentences. Then r Ed is a theorem of LE if 

and only if r I= A. 

4. A logic for program verification? 

In this section we will look at verification of programs written in an imperative 

language. The term program will no longer mean logic program or general program as 

it did in earlier sections. Let us first review some of the basics of program verification. 
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The state of a program is represented by an assignment CI of elements from 

a structure Cu to the program variables. In the literature of program verification, an 

assignment is called a state and a structure is called an interpretation. 

Program execution changes the state: it assigns new values to the program variables. 

A logic such as first-order logic or ELFP serves as an assertion language; it is used to 

make assertions about states. Verification is a matter of showing that if certain 

assertions hold of the initial state a program, then other assertions hold of the final 

state. 

Definition 4.1. Let cp(Z) and $(?) be formulas and Y be a program with variables 1. 

An asserted program is an expression of the form { cp} Y {II/}. 

BY a I= {cp> 9 {Icl> we mean that if Y begins in state M, (11 b cp [a], and 9’ halts in 

state 8, then %!I I= $[/I]. Notice that if Y does not halt, then M I= {cp} Y {$} is true by 

default. This defines the notion of partial correctness of an asserted program in 

an interpretation M. By I= { 9) Y {$} we mean that 9I I= { cp} S { $} holds for every 

2I. 

BY a Ii= {cp> 9 ($1 we mean that if Y begins in a state CI and 2I I=cp[~], then 

9’ halts in a state b such that (11 I= $ [PI. This defines the notion of total correctness 

of an asserted program in an interpretation 2l. By I+ (cp} 9 {tj} we mean that 

2I I+ {cp} Y(Ic/> holds for every Cu. 

Fix an ordering of the variables of 9 so that a state may be represented as 

a sequence zi of elements from ‘QI. The state transformer of a program 9’ under an 

interpretation QI is the relation consisting of all pairs (li, 6 ) where Y halts in state 

6 whenever it begins in state Z. Blass and Gurevich [l l] showed that the state 

transformers for programs written in a while-language with recursive procedures can 

be defined in ELFP. That is, for every program 9, there is an ELFP formula ry (SE, ; ) 

that defines the state transformer of Y on every interpretation. ELFP is well suited for 

defining the state transformers of programming languages with continuous semantics, 

including languages with recursive procedures, and even some nondeterministic, 

parallel, and distributed languages. Fixpoint constructions are fundamental in defin- 

ing the semantics of these languages, and in most cases ELFP suffices to describe these 

constructions. We note, however, that the example given by Clarke [ 143 of a program- 

ming language whose halting problem is undecidable on finite interpretations is not 

amenable to this approach. 

We illustrate these ideas using the simple while-language in Section 2 of Apt [3]. 

A program consists either of a single assignment statement xi:= t, where t is a term, or 

is built from simpler programs according to the following rules. 

(i) If 9 and r are programs, then so is Y ; F. 

(ii) If fl is a first-order quantifier free formula and Y and Y are programs, then so 

is if /I then Y else F fi. 

(iii) If /I is a first-order quantifier free formula and Y is a program, then so is 

while j3 do 9’ od. 
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The results in the remainder of this section will be with respect to this programming 

language, but there is no difficulty in extending it to more general languages for which 

Hoare logics have been worked out. 

It is a simple matter to define the state transformers ry(xl, . . . , xk,yi, . . . , yk) for 

programs in this language. The state transformer for Xi:= t is 

AXj=yjAyi=t. 

j#i 

The state transformer for 9’ ; f is 

3Z(zy(Z,Z) A t,-(z,y)). 

The state transformer for if /I(Z) then Y else F fi is 

(B(Z) A r,(JE,8) v (lP(Z) A r,_(%j)). 

Finally, the state transformer of while fi do Y od is 

Here the inductively defined relation P “collects” the states the program is in 

whenever the Boolean expression fi is evaluated. Notice the similarity to the logic 

program for computing reflexive, transitive closure at the beginning of Section 2. 

Notice also that if Boolean expressions in if-statements and while-statements were 

allowed to contain quantifiers then it would be necessary to use SLFP to express the 

state transformer. 

It is well known that partial and total correctness may be expressed in terms of state 

transformers (see [43]). 

The statement QI I= (40) 9’{$} is equivalent to the statement that if 

‘$I I= 31((p(I) A r,(l, g)), then Cu l= $(6). It follows by the Completeness Theorem for 

LE (or LS) that whenever cp and $ are ELFP (or SLFP) sentences then )= (q} Y {II/} is 

equivalent to 

The formula X((p (2 ) A zy (2, j )) is called the strongest postcondition of cp and Y. We 

see then that if we take the class of all interpretations, partial correctness of an asserted 

program with ELFP assertions can be expressed as a sequent of LE. (Note that this 

forces us to use the formulation of partial correctness in terms of strongest postcondi- 

tions. The equivalent formulation 

which uses the so-called weakest liberal precondition or weakest precondition for partial 

correctness Vj(ty(jZ, j)-+$(Z)) takes us beyond ELFP since it introduces universal 

quantifiers.) 
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Similarly, the statement 2I I+ {q} Y I$} is e q uivalent to the statement that if 

$8 /= cp(li ), then 2l I= $($(y ) A rs/’ (li,3; )). Again by the Completeness Theorem for LE 

(or LS), whenever q and $ are ELFP (or SLFP) sentences then I= (cp> Y {$} is 

equivalent to 

The formula 3i($(;) A r:/(Z, j)) is called the weakest precondition of $ and Y. 

Therefore, if we again take the class of u/l interpretations, total correctness of an 

asserted program with ELFP assertions can be expressed as a sequent of LE. 

It might seem then that we do not need SLFP because we can verify programs by 

expressing partial or total correctness statements as sequents of LE. But we encounter 

difficulties if we do this. There is, of course, the likelihood that we would want to make 

assertions containing universal quantifiers. An even more fundamental objection is 

that we are usually interested in verification for a particular interpretation, such as the 

natural numbers, or for a restricted class of interpretations. In the case of a particular 

interpretation ?I it is customary to take Th((U), the set of sentences of the assertion 

language true in 2I, as given. For partial correctness, then, we would want to establish 

something like 

This cannot work. The problem is that partial correctness is not a logical notion with 

respect to ELFP. By this we mean that two interpretations ‘?I and 23 may satisfy 

precisely the same ELFP sentences, but differ as to partial correctness of some 

asserted program. This rules out ELFP as an assertion language. 

Here is a simple example. Let 2l be the set of rational numbers in the open interval 

(0,l) with the usual order. Let 23 be the set of rational numbers in the closed interval 

[O,l] with the usual order. Note that 2I and %3 embed into each other. Blass and 

Gurevich [11] showed that ELFP sentences are preserved by embeddings, so it 

follows that ‘2l and 23 satisfy the same ELFP sentences. Let cp be the formula x=x, 

$ be the formula 3y(y < x), and .Y be the program x:=x. Then 2I + { cp} 9 {$} but this 

is not the case for 23. 

We must therefore extend the assertion language. It is reasonable to suppose that 

assertions contain no free relation variables. Now ‘3 + (cp} 9’ {II/} is equivalent to 

‘X I= 1(32(4+) A z&,3)) v ICI(?) 

and 2l /= (cp} Y ($1 is equivalent to 

‘U j= lcp(I)V 3j(lj(j; A z.y(Z,j)). 

We see that we need to be able to negate formulas without free relation variables. In 

other words, we need SLFP. From our discussion we have the following result. 

Proposition 4.2. Partial correctness and total correctness are logical notions with 

respect to SLFP, provided that assertions contain no free relation variables. 
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Partial and total correctness of asserted programs can be proved by translating to 

SLFP. Of course, we then have the problem of dealing with an infinitary rule. We will 

say more about this in the next section. 

It is interesting to contrast Proposition 4.2 with the situation for first-order logic as 

an assertion language. Partial correctness is a logical notion with respect to first-order 

logic (see Lemma 8.7 of [33]), but total correctness is not, as this example from the 

proof of Theorem 3 in Apt [3] shows. Let cp and $ be tautologies and Y be the 

program while x > 0 do x:= x - 1 od. We are using x - 1 as a notation for predecessor of 

x. Then ‘9I I= {cp} 9 {$}, where 2I is the standard model of Peano arithmetic, but this 

is not the case for any nonstandard model elementarily equivalent to ‘?I. 

The difficulties researchers have encountered with total correctness arise precisely 

because total correctness is not a logical notion with respect to first-order logic. We 

believe that this is a strong argument for SLFP as an assertion language. The most 

widely accepted approach to total correctness when first-order logic is the assertion 

language is due to Hare1 [22]. It assumes that we work over a class of structures in 

which the natural numbers are first-order definable. The proof rule for while-state- 

ments then takes advantage of the well-foundedness of the natural numbers. This may 

seem to be a reasonable approach, especially since it does not introduce an infinitary 

rule, but as we shall see in the next section SLFP has the same expressibility as 

first-order logic on acceptable structures, which, by definition, are structures on which 

the natural numbers and finite sequences are first-order definable. Thus, if we make 

a similar restriction to Harel’s, we can dispense with the infinitary rule in LS. 

The lack of a cut rule in LS has a rather surprising consequence in the classical total 

correctness framework where first-order logic is the assertion language. We show that 

total correctness over all interpretations can be proved in a finitary deductive system. 

Theorem 4.3. Let q and $ be first-order formulas and 9’ be a program whose state 
transformer is expressible in ELFP. Then jk (cp} Y {$} if and only if 

V(2) k3(W) A MY) 

can be proved in LS without the infinitary rule ([I k). 

Proof. The forward direction is a direct consequence of having no cut rule in LS. 

Since cp is a first-order formula it contains no inductive definitions. Since zY is an 

ELFP formula, it contains no inductive definition within the scope of a negation. 

Thus, in the LS proof we do not use ([I k). The converse direction is immediate. 0 

This theorem may appear to be good news, but in fact is shows how little can be 

said about total correctness over all interpretations. Monotonicity is the only prop- 

erty of inductive definitions used. This theorem may be viewed as a generalization of 

an early theorem of Engeler [20] showing that total correctness of simple while- 

programs can be determined by bounding the number of loop iterations in a program. 

This is essentially what the rule (k [I) does. 
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We close this section with a result on Hoare logic for partial correctness. Hoare 

logic [24,25] is a deductive system for inferring correctness of asserted programs. 

Cook [16] showed that a Hoare logic similar to the one presented below is complete 

for proving partial correctness on expressible interpretations (interpretations where 

strongest postconditions are first-order definable) when first-order logic is the asser- 

tion language. Lipton [32] showed that expressible structures are either finite or 

satisfy a very strong condition, viz., that the natural numbers with addition and 

multiplication be first-order definable. This kind of problem with expressibility led 

Blass and Gurevich [l l] to search for a logic in which strongest postconditions are 

definable; they found ELFP. As we have seen, it is not possible to go farther and use 

ELFP as an assertion language. However, it is natural to ask if SLFP is a good 

assertion language for Hoare logic. The answer, we believe, is yes. 

Consider the following logic for the programming language introduced in this 

section. (This is based on the presentation in Apt [3].) It has one axiom 

{ q(x/t)} x:= t {q(x)} and four rules of inference: 

In the last rule, known as the consequence rule it is customary to have formulas (p+(p’ 

and $‘+$ rather than sequents cp l-q’ and $’ +$. The reason for this is that in partial 

correctness proofs for a particular interpretation or class of interpretations the 

standard approach assumes that the formulas (p+(p’ and $‘+$ are given by an oracle 

that decides validity in this interpretation or class. We take the point of view here that 

program verification should not assume an oracle to determine validity of formulas: 

formulas (or sequents) should be proved. We can fix a set of sentences r (possibly the 

set of sentences true in a particular interpretation or class, or possibly a much smaller 

set of sentences) and obtain the following modified consequence rule: 

Let us call the deductive system consisting of the rules and axioms of LS together with 

the rules of Hoare logic above (with the modified consequence rule) Hr. 

Theorem 4.4 (Completeness theorem for Hoare logic). H,- is a complete deductive 

system for proving partial correctness of asserted programs on interpretations satisfying 

r provided assertions have no free relation variables. 

Proof. The proof is very much like Cook’s proof [14] except that we use identities 

between SLFP formulas rather than Cook’s expressiveness hypothesis. The idea of the 
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proof is to show by induction on the structure of Y that if 2I I= (cp(l)} ,4p($(Z)} for 

all ‘?I satisfying r, then {q> Y {$> is a theorem of Hr. We follow the presentation of 

this proof in Section 2.8 of Apt [3] for the simple programming language presented in 

this section. Cook’s original proof for a more general programming language, and 

proofs for programming languages given in later sections in Apt’s paper, can be 

treated similarly. 

We consider only the case where 9’ is a program of the form while p do 9” od, the 

other cases being straightforward. Suppose that ‘?I )= {q(Z)} 9’{$(%)) for all Zl 

satisfying r. We claim that it is enough to show that there is a loop inuariant p(Z) 

such that these three conditions hold: 

The last condition is equivalent to saying that 2I I= {p(S) A /3(Z)} 9” (p(Z)} for all 

2I satisfying r. By the induction hypothesis, {p(Z) A p(Z)} 9” {p(Z)} is a theorem of 

H,- and thus, by the while-rule, so is {p(Z)} 9’ {p(g) A 1 p(Z)}. The first two condi- 

tions and the modified consequence rule imply that {cp(Z)} 9’ ($(Z )} is a theorem 

of Hr. 
How do we construct p(Z )? Regard the first and third conditions above as parts 

of an inductive definition: we would like p(Z) to hold if either cp(Jz) or 

p(j) A b(j) A tyyl(j, I ) hold. Hence the first and third conditions are satisfied if we 

take p(Z) to be 

[J’(Z)=&:) V 3%(P(6) A /3(G) A ~,,(i;,ii))] P(P). 

By hypothesis, 

so by the definition of the state transformer for Y we have 

r,cp(~),lB(Jj),[p(L;)=~=~ v 3iG(P(G) A p(G) V T,~~(~,~))]P(~)I= II/(j). 

This is equivalent to 

which implies the second condition above. [? 

The close connection between inductive definitions and loop invariants in this proof 

is not surprising. It is well known in the literature of program verification that 

invariants are fixpoints (see 1131). 
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5. Expressibility on acceptable structures 

We have argued that SLFP is the appropriate assertion language for program 

verification. The difficulty with SLFP is in finding ways to deal with the infinitary rule 

([I k). We saw in the last section that the lack of a cut rule in LS sometimes allows us 

to show that ([I k) is unnecessary. In this section we show that the most widely used 

restriction to deal with the problems of first-order logic as an assertion language also 

eliminates the need for an infinitary rule in SLFP. 

We mentioned in the last section that to handle total correctness Hare1 [22] 

suggested restricting to interpretations in which the natural numbers are definable. He 

proposed a similar restriction to handle the problem of expressibility of strongest 

postconditions for partial correctness proofs. He called interpretations satisfying this 

restriction arithmetical. Moschovakis [35] had earlier shown that the same restriction 

is a sufficient condition for the inductively definable sets on a structure to be precisely 

the n: sets. He called structures satisfying this condition acceptable. An acceptable 

structure Cu is one on which the natural numbers with addition and multiplication are 

first-order definable and also there is a first-order formula /?(x, y, n) defining all finite 

sequences on 2I. Intuitively, fi(x, y, n) says that x codes a finite sequence whose nth 

element is y. Here y1 is in the copy of the natural numbers defined on 2I. 

Aczel [l] later defined the notion of an existentially acceptable structure by making 

the further restriction that the formulas in the definition of acceptability be first-order 

existential. He showed that on existentially acceptable structures sets definable by 

positive existential induction are precisely the Cy sets. Sets definable by positive 

existential induction are those definable by ELFP formulas of the form 

where $i, . . . , Qk and $ are existential first-order formulas. Chandra and Hare1 [12] 

showed that every ELFP formula is equivalent to a formula of this form so on 

existentially acceptable structures, the ELFP definable sets are precisely the ZT sets. 

The ELFP formulas are the SLFP formulas of negation rank 1. We state a generaliz- 

ation of Aczel’s theorem. 

Theorem 5.1. On existentially acceptable structures, the sets dejnable by SLFP for- 
mulas of negation rank n are precisely the C,” sets (i.e., sets in the nth level of the 

arithmetic hierarchy). 

Proof. The theorem follows by induction on n. The case n = 1 is Aczel’s theorem. Let 

n be greater than 1. We know by Theorem 2.8 that SLFP formulas of negation rank 

n are equivalent to stratified queries of depth n. But if we take the canonical 

stratification we see that a stratified query of depth n is equivalent to a logic query 

(i.e., a stratified query of depth 1) applied to negations queries of depth n- 1. By the 

induction hypothesis this shows that sets definable by SLFP formulas of negation 
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rank n are precisely sets that are C: over complements of Cz_ 1 sets; i.e., they are the 

C,” sets. 0 

If a structure is just acceptable, rather than existentially acceptable, we can still 

carry out Aczel’s proof but of course we lose the correspondence between levels of the 

arithmetic hierarchy and the negation ranks of sentences. We obtain the following 

theorem. 

Theorem 5.2. On acceptable structures, SLFP and jirst-order logic have the same 
expressibility. 

A consequence of this is the following result of Kolaitis [28]. 

Corollary 3.5. SFLP is strictly less expressive than least jixpoint logic on injinite 

structures. 

Proof. Moschovakis showed that the inductively definable sets are the n: sets. These 

sets are definable in least fixpoint logic. But on the natural numbers, ZI: strictly 

contains the arithmetic hierarchy, so SLFP is strictly less expressive than least fixpoint 

logic. 0 

Another consequence is that we do not need an infinitary deductive system to 

reason about SLFP definable sets on acceptable structures since we can use first-order 

logic instead. 

6. Conclusion 

There are still many connections between stratified logic programming and pro- 

gram verification left to be explored. It would be interesting to develop a verification 

system that relies on the evaluation of stratified logic programs. 

The biggest problem of program verification is handling the infinitary proof rule 

([I k). We have seen that having no cut rule helps in some cases. Also, on certain 

kinds of structures the need for an infinitary rule disappears. There are other avenues 

still to be explored. 

One direction is to replace the infinitary rule in SLFP with a weaker finitary 

induction rule. The resulting deductive systems will be incomplete if we work on all 

structures, but many significant mathematical theories are incomplete. Here is an 

example of a rule that might replace ([ ] k): 
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The rule is useful when p defines a relation containing the inductively defined relation 

P (so the upper left sequent true), but p is a close enough approximation to P to be 

used in place of P in the sequent we are trying to prove (so the upper right sequent is 

true). It is easy to show that the rule is sound. Notice that the rule could be used in 

cases where an inductive definition can be replaced with a first-order definition. 

Another direction is to develop a system for actually working with infinitary rules. 

Hare1 [23] notes that many programming logics embed in Lzy,, which is a restriction 

of L,,, in which conjunctions and disjunctions are recursively enumerable. In the 

realm of infinitary logics, Lz:, is considered one of the tamest logics after first-order 

logic because all mathematical objects associated with the logic ~ formulas, proofs, 

and structures needed to prove completeness ~ exist below the level of the first 

nonconstructible ordinal myK. SLFP is a sublogic of L::, and is even tamer. At this 

level, an infinitary proof rule may not be so hard to deal with. Here it may be useful to 

use techniques from the study of admissible sets (see [lo]). 

Finally, we remark that even though elimination of the cut rule in LS has interesting 

theoretical consequences, it would undoubtedly be needed in any practical program 

verification system based on SLFP. Indeed, just as real mathematics requires the 

first-order cut rule (which is, after all, just a form of modus ponens), real program 

verification will probably require the cut rule in LS. One of the referees asked us to 

remark on the relation between ordinal bounds for cut elimination in LS and program 

verification. At this point we do not know what the connection is, but there it is likely 

that there is one and that an investigation of it would yield important results. 
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