The Support Points of the Unit Ball in Bloch Space

MARIO BONK*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by D. Sarason

Received March 8, 1993

Let $H(\mathbf{D})$ be the topological vector space of all functions F holomorphic in the unit disc \mathbf{D} . We consider the compact convex subset $\mathfrak{F}_1 = \{F \in H(\mathbf{D}) : F(0) = 0 \land |F'(z)| (1-|z|^2) \le 1 \text{ for } z \in \mathbf{D}\}$ of $H(\mathbf{D})$ and show that $G \in \mathfrak{F}_1$ is a support point of \mathfrak{F}_1 if and only if $A(G) = \{z \in \mathbf{D} : |G'(z)| (1-|z|^2) = 1\} \ne \emptyset$. This is an application of a more general result which is concerned with the maximization of continuous linear functionals on a set \mathfrak{K}_1 related to \mathfrak{F}_1 . © 1994 Academic Press, Inc.

1. Introduction

Let $H(\mathbf{D})$ be the set of functions holomorphic in the unit disc $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$. Endowed with the topology of locally uniform convergence $H(\mathbf{D})$ is a complex topological vector space. For $F \in H(\mathbf{D})$ and $z \in \mathbf{D}$ we introduce the notation

$$\mu_F(z) = |F'(z)| (1 - |z|^2).$$

The Bloch space \mathcal{B} is the set of all functions $F \in H(\mathbf{D})$ for which the Bloch norm

$$||F||_{\mathscr{B}} = |F(0)| + \sup_{z \in \mathbf{D}} \mu_F(z)$$

is finite. Here we consider the unit ball $\mathscr{B}_1 = \{F \in \mathscr{B} : ||F||_{\mathscr{B}} \leq 1\}$ of \mathscr{B} . This set is a compact convex subset of $H(\mathbf{D})$ and occurred for the first time in connection with lower bounds for Bloch's constant. We recall some basic facts of the theory of convex sets.

Suppose C is a convex compact subset of a complex topological vector space V. A point $x \in C$ is called an extreme point of C, if it does not belong to the interior of a segment lying in C. Equivalently, $x \in C$ is an extreme point of C, if and only if $x \pm y \in C$ with $y \in V$ implies y = 0.

* Supported by the Alexander von Humboldt Foundation.

A point $x \in C$ is called a support point of C, if there exists a closed hyperplane H passing through x such that C is contained in exactly one of the half-spaces determined by H. Equivalently, $x \in C$ is a support point of C, if and only if there exists a continuous linear functional $L: V \to C$ such that the real part $Re \ L$ of L is not constant on C and $Re \ L(y) \le Re \ L(x)$ for all $y \in C$. If C has nonempty interior, then it follows from the Hahn-Banach type separation theorems that the set of support points of C coincides with the set of boundary points of C. These sets will be different in general (cf. [Köt, p. 193 ff.]).

In [C-W] it is shown that the set of extreme points of \mathcal{B}_1 is the union of the set of unimodular constants and the set of extreme points of the convex compact subset $\tilde{\mathcal{B}}_1 = \{F \in \mathcal{B}_1 : F(0) = 0\}$ of \mathcal{B}_1 .

There are results which indicate that for a function $F \in \mathcal{B}_1$ to be an extreme point of \mathcal{B}_1 the set

$$\Lambda(F) = \{ z \in \mathbf{D} : \mu_F(z) = 1 \},$$

where μ_F attains its maximum, has to be "large." For example, if $\Lambda(F)$ has a limit point in **D**, then F is an extreme point of \mathfrak{F}_1 . Under the additional assumption $\lim_{|z| \to 1} \mu_F(z) = 0$ this condition is also necessary [C-W]. The Ahlfors-Grunsky function [A-G] is an example of an extreme point of \mathfrak{F}_1 , for which $\Lambda(F)$ has no limit point in **D** [Bo2]. In this case the set $\Lambda(F)$ is a discrete subset of **D** related to a certain non-euclidean triangulation of **D**.

A simple characterization of the extreme points of \mathfrak{F}_1 in terms of the set $\Lambda(F)$ is not known. It is still an open problem whether there are extreme points of \mathfrak{F}_1 for which $\Lambda(F)$ is empty [C-W].

The situation is much clearer for the support points of \mathcal{B}_1 . A characterization of these points is given in Theorem 3 below. This is a corollary of Theorem 1, which is concerned with the maximization of real linear functionals on a certain convex set \mathcal{X}_1 related to \mathcal{B}_1 . An application to coefficient problems is given in Theorem 2.

2. THE CLASS X1

For the formulation and proof of the next theorem we fix notation and state some needed facts.

If $a \in \mathbf{D}$ and r > 0 we denote by $D(a, r) = \{z \in \mathbf{C} : |z - a| < r\}$ the open disc with center a and radius r, by \mathbf{C}^* the set of complex numbers different from 0, and by \mathbf{C} the Riemann sphere.

For $F \in H(\mathbf{D})$ let Z(F) be the zero set of the function F and let $\operatorname{ord}_z(F)$ be the order of a zero $z \in \mathbf{D}$. We put $\operatorname{ord}_z(F) = 0$ if $F(z) \neq 0$ and $\operatorname{ord}_z(F) = -\infty$ if $F \equiv 0$.

In the following it is more convenient to work with the derivatives of Bloch functions and not with the Bloch functions themselves. So for $F \in H(\mathbf{D})$ we define

$$M(F) = \sup_{z \in \mathbf{D}} |F(z)| (1 - |z|^2)$$

and introduce the class $\mathcal{K} = \{F \in H(\mathbf{D}) : M(F) < \infty\}$ consisting of the derivatives of Bloch functions. We will be concerned with the function class $\mathcal{K}_1 = \{F \in \mathcal{K} : M(F) \leq 1\}$. Note that \mathcal{K} is a subpace and \mathcal{K}_1 a compact convex subset of $H(\mathbf{D})$. For $F \in \mathcal{K}_1$ we define

$$\Gamma(F) = \{ z \in \mathbf{D} : |F(z)| (1 - |z|^2) = 1 \}.$$

A set $S \subseteq \mathbf{D}$ will be called a set of uniqueness (for \mathscr{K}) if and only if $F \mid S \equiv 0$ for $F \in \mathscr{K}$ implies $F \equiv 0$. For example, if $S \subseteq \mathbf{D}$ has a limit point in \mathbf{D} , then S is a set of uniqueness. A necessary condition for a set $S \subseteq \mathbf{D}$ to be a set of uniqueness is that S be infinite. Here we will not give a more detailed analysis of the conditions under which a set $S \subseteq \mathbf{D}$ is a set of uniqueness.

We use two methods to construct new functions in \mathcal{K} from given ones. If $F_1 \in \mathcal{K}$ and $P \in H(\mathbf{D})$ is bounded on \mathbf{D} , then $F_2 = PF_1 \in \mathcal{K}$. In particular, this applies to a polynomial P.

If $F_1 \in H(\mathbf{D})$ and $P \not\equiv 0$ is a polynomial with

$$\operatorname{ord}_{z}(P) \leqslant \operatorname{ord}_{z}(F_{1})$$
 for $z \in \mathbf{D}$,

then there exists a unique function $F_2 \in H(\mathbf{D})$ with $F_1 = PF_2$. If furthermore $F_1 \in \mathcal{K}$ and $P(z) \neq 0$ for $z \in \partial \mathbf{D}$, then $F_2 \in \mathcal{K}$. This is seen as follows.

There exists a constant $M_1 \ge 0$ such that

$$|F_1(z)| \leqslant \frac{M_1}{1 - |z|^2}$$
 for $z \in \mathbf{D}$

and a number $r \in (0, 1)$ such that $P(z) \neq 0$ for $r \leq |z| \leq 1$. Then there is a constant $M_2 > 0$ such that

$$1/|P(z)| \leq M_2$$
 for $r \leq |z| \leq 1$.

The function F_2 is bounded on the compact set $\overline{D(0, r)}$. So it is possible to choose a number $M_3 \ge 0$ such that $|F_2(z)| \le M_3$ for $z \in \overline{D(0, r)}$. Now define $M_4 = \max\{M_1M_2, M_3\}$. Then

$$|F_2(z)| \leqslant \frac{M_4}{1 - |z|^2} \quad \text{for} \quad z \in \mathbf{D}$$

and so $F_2 \in \mathcal{K}$.

A theorem of Toeplitz (cf. [Sch, p. 36]) states that there is a one-to-one correspondence between continuous linear functionals $L: H(\mathbf{D}) \to \mathbf{C}$ and sequences $(a_v)_{v \in \mathbf{N}_0}$ of complex numbers with

$$\lim_{\nu \to \infty} \sup |a_{\nu}|^{1/\nu} < 1. \tag{1}$$

If $(a_{\nu})_{\nu \in \mathbb{N}_0}$ is such a sequence, then the corresponding functional is given by

$$L(F) = \sum_{v=0}^{\infty} a_v b_v$$

for every function $F \in H(\mathbf{D})$ with Taylor expansion $F(z) = \sum_{v=0}^{\infty} b_v z^v$ at 0. Examples of continuous linear functionals on $H(\mathbf{D})$ are evaluation functionals $F \mapsto F^{(n)}(z_0)$ with fixed $n \in \mathbb{N}_0$ and $z_0 \in \mathbf{D}$ and linear combinations of evaluation functionals, which are called functionals of rational type. The representation of a functional of rational type as a linear combination of evaluation functionals is unique. This is equivalent to the following statement. If $n \in \mathbb{N}$, $z_1, ..., z_n \in \mathbf{D}$ are pairwise distinct, $k_1, ..., k_n \in \mathbb{N}_0$, $\lambda_{1, 0}, ..., \lambda_{1, k_1}, ..., \lambda_{n, 0}, ..., \lambda_{n, k_n} \in \mathbb{C}$, and the continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ is defined as

$$L(F) = \sum_{\nu=1}^{n} \sum_{\mu=0}^{k_{\nu}} \lambda_{\nu, \mu} F^{(\mu)}(z_{\nu}) \quad \text{for} \quad F \in H(\mathbf{D}),$$
 (2)

then $L \equiv 0$ implies $\lambda_{1,0} = \cdots = \lambda_{1,k_1} = \cdots = \lambda_{n,0} = \cdots = \lambda_{n,k_n} = 0$. To see this note that there exists a holomorphic function $G \in H(\mathbf{D})$ with

$$G^{(\mu)}(z_{\nu}) = \overline{\lambda_{\nu, \mu}}$$
 for $\nu \in \{1, ..., n\}, \mu \in \{0, ..., k_{\nu}\}.$

If at least one of the coefficients $\lambda_{\nu, \mu}$ is different from 0, then L(G) > 0 and so $L \not\equiv 0$.

A continuous linear functional L on $H(\mathbf{D})$ can also be represented as an integral. We formulate this as a lemma.

LEMMA 1. Suppose $L: H(\mathbf{D}) \to \mathbf{C}$ is a continuous linear functional. Then there exist a number $r \in (0, 1)$ and a function F_1 holomorphic in a region containing $\mathbf{C} \setminus D(0, r)$ such that if we define $\gamma(t) = re^{it}$ for $t \in [0, 2\pi]$, then

$$L(F) = \frac{1}{2\pi i} \int_{\gamma} F(z) F_1(z) dz \qquad \text{for} \quad F \in H(\mathbf{D}).$$
 (3)

322 mario bonk

Proof. Represent the functional L by a sequence $(a_v)_{v \in \mathbb{N}_0}$ satisfying (1). There exists a number $r_1 > 1$ such that the sequence $(a_v r_1^v)_{v \in \mathbb{N}_0}$ is bounded. Then the function F_1 defined by

$$F_1(z) = \sum_{v=0}^{\infty} \frac{a_v}{z^{v+1}}$$
 for $z \in \mathbb{C}, |z| > 1/r_1$

is holomorphic in $\{z \in \overline{\mathbb{C}} : 1/r_1 < |z|\}$. If we now choose r with $1/r_1 < r < 1$, then (3) is true.

We need the following results about functionals of rational type.

PROPOSITION. A continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ is of rational type, if and only if there exists a function $H \in H(\mathbf{D})$, $H \not\equiv 0$, such that L(PH) = 0 for all polynomials P.

LEMMA 2. Suppose the continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ is of rational type, has an integral representation as in Lemma 1, and the function $H \in H(\mathbf{D})$ of the proposition can be chosen to have simple zeros in D(0, r). Then L is a linear combination of point evaluation functionals, where the evaluation points are zeros of H in D(0, r); i.e., there exist points $z_1, ..., z_n \in Z(H) \cap D(0, r)$ and complex numbers $\lambda_1, ..., \lambda_n \in \mathbf{C}$ such that

$$L(F) = \sum_{v=1}^{n} \lambda_{v} F(z_{v}) \quad \text{for} \quad F \in H(\mathbf{D}).$$

Proof of the Proposition and of Lemma 2. Suppose L is of rational type. Then L has a representation as in (2). Choose a polynomial $H \not\equiv 0$ with $\operatorname{ord}_{z_v}(H) \geqslant k_v + 1$ for $v \in \{1, ..., n\}$. If P is an arbitrary polynomial, then $\operatorname{ord}_{z_v}(PH) \geqslant k_v + 1$ for $v \in \{1, ..., n\}$ and so L(PH) = 0.

Conversely, suppose that there exists a function $H \in H(\mathbf{D})$, $H \not\equiv 0$, such that L(PH) = 0 for all polynomials P. The functional L has an integral representation as in Lemma 1 (this includes the definition of a number $r \in (0, 1)$ as described). Then we have

$$\int_{\gamma} z^n H(z) F_1(z) dz = 0 \quad \text{for} \quad n \in \mathbb{N}_0.$$
 (4)

There is a number $r' \in (0, r)$ such that F_1 is holomorphic in $\{z \in \overline{\mathbb{C}}: r' < |z|\}$. Then the function HF_1 is holomorpic in the annulus $\{z \in \mathbb{C}: r' < |z| < 1\}$. So it has a Laurent expansion $H(z) F_1(z) = \sum_{v=-\infty}^{\infty} d_v z^v$ converging for r' < |z| < 1. From (4) it follows that $d_{-\mu} = 0$ for $\mu \in \mathbb{N}$. This shows that HF_1 has a holomorphic continuation to the unit disc \mathbf{D} . Denote this extension of HF_1 to \mathbf{D} by $F_2 \in H(\mathbf{D})$. Then we have $F_1(z) = F_2(z)/H(z)$ for r' < |z| < 1

and we see that F_1 has a meromorphic extension to **D**. Since F_1 is holomorphic in $\{z \in \overline{C} : r' < |z|\}$, the function F_1 has a meromorphic extension to \overline{C} . This extension will also be denoted by F_1 (by abuse of language).

The function F_1 is rational and poles can only occur in $\overline{D(0,r')} \subseteq D(0,r)$. For $z \in D(0,r)$ we have $F_1(z) = F_2(z)/H(z)$. This shows that we can have a pole of F_1 in D(0,r) only where H vanishes and the order of the pole of F_1 cannot exceed the order of the zero of H. From this and the integral representation of L we conclude by an application of the Residue Theorem that L is of rational type. If H can be chosen to have simple zeros in D(0,r), then F_1 can only have simple poles at these zeros. So L is a point evaluation functional of the described type.

We need two more lemmas.

LEMMA 3. Suppose L: $H(\mathbf{D}) \to \mathbf{C}$ is a continuous linear functional and let $G \in H(\mathbf{D})$. For arbitrary $\varepsilon \in (0, 1]$ define $G_{\varepsilon} \in H(\mathbf{D})$ by $G_{\varepsilon}(z) = G((1 - \varepsilon)z)$ for $z \in \mathbf{D}$. Then there exists a constant K > 0 such that

$$|L(G_{\varepsilon} - G)| \le \varepsilon K \quad \text{for } \varepsilon \in (0, 1].$$
 (5)

Proof. Assume that the Taylor expansion of G at 0 is given by $G(z) = \sum_{v=0}^{\infty} c_v z^v$. The functional L can be represented by a sequence $(a_v)_{v \in \mathbb{N}_0}$ of complex numbers satisfying (1). There are numbers $r_1 > 1$ and $K_1 > 0$ such that

$$|a_{\nu}| r_1^{2\nu} \leqslant K_1$$
 for $\nu \in \mathbb{N}_0$.

Since $1/r_1 \in (0, 1)$, the Taylor expansion of G at 0 converges for $z = 1/r_1$. Hence the sequence $(c_v/r_1^v)_{v \in \mathbb{N}_0}$ is bounded and so there is a constant $K_2 > 0$ such that

$$|c_v|/r_1^v \leqslant K_2$$
 for $v \in \mathbb{N}_0$.

Now define $K = K_1 K_2 \sum_{\nu=1}^{\infty} \nu / r_1^{\nu} \in (0, \infty)$. Then for $\varepsilon \in (0, 1]$ we get

$$\begin{aligned} |L(G_{\varepsilon}-G)| &\leq \sum_{v=1}^{\infty} |a_{v}c_{v}| \left(1-(1-\varepsilon)^{v}\right) \leq \varepsilon \sum_{v=1}^{\infty} v |a_{v}c_{v}| \\ &= \varepsilon \sum_{v=1}^{\infty} |a_{v}| r_{1}^{2v} \frac{|c_{v}|}{r_{1}^{v}} \frac{v}{r_{1}^{v}} \leq \varepsilon K_{1} K_{2} \sum_{v=1}^{\infty} \frac{v}{r_{1}^{v}} = \varepsilon K. \quad \blacksquare \end{aligned}$$

LEMMA 4. Suppose $M \ge 0$. Then there exist numbers ε_1 , $R \in (0, 1)$ such that

$$\frac{1}{1-(1-\varepsilon)^2|z|^2} + \frac{\varepsilon M}{1-|z|^2} \leqslant \frac{1}{1-|z|^2} \quad \text{for } 0 < \varepsilon \leqslant \varepsilon_1 \text{ and } R \leqslant |z| < 1.$$
(6)

324 MARIO BONK

Proof. Choose $R \in (0, 1)$ with $R^2 > M/(M+2)$. Then there exists a number $\varepsilon_1 \in (0, 1)$ such that $M \le R^2((1-\varepsilon)^2 M + 2 - \varepsilon)$ for $\varepsilon \in (0, \varepsilon_1]$. Inequality (6) now follows by direct computation.

For a continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ we define

$$\mathcal{M}_L = \{G \in \mathcal{K}_1 : \sup_{F \in \mathcal{K}_1} \operatorname{Re} L(F) = \operatorname{Re} L(G)\}.$$

Since the set \mathcal{K}_1 is compact, we have $\mathcal{M}_L \neq \emptyset$.

Let L be a functional for which there exist complex numbers $z_1, ..., z_n \in \mathbf{D}$ and $\lambda_1, ..., \lambda_n \in \mathbb{C}^*$ such that

$$L(F) = \sum_{\nu=1}^{n} \lambda_{\nu} F(z_{\nu}) \quad \text{for} \quad F \in H(\mathbf{D}).$$

Then we get the estimate

$$\sup_{F \in \mathcal{X}_1} \operatorname{Re} L(F) \leq \sum_{v=1}^n \frac{|\lambda_v|}{1 - |z_v|^2}.$$

The case where we here have equality will be important for us. We say that a continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ is of "special type," if there exist a natural number $n \in \mathbb{N}$, pairwise distinct points $z_1, ..., z_n \in \mathbf{D}$, and complex numbers $\lambda_1, ..., \lambda_n \in \mathbf{C}^*$ such that

$$L(F) = \sum_{v=1}^{n} \lambda_{v} F(z_{v}) \quad \text{for } F \in H(\mathbf{D}) \quad \text{and}$$

$$\sup_{F \in \mathcal{X}_{1}} \text{Re } L(F) = \sum_{v=1}^{n} \frac{|\lambda_{v}|}{1 - |z_{v}|^{2}}.$$
(7)

Now we can state our main result.

THEOREM 1. Suppose $L: H(\mathbf{D}) \to \mathbf{C}$, $L \not\equiv 0$, is a continuous linear functional. Then

- (a) L is of special type or
- (b) the set \mathcal{M}_L consists of a single point $G \in \mathcal{K}_1$. The function G is an extreme point of \mathcal{K}_1 and $\Gamma(G)$ is a set of uniqueness.

Note that if $L: H(\mathbf{D}) \to \mathbf{C}$ is of special type and has a representation as in (7) and if $G \in \mathcal{M}_L$, then $\{z_1, ..., z_n\} \subseteq \Gamma(G)$. In general no further information on $\Gamma(G)$ can be expected in this case.

Proof of Theorem 1. The proof proceeds in several steps.

1. Suppose $L: H(\mathbf{D}) \to \mathbf{C}$, $L \not\equiv 0$, is a continuous linear functional that is not of special type and let $G \in \mathcal{M}_L$ be given. We claim that $\Gamma(G)$ is a set of uniqueness. To obtain a contradiction assume this is not the case. Then there exists a function $H_1 \in \mathcal{K}$, $H_1 \not\equiv 0$, with $H_1 \mid \Gamma(G) \equiv 0$. Note that $\Gamma(G)$ cannot have a limit point in \mathbf{D} , for otherwise $H_1 \equiv 0$ by the uniqueness theorem for analytic functions. So $\Gamma(G)$ consists of isolated points or is empty.

The basic idea of the proof is to construct a variation $\tilde{G} \in \mathcal{K}_1$ of G with $\operatorname{Re} L(\tilde{G}) > \operatorname{Re} L(G)$. Since $G \in \mathcal{M}_L$ and so $\operatorname{Re} L(F) \leq \operatorname{Re} L(G)$ for all $F \in \mathcal{K}_1$, this will give us a contradiction.

The variation \tilde{G} may be written as

$$\tilde{G}(z) = G((1-\varepsilon)z) + \varepsilon H_4((1-\varepsilon)z)$$
 for $z \in \mathbf{D}$

with sufficiently small $\varepsilon > 0$. The function H_4 will be obtained from H_1 by dividing out and shifting some of the zeros of H_1 .

2. The functional L has an integral representation as in Lemma 1. To be able to apply Lemma 2 we modify the function H_1 as follows.

The number of zeros of H_1 contained in the disc D(0, r) is finite. Hence there exists a polynomial P_1 such that

$$\operatorname{ord}_{z}(P_{1}) = \begin{cases} 0 & \text{for } z \in \begin{cases} \mathbb{C} \setminus D(0, r) \\ \operatorname{ord}_{z}(H_{1}) - 1 \end{cases} & \text{for } z \in \begin{cases} \mathbb{C} \setminus D(0, r) \setminus \Gamma(G) \\ D(0, r) \setminus \Gamma(G) \end{cases}$$

Since $\operatorname{ord}_z(P_1) \leq \operatorname{ord}_z(H_1)$ for $z \in \mathbf{D}$, there is a function $H_2 \in H(\mathbf{D})$ with $H_1 = P_1 H_2$. Indeed $H_2 \in \mathcal{K}$, because $H_1 \in \mathcal{K}$ and P_1 has no zeros on the unit circle. Furthermore, $H_2 \not\equiv 0$ and $H_2 \mid \Gamma(G) \equiv 0$. By construction of H_2 a point $z \in D(0, r)$ is a zero of H_2 if and only if $z \in D(0, r) \cap \Gamma(G)$. Each of these zeros is of first order.

- 3. Let K>0 be a constant chosen according to Lemma 3. Now consider two cases.
- (a) There exists a polynomial P_2 such that Re $L(P_2H_2) > 0$. In this case define

$$H_3 = \frac{2K}{\text{Re } L(P_2H_2)} P_2H_2.$$

Then we have

$$H_3 \in \mathcal{K}, \ H_3 \not\equiv 0, \ \text{Re } L(H_3) = 2K, \ H_3(z) = 0 \quad \text{for} \quad z \in \Gamma(G).$$
 (8)

(b) There exists no polynomial P_2 such that Re $L(P_2H_2) > 0$. In this case we would also like to have a function H_3 with the properties (8).

Such a function need not exist, but it is possible to single out an element $z_1 \in \Gamma(G)$ and to construct a function H_3 with the following properties

(a)
$$H_3 \in \mathcal{K}$$
, $H_3 \not\equiv 0$, Re $L(H_3) = 2K$, $H_3(z) = 0$ for $z \in \Gamma(G) \setminus \{z_1\}$,
(b) Re $(H_3(z_1)/G(z_1)) < 0$.

This can be seen as follows. From our assumptions on L we conclude that $\operatorname{Re} L(e^{is}PH_2) \leq 0$ for all polynomials P and all numbers $s \in [0, 2\pi]$. This implies $L(PH_2) = 0$ for all polynomials P. Now apply Lemma 2 with $H = H_2$. This shows that there exist a number $m \in \mathbb{N}_0$, pairwise distinct points $z_1, ..., z_m \in Z(H_2) \cap D(0, r) \subseteq \Gamma(G)$, and numbers $\lambda_1, ..., \lambda_m \in \mathbb{C}^*$ such that

$$L(F) = \sum_{\nu=1}^{m} \lambda_{\nu} F(z_{\nu}) \quad \text{for} \quad F \in \mathcal{H}(\mathbf{D}).$$
 (9)

Here $m \neq 0$ since $L \not\equiv 0$.

The functional L is not of special type. Therefore

$$\operatorname{Re}\left(\sum_{v=1}^{m} \lambda_{v} G(z_{v})\right) < \sum_{v=1}^{m} \frac{|\lambda_{v}|}{1 - |z_{v}|^{2}}.$$
 (10)

We have $\{z_1, ..., z_m\} \subseteq \Gamma(G)$ and so $|G(z_v)| = 1/(1 - |z_v|^2)$ for $v \in \{1, ..., m\}$. Thus inequality (10) is only possible if there exists a number $k \in \{1, ..., m\}$ with

$$\operatorname{Re}(\lambda_k G(z_k)) < \frac{|\lambda_k|}{1 - |z_k|^2}.$$

Without loss of generality we may assume k=1. Now define $a=\overline{\lambda_1}/|\lambda_1|$ and $b=G(z_1)/|G(z_1)|$. Then |a|=|b|=1 and $\operatorname{Re}(\bar{a}b)<1$. This implies $a\neq b$. Since $\operatorname{ord}_{z_1}H_2=1$, there exists a function $F_3\in\mathcal{K}$ with $F_3(z_1)\neq 0$ and $H_2(z)=(z-z_1)\,F_3(z)$ for $z\in \mathbf{D}$. Then $F_3\not\equiv 0$ and $F_3(z)=0$ for $z\in \Gamma(G)\setminus\{z_1\}$. It is possible to choose a number $\delta_1>0$ such that $z_1'=z_1+\delta_1(b-a)/F_3(z_1)\in \mathbf{D}$. Now define $\tilde{H}_3(z)=(z-z_1')\,F_3(z)$ for $z\in \mathbf{D}$. Then $\tilde{H}_3\in\mathcal{K}$, $\tilde{H}_3\not\equiv 0$, and $\tilde{H}_3(z)=0$ for $z\in\Gamma(G)\setminus\{z_1\}$. Using (9) we get

Re
$$L(\tilde{H}_3) = \text{Re}(\lambda_1(z_1 - z_1') F_3(z_1)) = |\lambda_1| \delta_1(1 - \text{Re}(\bar{a}b)) > 0.$$

Finally, we have

$$\operatorname{Re}\left(\frac{\tilde{H}_3(z_1)}{G(z_1)}\right) = -\frac{\delta_1}{|G(z_1)|} \left(1 - \operatorname{Re}(\bar{a}b)\right) < 0.$$

If we now define

$$H_3 = \frac{2K}{\text{Re }L(\tilde{H}_3)}\tilde{H}_3,$$

then (8') is true.

4. Put $M = 1 + M(H_3) < \infty$ and apply Lemma 4 to find constants ε_1 , $R \in (0, 1)$ such that (6) is valid.

The set $\Gamma(G) \cap \overline{D(0, R)}$ is finite. So there exist a number $q \in \mathbb{N}_0$ and pairwise distinct points $u_1, ..., u_q \in \mathbb{D}$ such that $\{u_1, ..., u_q\} = \Gamma(G) \cap \overline{D(0, R)}$. We want to construct a function $H_4 \in H(\mathbb{D})$ with the following properties

(a)
$$\operatorname{Re}(H_4(z)/G(z)) < 0$$
 for $z \in \{u_1, ..., u_n\} = \Gamma(G) \cap \overline{D(0, R)}$,

$$(b) \quad M(H_4) \leqslant M, \tag{11}$$

(c) Re
$$L(H_4) \geqslant 3K/2$$
.

The function H_4 will be obtained from H_3 by shifting some zeros of H_3 . We will give the details of this construction for the first case in 3 and will indicate the slight modifications in the second case.

Put $k_v = \operatorname{ord}_{u_v}(H_3) \in \mathbb{N}$ for $v \in \{1, ..., q\}$. Then there exists a function $F_4 \in \mathcal{X}$ such that

$$H_3(z) = F_4(z) \prod_{v=1}^{q} (z - u_v)^{k_v}$$

for $z \in \mathbf{D}$ and $F_4(u_v) \neq 0$ for $v \in \{1, ..., q\}$.

Choose numbers $t_1, ..., t_a \in [0, 2\pi]$ with

$$\operatorname{Re}\left(e^{ik_{\nu}t_{\nu}}\frac{F_{4}(u_{\nu})}{G(u_{\nu})}\prod_{\substack{\mu=1\\ \mu\neq\nu}}^{q}(u_{\nu}-u_{\mu})^{k_{\mu}}\right)<0 \quad \text{for} \quad \nu\in\{1,...,q\}$$

and define $u_{\nu,n} = u_{\nu} - (1/n) e^{it_{\nu}}$ for $\nu \in \{1, ..., q\}$ and $n \in \mathbb{N}$. Then $u_{\nu,n} \to u_{\nu}$ for $n \to \infty$. This implies that if n is sufficiently large, then

$$\operatorname{Re}\left(e^{ik_{\nu}t_{\nu}}\frac{F_{4}(u_{\nu})}{G(u_{\nu})}\prod_{\substack{\mu=1\\ \mu\neq\nu}}^{q}(u_{\nu}-u_{\mu,n})^{k_{\mu}}\right)<0 \qquad \text{for} \quad \nu\in\{1,...,q\}.$$
 (12)

For $n \in \mathbb{N}$ and $z \in \mathbb{D}$ define

$$B_n(z) = F_4(z) \prod_{v=1}^q (z - u_{v,n})^{k_v}$$

Then $B_n \in H(\mathbf{D})$ for $n \in \mathbb{N}$ and $\lim_{n \to \infty} B_n(z) = H_3(z)$ for $z \in \mathbf{D}$. Inequality (12) implies that if n is sufficiently large, then

$$\operatorname{Re}(B_n(u_v)/G(u_v)) < 0 \quad \text{for } v \in \{1, ..., q\}.$$
 (13)

For sufficiently large n we have

$$C_n = \sup_{z \in \mathbf{D}} \left| \prod_{v=1}^q (z - u_{v,n})^{k_v} - \prod_{v=1}^q (z - u_v)^{k_v} \right| \le \frac{1}{1 + M(F_4)}$$
 (14)

and for these n

$$M(B_n) = \sup_{z \in \mathbf{D}} |B_n(z)| (1 - |z|^2)$$

$$\leq C_n \sup_{z \in \mathbf{D}} |F_4(z)| (1 - |z|^2) + \sup_{z \in \mathbf{D}} |H_3(z)| (1 - |z|^2)$$

$$\leq \frac{M(F_4)}{1 + M(F_4)} + M(H_3) \leq 1 + M(H_3) = M. \tag{15}$$

It follows that the sequence $(B_n)_{n \in \mathbb{N}}$ is locally uniformly bounded. Since it converges pointwise to H_3 , Vitali's theorem shows that the sequence $(B_n)_{n \in \mathbb{N}}$ converges locally uniformly to H_3 . Thus by the continuity of L

$$\operatorname{Re} L(B_n) \to \operatorname{Re} L(H_3) = 2K \quad \text{for} \quad n \to \infty.$$
 (16)

From (13), (15), and (16) we finally see that is is possible to choose $N_1 \in \mathbb{N}$ large enough such that the function $H_4 = B_{N_1}$ satisfies the conditions (11).

In the second case of Step 3 the function H_3 has zeros at each of the points $u_1, ..., u_q$ with the one possible exception of z_1 . If we apply the above zero-shifting technique to the other points, we can again construct a sequence of holomorphic functions $(B_n)_{n \in \mathbb{N}}$ converging locally uniformly to H_3 such that for sufficiently large n inequality (15) is true and inequality (13) is true for all points u_v different from z_1 . For the point z_1 this is also true, because by (8')(b) we have $\text{Re}(H_3(z_1)/G(z_1)) < 0$ and so $\text{Re}(B_n(z_1)/G(z_1)) < 0$ for sufficiently large n. So in this case, too, it is possible to choose $N_1 \in \mathbb{N}$ large enough such that $H_4 = B_{N_1}$ has the properties (11).

5. We now define $Q_{\varepsilon}(z) = G((1-\varepsilon)z) + \varepsilon H_4((1-\varepsilon)z)$ for $\varepsilon \in (0, 1)$ and $z \in \mathbf{D}$. Then $Q_{\varepsilon} \in H(\mathbf{D})$. We want to show that $Q_{\varepsilon} \in \mathcal{K}_1$ for sufficiently small $\varepsilon > 0$. For this we need inequality (6) and the properties (11)(a) and (11)(b) of the function H_4 .

Inequality (11)(a) implies that there exists a number $\varepsilon_2 > 0$ such that

$$\left|1+\varepsilon_2 \frac{H_4(u_v)}{G(u_v)}\right| < 1 \quad \text{for} \quad v \in \{1, ..., q\}.$$

The continuity of the function $z \mapsto H_4(z)/G(z)$ at u_v for $v \in \{1, ..., q\}$ shows that there is a number $\delta_2 > 0$ such that $\bigcup_{v=1}^q D(u_v, \delta_2) \subseteq \mathbf{D}$, $G(z) \neq 0$ for $z \in \bigcup_{v=1}^q D(u_v, \delta_2)$ and

$$\left|1+\varepsilon_2\frac{H_4(z)}{G(z)}\right| \leqslant 1$$
 for $z \in \bigcup_{v=1}^q D(u_v, \delta_2)$.

Then

$$\left|1+\varepsilon \frac{H_4(z)}{G(z)}\right| \le 1$$
 for $\varepsilon \in (0, \varepsilon_2]$ and $z \in \bigcup_{v=1}^q D(u_v, \delta_2)$. (17)

There exists a number $\varepsilon_3 > 0$ such that

$$\varepsilon \in (0, \varepsilon_3]$$
 and $z \in \bigcup_{\nu=1}^q D(u_{\nu}, \delta_2/2)$ implies $(1-\varepsilon) z \in \bigcup_{\nu=1}^q D(u_{\nu}, \delta_2)$ (18)

and

$$\varepsilon \in (0, \varepsilon_3] \text{ and } z \in \overline{D(0, R)} \setminus \left(\bigcup_{v=1}^q D(u_v, \delta_2/2) \right)$$
implies $(1 - \varepsilon) z \in \overline{D(0, R)} \setminus \left(\bigcup_{v=1}^q D(u_v, \delta_2/4) \right).$ (19)

Since $\Gamma(G) \cap \overline{D(0, R)} = \{u_1, ..., u_q\}$ we have

$$|G(z)| < \frac{1}{1-|z|^2}$$
 for $z \in \overline{D(0,R)} \setminus \left(\bigcup_{v=1}^q D(u_v, \delta_2/4)\right)$.

From the usual compactness and continuity arguments it follows that there exists a number $\delta_3 > 0$ such that

$$|G(z)| + \delta_3 \leqslant \frac{1}{1 - |z|^2} \quad \text{for} \quad z \in \overline{D(0, R)} \setminus \left(\bigcup_{\nu=1}^q D(u_{\nu}, \delta_2/4) \right). \tag{20}$$

Finally, choose a number $\varepsilon_4 > 0$ such that

$$\varepsilon |H_4((1-\varepsilon)z)| \le \delta_3$$
 for $\varepsilon \in (0, \varepsilon_4]$ and $z \in \overline{D(0, R)}$. (21)

Now define

$$S_1 = \{ z \in \mathbf{D} : R \le |z| < 1 \},$$

$$S_2 = \bigcup_{v=1}^q D(u_v, \delta_2/2),$$

$$S_3 = \overline{D(0, R)} \setminus \bigcup_{v=1}^q D(u_v, \delta_2/2)$$

and $\varepsilon_5 = \min\{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\} > 0$. We have $S_1 \cup S_2 \cup S_3 = \mathbf{D}$.

Suppose $\varepsilon \in (0, \varepsilon_5]$. Then for $z \in S_1$ we get from (11)(b) and (6)

$$\begin{aligned} |Q_{\varepsilon}(z)| &\leq |G((1-\varepsilon)z)| + \varepsilon |H_4((1-\varepsilon)z)| \\ &\leq \frac{1}{1 - (1-\varepsilon)^2 |z|^2} + \frac{\varepsilon M}{1 - (1-\varepsilon)^2 |z|^2} \\ &\leq \frac{1}{1 - (1-\varepsilon)^2 |z|^2} + \frac{\varepsilon M}{1 - |z|^2} \leq \frac{1}{1 - |z|^2}. \end{aligned}$$

For $z \in S_2$ we have $(1 - \varepsilon) z \in \bigcup_{\nu=1}^q D(u_{\nu}, \delta_2)$ by (18) and so by (17)

$$|Q_{\varepsilon}(z)| = |G((1-\varepsilon)z)| \left| 1 + \varepsilon \frac{H_4((1-\varepsilon)z)}{G((1-\varepsilon)z)} \right| \leq \frac{1}{1 - (1-\varepsilon)^2 |z|^2} \leq \frac{1}{1 - |z|^2}.$$

Finally, for $z \in S_3$ we have $(1 - \varepsilon)$ $z \in \overline{D(0, R)} \setminus (\bigcup_{v=1}^k D(u_v, \delta_2/4))$ by (19) and so by (21) and (20)

$$|Q_{\varepsilon}(z)| = |G((1-\varepsilon)z)| + \delta_3 \leqslant \frac{1}{1-(1-\varepsilon)^2|z|^2} \leqslant \frac{1}{1-|z|^2}.$$

It follows that if $\varepsilon \in (0, \varepsilon_5]$, then

$$|Q_{\varepsilon}(z)| \leq \frac{1}{1-|z|^2}$$
 for $z \in \mathbf{D}$

and so $Q_{\varepsilon} \in \mathcal{K}_1$.

6. For $n \in \mathbb{N}$ consider the functions $R_n \in H(\mathbb{D})$ defined by $R_n(z) = H_4((1-1/n)z)$ for $z \in \mathbb{D}$. The sequence $(R_v)_{v \in \mathbb{N}}$ converges locally uniformly to H_4 . Therefore Re $L(R_n) \to \operatorname{Re} L(H_4)$ for $n \to \infty$. By (11)(c) it is possible to choose $N_2 \in \mathbb{N}$ large enough such that $\operatorname{Re} L(R_{N_2}) > K$ and $1/N_2 \le \varepsilon_5$. Then $\widetilde{G} = Q_{1/N_2} \in \mathcal{X}_1$ and so by (5)

$$\operatorname{Re} L(\tilde{G}) - \operatorname{Re} L(G) = \operatorname{Re} L(G_{1/N_2} - G) + \frac{1}{N_2} (\operatorname{Re} L(R_{N_2}))$$

$$\geqslant \frac{1}{N_2} (\operatorname{Re} L(R_{N_2})) - |L(G_{1/N_2} - G)|$$

$$\geqslant \frac{1}{N_2} (\operatorname{Re} L(R_{N_2}) - K) > 0.$$

This is a contradiction since $G \in \mathcal{M}_L$ and so

$$\sup_{F \in \mathcal{K}_1} \operatorname{Re} L(F) = \operatorname{Re} L(G).$$

So we have proved that if L is not of special type and if $G \in \mathcal{M}_L$, then $\Gamma(G)$ is a set of uniqueness.

7. If L is not of special type and if $G \in \mathcal{M}_L$, then G is an extreme point of \mathcal{K}_1 . To see this assume $G \pm F \in \mathcal{K}_1$ with $F \in H(\mathbf{D})$. Then

$$2 |G(z)|^{2} + 2 |F(z)|^{2} = |G(z) + F(z)|^{2} + |G(z) - F(z)|^{2}$$

$$\leq \frac{2}{(1 - |z|^{2})^{2}} \quad \text{for} \quad z \in \mathbf{D}.$$

From this inequality we conclude $F \in \mathcal{K}$ and F(z) = 0 for $z \in \Gamma(G)$. But $\Gamma(G)$ is a set of uniqueness and so $F \equiv 0$. Hence G is an extreme point of \mathcal{K}_1 .

8. If L is not of special type, then \mathcal{M}_L consists of a single point.

Note that \mathcal{M}_L is a convex set. If $G_1, G_2 \in \mathcal{M}_L$ and $G_1 \neq G_2$, then $\frac{1}{2}(G_1 + G_2) \in \mathcal{M}_L$. But $\frac{1}{2}(G_1 + G_2)$ cannot be an extreme point of \mathcal{M}_L . This contradicts 7.

The proof is complete.

3. The Coefficient Regions of \mathcal{K}_1

For $n \in \mathbb{N}_0$ let $A_n: H(\mathbb{D}) \to \mathbb{C}^{n+1}$ be the continuous linear mapping defined by

$$A_n(F) = (F(0), F'(0), ..., F^{(n)}/n!)$$
 for $F \in H(\mathbf{D})$.

Then the coefficient regions of \mathcal{K}_1 are $K_n = \{A_n(F): F \in \mathcal{K}_1\}$. So far only $K_0 = \overline{\mathbf{D}}$ and K_1 (cf. [Wir]) are explicitly known. It is easy to see that in general the set K_n is a compact convex subset of \mathbb{C}^{n+1} containing $0 \in \mathbb{C}^{n+1}$ in its interior. Obviously, the set K_n is determined by its boundary ∂K_n . As an application of Theorem 1 we can prove the following uniqueness theorem for the boundary points $y \in \partial K_n$.

THEOREM 2. Suppose $n \in \mathbb{N}$ and $y = (c_0, ..., c_n) \in \mathbb{C}^{n+1}$ is a boundary point of K_n with $|c_0| < 1$. Then there exists a unique function $G \in \mathcal{H}_1$ with $A_n(G) = y$. For this function $\Gamma(G)$ is a set of uniqueness.

Note that if $G \in \mathcal{X}_1$ and $G(z) = \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu}$ is the Taylor expansion of G at 0, then $|c_0| \le 1$.

Without the assumption $|c_0| < 1$ the above uniqueness statement is not true in general. To see this define $G_1(z) = 1$ and $G_2(z) = 1 + z^2$ for $z \in \mathbf{D}$. Then $G_1, G_2 \in \mathcal{X}_1, G_1 \neq G_2$, and $A_1(G_1) = A_1(G_2) = (1, 0) \in \partial K_1$.

332 MARIO BONK

Proof of Theorem 2. Assume $n \in \mathbb{N}$, $y = (c_0, ..., c_n) \in \partial K_n$, and $|c_0| < 1$. Since K_n has nonempty interior, the set of support points coincides with the set of boundary points of K_n (cf. Introduction). Therefore, y is a support point of K_n and so there exists a continuous linear functional $\tilde{L}: \mathbb{C}^{n+1} \to \mathbb{C}$ such that $\operatorname{Re} \tilde{L}$ is not constant on K_n and

Re
$$\tilde{L}(x) \leq \text{Re } \tilde{L}(y)$$
 for $x \in K_n$. (22)

There are numbers $a_0, ..., a_n \in \mathbb{C}$ such that

$$\widetilde{L}((\xi_0, ..., \xi_n)) = \sum_{\nu=0}^n a_{\nu} \xi_{\nu}$$
 for $(\xi_0, ..., \xi_n) \in \mathbb{C}^{n+1}$.

Since Re \tilde{L} is not constant on K_n , at least one of the numbers $a_0, ..., a_n$ is different from 0.

Assume $a_0 \neq 0$ and $a_1 = \cdots = a_n = 0$. Then $x_1 = (\overline{a_0}/|a_0|, 0, ..., 0) \in K_n$ and Re $\tilde{L}(x_1) \leq \text{Re } \tilde{L}(y)$ by (22). On the other hand Re $\tilde{L}(x_1) = |a_0|$ and Re $\tilde{L}(y) = \text{Re}(a_0 c_0) \leq |a_0 c_0| < |a_0|$. This is a contradiction. Hence at least one of the constants $a_1, ..., a_n$ must be different from 0.

Now define $L = \tilde{L} \circ A_n$: $H(\mathbf{D}) \to \mathbf{C}$. Then L is a continuous linear functional and we have

$$L(F) = \sum_{\nu=0}^{n} a_{\nu} \frac{F^{(\nu)}(0)}{\nu!} \quad \text{for} \quad F \in H(\mathbf{D}).$$

Since one of the numbers $a_1, ..., a_n$ is different from 0 and the representation of a continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ as a sum of evaluation functionals is unique, L is not of special type and $L \not\equiv 0$.

If $G \in \mathcal{K}_1$ and $A_n(G) = y$ then $G \in \mathcal{M}_L$. To see this note that we have by (22)

$$\operatorname{Re} L(F) = \operatorname{Re} \tilde{L}(A_n(F)) \leq \operatorname{Re} \tilde{L}(y) = \operatorname{Re} L(G)$$
 for $F \in \mathcal{X}_1$.

Theorem 1 shows that G is uniquely determined and that $\Gamma(G)$ is a set of uniqueness.

4. THE SUPPORT POINTS OF 381

The results obtained in Sections 2 and 3 for the class \mathcal{X}_1 may of course be reformulated for the class \mathcal{B}_1 . Here we will content ourselves with the following theorem about the support points of \mathcal{B}_1 .

THEOREM 3. (a) If $F \in \mathcal{B}_1$ is a support point of \mathcal{B}_1 , then F is a convex combination of a unimodular constant u (identified with the corresponding

constant function on **D**) and a support point $G \in \mathcal{B}_1$ of \mathcal{B}_1 ; i.e., there are constants $\lambda_1, \lambda_2 \in [0, 1]$ with $\lambda_1 + \lambda_2 = 1$ such that $F = \lambda_1 u + \lambda_2 G$.

Conversely, every convex combination of a unimodular constant and a support point of \mathfrak{F}_1 is a support point of \mathfrak{F}_1 .

- (b) A function $G \in \mathcal{B}_1$ is a support point of \mathcal{B}_1 if and only if $\Lambda(G) \neq \emptyset$.
- *Proof.* (a) The proof follows from ideas similar to those of Corollary 2 in [C-W]. It offers no serious difficulties, so we omit it.
- (b) Assume $G \in \mathfrak{F}_1$ and $\Lambda(G) \neq \emptyset$. Then there exists a point $z_0 \in \Lambda(G)$. Hence

$$|G'(z_0)| = 1/(1 - |z_0|^2) = \sup_{F \in \mathfrak{F}_1} |F'(z_0)|. \tag{23}$$

If we define $L(F) = \overline{G'(z_0)} F'(z_0)$ for $F \in H(\mathbf{D})$, then $L: H(\mathbf{D}) \to \mathbf{C}$ is a continuous linear functional. It is clear that $Re\ L$ is not constant on \mathfrak{F}_1 and by (23) we have

$$\operatorname{Re} L(F) \leqslant \operatorname{Re} L(G)$$
 for $F \in \mathfrak{F}_1$.

It follows that G is a support point of \mathfrak{F}_1 .

Conversely, assume that $G \in \widetilde{\mathcal{B}}_1$ is a support point of $\widetilde{\mathcal{B}}_1$. Then there exists a continuous linear functional $\widetilde{L}: H(\mathbf{D}) \to \mathbf{C}$ such that $\operatorname{Re} \widetilde{L}$ is not constant on $\widetilde{\mathcal{B}}_1$ and

$$\operatorname{Re} \widetilde{L}(F) \leqslant \operatorname{Re} \widetilde{L}(G)$$
 for $F \in \widetilde{\mathscr{B}}_1$. (24)

The functional \tilde{L} can be represented by a sequence $(a_{\nu})_{\nu \in \mathbb{N}_0}$ of complex numbers satisfying (1). Define $c_{\nu} = (1/(\nu+1)) \, a_{\nu+1}$ for $\nu \in \mathbb{N}_0$. Then from (1) it follows that

$$\limsup_{\nu \to \infty} |c_{\nu}|^{1/\nu} < 1.$$

Consider the continuous linear functional $L: H(\mathbf{D}) \to \mathbf{C}$ corresponding to the sequence $(c_v)_{v \in \mathbf{N}_0}$. Then we have

$$\tilde{L}(F) = L(F')$$
 for all $F \in H(\mathbf{D})$ with $F(0) = 0$. (25)

Since Re \tilde{L} is not constant on \mathfrak{A}_1 , the functional L is not identically 0. Inequality (24) and equality (25) show that $G' \in \mathcal{M}_L$. If L is not of special type, then $\Lambda(G) = \Gamma(G') \neq \emptyset$ by Theorem 1. If L is of special type, then this is also true by the remark following Theorem 1.

5. CONCLUDING REMARKS

(a) Whether a functional given by

$$L(F) = \sum_{\nu=1}^{n} \lambda_{\nu} F(z_{\nu}) \quad \text{for} \quad F \in H(\mathbf{D})$$

is of special type or not, depends on the coefficients $\lambda_1, ..., \lambda_n$ and the points $z_1, ..., z_n$. For n = 1 the functional is always of special type. For n = 2 the answer is in principle known and can be obtained from the complete description of the variability regions, which are in our notation defined by $V(z_1; z_2, w_2) = \{F(z_1): F \in \mathcal{X}_1 \land F(z_2) = w_2\}$ [Bo1]. Here we will just give two examples.

Fix $r \in (0, 1)$ and $c \in \mathbb{C}^*$. Define the functional $L: H(\mathbf{D}) \to \mathbb{C}$ by

$$L(F) = F(0) + cF(r)$$
 for $F \in H(\mathbf{D})$.

If in addition $r \in (0, \sqrt{3}/2)$ and c < 0, then L is not of special type. To see this assume L is of special type. Then there exists a function $G \in \mathcal{X}_1$ with

Re
$$L(G) = \text{Re}(G(0) + cG(r)) = 1 + |c|/(1 - r^2)$$
.

This is only possible if G(0) = 1 and $G(r) = -1/(1 - r^2)$. Now [Bo1, p. 46, Satz 4.2.1] shows that $G \in \mathcal{X}_1$ and G(0) = 1 imply

Re
$$G(r) \ge \frac{1 - \sqrt{3} r}{(1 - \sqrt{1/3} r)^3} > -\frac{1}{1 - r^2}$$
.

This is a contradiction.

If $r \in [\sqrt{3}/2, 1)$, then L is of special type. To see this apply [Bo1, p. 18, Satz 2.2.1, Case 3]. This shows the existence of a function $G \in \mathcal{X}_1$ with G(0) = 1 and $G(r) = \bar{c}/(|c|(1-r^2))$. It follows that

$$\sup_{F \in \mathcal{X}_1} \text{Re } L(F) = \text{Re } L(G) = 1 + |c|/(1 - r^2)$$

and so L is of special type.

(b) Statements similar to the theorems given above are true for other classes of holomorphic functions satisfying a growth condition. For example, one of these classes is the set of all functions F holomorphic in C with

$$|F(z)| \le e^{|z|^2}$$
 for $z \in \mathbb{C}$.

REFERENCES

- [A-G] L. V. AHLFORS AND H. GRUNSKY, Über die Blochsche Konstante, Math. Z. 42 (1937), 671-673.
- [Bo1] M. Bonk, "Extremalprobleme für Bloch-Funktionen," Dissertation, Braunschweig, 1988.
- [Bo2] M. Bonk, An extremal property of the Ahlfors-Grunsky function, in preparation.
- [C-W] J. A. CIMA AND W. R. WOGEN, Extreme points of the unit ball of the Bloch space \mathcal{B}_0 , Michigan Math. J. 25 (1978), 213-222.
- [Köt] G. Köthe, "Topological Vector Spaces, I," Springer-Verlag, Berlin, 1969.
- [Sch] G. Schober, "Univalent functions—Selected topics," Lecture Notes in Math., Vol. 478, Springer-Verlag, Berlin, 1975.
- [Wir] K.-J. WIRTHS, Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen, Arch. Math. 30 (1978), 606-612.