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The numerical solution of conservation laws by minimizing the
residuals of an overdetermined set of discrete equations is studied, Pre-
vigus research has shown that for certain formulations, minimizing the
residuals in the £, norm will yield solutions that resolve discontinuities
that are very sharp and correctly placed. tn this study, we analyze a
previously proposed method that numerically solves the 2D advection
equation with discontinuous data, The method is able to resolve the
discontinuity over one mesh cell, without generating spurious oscilla-
tions. However, we have found that incorrect solutions are generated
for some data. This had led us to formulate and prove two theorems
concerning these results. We also provide an analysis of the solution
procedure, along with suggestions for developing future schemes that
are more applicable to a wide range of problems. © 1984 Academic
Press, Inc.

1. INTRODUCTION

Recently Lavery { 1, 2] put lorward a radical new concept
for shock capturing. By adding to the inviscid equations
a dissipative term required only to be larger than the
rounding error he formed an over-determined set of discrete
equations and sought the solution that minimized the
residuals in the L, norm. The tolerance shown by this norm
for isolated large errors allowed the solution to generate
shock discontinuities that were very sharp and correctly
placed.

It is tempting to hypothesize that good schemes can be
designed more generally by over-determining the solution
“somehow,” and then minimizing in some norin having a
similar tolerance of large errors. Consider a 21 advection
cqualion, given by

u,.+tanfa)u, =0 in 2, (1a)
where Q={{x,eR:0<x<l, O<y<l} with
boundary I'. For 0 <« <90°, specify the inflow boundary

conditions as

u=u,

oni ={(x,y)elMNnx=0}, (1b)

U=ty onl'y={(x,y)elMx>0and y=0}, (Ic)
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with u, > u,. The exact solution is a jump discontinuity
along the line y= x tan(a), with the constant state u=u,
above the line and u = 1, below. Jiang [ 3, 4] has overdeter-
mined the solution of (1) by subdividing a square mesh of
spacing h into triangles, and reports impressive resuits.
However, we have found that incorrect solutions are
generated for some data. This had led us to formulate and
prove two theorems concerning these results and to provide
analysis of the solution procedure described in [4]. In this
way we show that the new concepts, although still attrac-
tive, must be formulated with great caution.

2. ANALYSIS

To solve (1) numerically, Jiang [4] proposed subdividing
a square, mesh into triangles. For a mesh with NZ cells, the
divided mesh gives 2N'? residuals with N unknowns. The
system is over-determined, and some minimization proce-
dure is employed. Linear triangles are chosen as the basis
for u, with the discrete projection of u given by

Il;,f_x, }’) = Z H,-‘J’fr(x, .y)! (2}

where i ;(x, y} is the shape function, which is the “tent func-
tion” for linear triangles. u, is the value of u(x, y} at x=x,,
y = y,. The residual of Eq. (1a) for triangle 7, with boundary
a7, is written as

(3)

R,-:f{) T, dy — tan(e) u, dx ).
AT

i

For the subdivided squarc mesh, the residuals may then be
expressed as (see Fig. 1)

(4a)
(4b)

Rupp:r =, + (V -1 ) Uy — VU,

Rlowcr =U,, + (" -1 ) e ™ Yl gy

where v = cot(a).
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FIG. 1. A subdivided square mesh cell, with mesh values referenced in
Eq. (4).

Define a weighted residual norm as

282
Lw,= 2 w; | R:|%,

f=1

(3)

where R, is the ith triangle residual and w; is its corre-
sponding weight factor, In order that the norm maintains its
“distance” properties, we require that

0<w, < o0 (6)
For all w; =1, (5) reduces to the L, norm,
247
Lpz z |.R,'|ps (7)

i=1

Throughout the remainder of this note, the following
notation will be used:

» Let {S,} be the class of schemes whose solutions to (1)
minimize {5). Note that this definition permits solutions at
local minima, and therefore the solution may depend on the
initial data.

» Let {u;} be the class of piecewise linear functions
given by (2), that separate two constants states (u,, ug) by
a discontinuity spanning only one mesh interval. Figure 2 is
an example of one such function, to be discussed later.

» Let {S,} < {S,} be the class of schemes that generate
solutions in {u, }.

An “ideal” scheme for solving (1) would be in {S,}, and
the solution would propagate the discontinuity at the
correct angle. In other words, the hope is that a scheme
exists in {S,} that gives the weak solution to (1) as & — 0.

To generate solutions in {u}}, the minimization proce-
dure proposed in [4] is to minimize initially in £, and then
to refine the solution using a weighted L, procedure to be
described later. Unfortunately, we have found that the sub-
set of {u}} that propagates the discontinuity at the correct
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FIG. 2. Carpet plot, solution for a =35°, N=15, 1; =2, up=1.

angle is not at a local Lw, minimum. The remainder of this
note will prove two theorems concerning the feasibility of
solutions in {u}}, along with a discussion of the properties
of the minimization procedure in [4].

2.1. {S.} Schemes

THEOREM. There are no schemes in {S,} that give the
weak solution to (1) as h - Q.

Proof. The weak solution of (1) propagates the discon-
tinuity at an angle «; therefore, we need to prove that any u,
function that propagates the discontinuity at an angle «
does not minimize (5).

Referring to Fig. 3, consider a segment of a u, function
with u¥ =u, . In order for the function to propagate the
discontinuity at the correct angle, this situation must arise
somewhere along the discontinuity for ° <o <45°. Note
that v>1 for this range of . Now let the value uf be
perturbed from u, to u, — 4. Using (4), the six non-zero
residuals of this segment contribute ALw, to the overall Lw,
norm, given by

ALw,="(w (v —1)" + wg) + wy({du—v3)*
+{du—38)" (wy{v— 1} +w;}

+ws((v—=1) du—vé)?, (3)

—e

UR uR un

FIG. 3. 2x?2 cell segment from a solution in {«;}. Triangles with
non-zero residuals are numbered.
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where du=u; —uy, and w,_, are the weight factors
corresponding to the triangles numbered in Fig. 3. This
gives

doLw,
— 2 = — p—1
3 |soe p(du)
X 4w+ wov+wa(v— 1P +wev(v—1)7 "1},
(9)
which is strictly negative. Therefore, at least for

0° < 2 < 45°, a u} function that propagates the discontinuity
at the correct o is not at a local Lw, minimum, and, in par-
ticular, it is not at a local L, minimum. A similar argument
can be used for 45° < o < 90°,

Remark. In this proof it is assumed that the weights w,
are fixed, independent of the solution. The argument also
hoids for solution-dependent weights, as long as we “freeze”
the weights during the minimization of (5). This in fact is the
approach of the minimization procedure to be described in
Section 2.3.

2.2. Minimizing L, in {u}}

THEOREM. Ceonsidering only functions in {u)}, those
which globally minimize (7) do not propagate the discon-
Hnuity at the correct angle.

Proof. Consider minimizing (7) over functions in {u}}.
Such solutions can be made up of stacked rows of ceils, each
of the family shown in Fig. 4. The number of each type of
these rows is defined as M, where & is the number of cells
the discontinuity is displaced for that particular row. Define
the exit boundaries as

Fy={{xy)elx=1}
Fy={(x,py)elr:y=1}

(10a)
(10b)
There are two possible constraints on the M, values, If the

discontinuity intersects the I'; boundary, then the following
constraint must be satisfied:

(11)

37 wp, 1 up | UR Up

FIG. 4. Row of cells from a solution in {#}}, k=1, N=4.
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Otherwise, if the discontinuity intersects the I, boundary,

45° <o < 90°. (12)

For a function in {u;}, using (4) gives

N
L,=2(up —ug)” {MOVP+ Y M Jly—11"+k— 1]}.
k=1

(13)

Already it is apparent that the norm is independent of the
order in which the rows are stacked. The M, are now chosen
in such a way as to minimize L.

First consider those solutions under constraint (11). M,
only increases L,, so it must be zero for this case. M, may
be eliminated using (11) to obtain

Lp=2(u,,~uR)P{N(v—1)P+ftv) g (k—1)Mk},
k=2
(14)

where f(v})=1—(v—1}". By inspecting Eq.(14), mini-
mizing L, is strictly dependent on the sign of /(v):

o f(}>0: M =N, M, =0 for k22 This sclution
corresponds to the discontinuity propagating at a 45° angle,

e fivi<0: My=1; M,=0 for k<N. This solution
corresponds to the discontinuity propagating along the
X-aXi8.

As an example, for the L, norm, the cross-over between the
above solutions occurs at cot{a) =2, or & = 26.6°.

For the constrain (12), M, may be ¢liminated from (13)
to give

L,=2(u, —ug)? {va f M (1= )P —v? + k—~ 1]}.
k=1
(15)

Given that 0 <v <1, to minimize (15), M, =0 for k=2
Therefore,

L =2(uL—-uR)‘D (va“_g(v) Ml)a

e (16)
where g(v) = v — (1 — v)”. This result has similar praperties
to the result from the previous constraint, namely,

« g(v)>»0: M, =N, M;=0 Again, this solution
corresponds to the discontinuity propagating at a 45° angle.

e givi<0: M,=0;, My=N for k<N. This solution
corresponds to the discontinuity propagating along the
y-axis.
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These arguments show that for a general a, considering
only functions in {u, }, the function that propagates the dis-
continuity at the correct angle is not at a global minimum
of an L, norm.

2.3, Schemes That Alfow w; — w

Jiang [47 suggested minimizing (5) with p = 2 (weighted
least squares) and the weighting

edges —
wi:(z {H+"H—|,.H) s

n=]

(17)

where m is a positive integer and (2%, u7),, are the
endpoint values of the nth edge of the /th cell. For triangles
this expression is equivalent to
Wi=(umax—umin)i_m! (18)
where u_,,,, U, are the respective maximum and minimum

values for the ith triangle. The numerical procedure is as
follows:

1. Initialize weight factors w; to 1.
2. Minimize Eq. (5) using a weighted L, procedure.

3. Check convergence of solution with that of the pre-
vious weight factors used. If not converged, update the
weight factors with Eq. (18} and return to step 2.

For m = 6, we are able to reproduce the results reported
in [4], as shown in Fig. 2. Within computer round-off error,
this solution is a u, function that propagates the discon-
tinuity at approximately the correct a. Since these results
show that this scheme will tolerate some large residuals, it
is tempting to think of it as somehow approximating the L,
norm.

Given the analysis of Section 2.1, there appears to be a
discrepancy. We may be apt to suppose that since the
weights w, are solution-dependent, the previous analysis is
invalid for this procedure. Note, however, that the weights
are “frozen” during the minimization process in step 2.

The reason the previous analysis is invalid for this proce-
dure is that the weightings given by (18) become unbounded
in regions of constants u, violating constraint (6). By
allowing w, - oo, it is clear that no true norm is being
measured; this scheme is not in {S,}. This could be
encouraging, because the analysis of Section 2.1 shows that,
in this context at least, norm minimization is not desirable.

The question that remains is how is Jiang's procedure
able to produce solutions in {u, }. In the remainder of this
section, we will put forth one possible explanation, which is
largely based on numerical experiments.

Again consider the segment of a u, function in Fig. 3.
Note that as the iteration process converges to the ) func-
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tion, of the six pumbered triangles, in theory the residuais
R, and R, approach zero, while their respective weights
w, ¢ — 00. The other residuals and weights (2 — 5) remain
finite and non-zero. We will now show that under certain
citcumstances, the products w, |R,| and we |R¢! are non-
zero, significantly altering Eq. {(9).

Consider the case where the scheme is nearly converged
to a u; function, so that

(19)
(20)

(R){=¢,,
IRs| = &4,

where 0 < ¢, ¢ < 1. Note that in application, &, 4 could be
the result of computer round-off error. Proceeding as in
Section 2.1, by perturbing u} from u, to u, — & gives

|R11=5(V——1}+£1’ (21)
fRG{=5+86. (22)
To first order in ¢, ¢, this gives
DLW dLw,
3 ;.o @ 6=0+2(W151(V—-1)+w282)’ (23)

where the first term is given by Eq. (9} for p = 2. In order for
this expression to be positive, indicating a local minimum
with respect to u3, it is required that

t OLw,
wig (v — 1)+ wyey > 37

(24)

=0

Comparing Egs. (4} and (18), we can assume that w, ¢~
{R, ¢l "M ={g, )™, which gives
wig;~ (g1 7", i=1,6. (25)
This relation indicates that (24) may be satisfied for large m.
Indeed, for the « = 35° case, we have found good results for
mz 2 For 1 <m <2, the solution found either propagates
at the wrong angle or is not in {u}}.
Note that to prevent computer overflow, in application,
we must set
W, 1= MM Winay, W), (26)
where normally w,, is chosen as a function of round-off
error:

(2"f)

Wonax > 1/0,
o = min such that 1+o#1. (28)
20
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FIG. 5. Solution along several mesh lines (j=[1i, 36] corresponds to
y=1[0, 1]). Gaussian inflow, ¢ =75°, N =33,

We have observed that diffusion of the discontinuity
increases by decreasing w,,,,; however, as long as w,,, is
chosen as above, the solution is in {v}} to within round-off
error.

The unbounded weightings have the effect of ignoring
residuals that lic along the discontinuity while forcing
residuals away from the discontinuity to be identically
satisfied. Apparently, the initial L, solution (w,= 1) locates
the discontinuity in approximately the correct location, and
the weighting procedure (18) refines this solution to give a
solution in {u}}. However, we stress that this solution is no¢
at an L; minimum, as has been stated in [37].

FIG. 6. Carpet plot corresponding to Fig. 5.
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Although this procedure may appear promising as a way
of handling discontinuities, we found that it has difficulties
with smooth data. Consider a change in the boundary
conditions of {1} to

u=0 on Iy={(x,y)elx=0},
u=exp{ —40(x — $)*]

on [h={{x,y)elnx>0andy=0} (29b)

(29a)

Figures 5 and 6 show results for a="75". Note how the
solution procedure misinterprets high-gradient regions as
discontinuities. Clearly this solution procedure is unaccep-
table for smooth data and is reminiscent of results from over
compressive flux-limiting schemes.

3. CONCLUSIONS

The minimization of residual norms has been considered
for the solution of conservation laws. By studying 2D linear
advection, the following may be concluded:

« Solutions in {u;} cannot minimize any weighted
residual norm, while at the same time propagating the
discontinuity at the correct angle.

» By allowing unbounded weight factors, a procedure
may be used to obiain solutions in {u,} that apparently
propagate a discontinuity at the correct angle. However,
this method is unacceptable for smooth data, with results
that are similar to those of over compressive flux-limiting
schemes.

Given the quality of the solutions presented by [3,4],
these conclusions are somewhat distressing. However, there
are several comments that can be made with regards to
developing future schemes that are more applicable to a
wide range of problems.

Essentiaily the scheme discussed in this note, and those in
{1, 27, may be summarized as schemes that somehow dis-
card key residuals. This concept certainly deserves more
attention, As with the flux-limiting approach, somehow we
must balance the ability to track discontinuities, with the
ability to accurately represent smooth data. Furthermore,
when discarding residuals, we must ensure that conserva-
tion is satisfied in some sense. Also under consideration is
allowing discontinuities to be resolved over more than one
cell. Each of these issucs should be addressed in future work.
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