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Let H(D) be the topological vector space of all functions F holomorphic in the
unit disc D. We consider the compact convex subset &, = {Fe H(D): F(0)=0 A
[F'(z)] (1—1]2]1*) <1 for ze D} of H(D) and show that Ge &, is a support point of
4, if and only if A(G)={zeD:|G'(z)| (1 —|z|*)=1}# . This is an application
of a more general result which is concerned with the maximization of continuous
linear functionals on a set ] related to &,. © 1994 Academic Press, Inc.

1. INTRODUCTION

Let H(D) be the set of functions holomorphic in the unit disc
D={zeC:|z|]<1}. Endowed with the topology of locally uniform
convergence H(D) is a complex topological vector space. For Fe H(D)
and z e D we introduce the notation

pr(z)=1F'(z)| (1 —|z]?).
The Bloch space # is the set of all functions Fe H(D) for which the Bloch

norm
I Fll g =1F(0)] + sup up(z)

zeD

is finite. Here we consider the unit ball 8, = {Fe % : |F|l 4, <1} of #. This
set is a compact convex subset of H(D) and occurred for the first time in
connection with lower bounds for Bloch’s constant. We recall some basic
facts of the theory of convex sets.

Suppose C is a convex compact subset of a complex topological vector
space V. A point x € C is called an extreme point of C, if it does not belong
to the interior of a segment lying in C. Equivalently, xe C is an extreme
point of C, if and only if x + ye C with ye V implies y =0.
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A point xe C is called a support point of C, if there exists a closed
hyperplane H passing through x such that C is contained in exactly one of
the half-spaces determined by H. Equivalently, xe C is a support point of
C, if and only if there exists a continuous linear functional L: V' — C such
that the real part Re L of L is not constant on C and Re L(y)<Re L(x)
for all yeC. If C has nonempty interior, then it follows from the
Hahn-Banach type separation theorems that the set of support points of C
coincides with the set of boundary points of C. These sets will be different
in general (cf. [Kot, p. 193 ff.]).

In [C-W] it is shown that the set of extreme points of #, is the union
of the set of unimodular constants and the set of extreme points of the
convex compact subset &, = {Fe &, : F(0)=0} of #,.

There are results which indicate that for a function Fe 4, to be an
extreme point of &, the set

A(Fy={zeD:ps(z)=1},

where u attains its maximum, has to be “large.” For example, if A(F) has
a limit point in D, then F is an extreme point of %;. Under the additional
assumption lim ,, , , ux(z) =0 this condition is also necessary [C-W]. The
Ahlfors—Grunsky function [A-G ] is an example of an extreme point of &,,
for which A(F) has no limit point in D [Bo2]. In this case the set A(F) is
a discrete subset of D related to a certain non-euclidean triangulation of D.

A simple characterization of the extreme points of &, in terms of the set
A(F) is not known. It is still an open problem whether there are extreme
points of &, for which A(F) is empty [C-W].

The situation is much clearer for the support points of %#,. A charac-
terization of these points is given in Theorem 3 below. This is a corollary
of Theorem 1, which is concerned with the maximization of real linear
functionals on a certain convex set X related to %#,. An application to
coeflicient problems is given in Theorem 2.

2. THE CLASS ]

For the formulation and proof of the next theorem we fix notation and
state some needed facts.

If aeD and r>0 we denote by D(a, r)={zeC:|z—a|l<r} the open
disc with center a and radius r, by C* the set of complex numbers different
from 0, and by C the Riemann sphere.

For Fe H(D) let Z(F) be the zero set of the function F and let ord (F)
be the order of a zero zeD. We put ord,(F)=0 if F(z)#0 and
ord,(F)= —w if F=0.
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In the following it is more convenient to work with the derivatives of
Bloch functions and not with the Bloch functions themselves. So for
Fe H(D) we define

M(F)=sup |F(z)| (1 —|z|?)
zeD
and introduce the class " = {Fe H(D): M(F)<oo} consisting of the
derivatives of Bloch functions. We will be concerned with the function class

A={FeA : M(F)<1}. Note that X is a subpace and 2] a compact
convex subset of H(D). For Fe X we define

N(F)={zeD:|F(z)] (1—]z)?)=1}.

A set S D will be called a set of uniqueness (for ") if and only if
F|S5=0 for Fe X implies F=0. For example, if S D has a limit point
in D, then S is a set of uniqueness. A necessary condition for a set S D
to be a set of uniqueness is that .S be infinite. Here we will not give a more
detailed analysis of the conditions under which a set S=D is a set of
uniqueness.

We use two methods to construct new functions in ¢ from given ones.

If Fiex' and Pe H(D) is bounded on D, then F,=PF,e . In
particular, this applies to a polynomial P,

If F,e H(D) and P#0 is a polynomial with

ord,(P)<ord,(F,) for zeD,

then there exists a unique function F, € H(D) with F, = PF,. If furthermore
F, e and P(z)+#0 for ze D, then F,e . This is seen as follows.
There exists a constant Af, >0 such that

M
[F (2)| STT;‘F for zeD

and a number re (0, 1) such that P(z)#£0 for r<|z| € 1. Then there is a
constant M, >0 such that
1/|P(z)l < M, for r<zig L.

The function F, is bounded on the compact set D(0, r). So it is possible to
choose a number M; 2 0 such that |F,(z)| < M; for ze D(0, r). Now define
M,=max{M,M,, M,}. Then

M,

T——]P for zeD

IFa(2) <

and so F,e X
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A theorem of Toeplitz (cf. [Sch, p. 36]) states that there is a one-to-one
correspondence between continuous linear functionals L: H(D)— C and
sequences (a,), . n, of complex numbers with

lim sup [a, [ < 1. (1)

v — oo

If (a,), . n, is such a sequence, then the corresponding functional is given by

L(F)= i a,b,

yv=0

for every function Fe H(D) with Taylor expansion F(z)=3Y,b,z" at 0.
Examples of continuous linear functionals on H(D) are evaluation func-
tionals F— F")(z,) with fixed ne N; and z,eD and linear combinations
of evaluation functionals, which are called functionals of rational type. The
representation of a functional of rational type as a linear combination of
evaluation functionals is unique. This is equivalent to the following
statement. If neN, z,,..z,eD are pairwise distinct, k,, .., k,e Ny,
2105 s At kpr s Amos e A, €C, and the continuous linear functional
L: H(D) — C is defined as

LF)=Y ZA JF®(z,)  for FeH(D), (2)

v=1 pu=0

then L=0implies 4, o= - =4y 4= - =4, 0= - =4, 4, =0.
To see this note that there exists a holomorphic function G € H(D) with

G¥(z,)=17,, for ve{l,.,n}, pe{0, ..k}

If at least one of the coefficients A, , is different from 0, then L(G)> 0 and
so L#O0.

A continuous linear functional L on H(D) can also be represented as an
integral. We formulate this as a lemma.

LEMMA 1. Suppose L: HD)—C is a continuous linear functional.
Then there exist a number re (0, 1) and a function F, holomorphic in a
region containing C\D(0, r) such that if we define y(t) =re" for te [0, 2n],
then

L(F)=~2——1€—i j F(z)F\(z)dz  for FeH(D). 3)
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Proof. Represent the functional L by a sequence (a,), .y, satisfying (1).
There exists a number r, > 1 such that the sequence (a,r}), ., is bounded.
Then the function F, defined by

Fi(z)=Y Zf’;l for zeC, |zl > 1r,

is holomorphic in {zeC : 1/r, <|z|}. If we now choose r with 1/r; <r<1,
then (3) is true. |

We need the following results about functionals of rational type.

PROPOSITION. A continuous linear functional L: H(D) — C is of rational
type, if and only if there exists a function He HD), H#0, such that
L(PH)=0 for all polynomials P.

LEMMA 2. Suppose the continuous linear functional L: H(D)— C is of
rational type, has an integral representation as in Lemma 1, and the function
He H(D) of the proposition can be chosen to have simple zeros in D(0, r).
Then L is a linear combination of point evaluation functionals, where the
evaluation points are zeros of H in D(0, r); i.e., there exist points z,, ..., 2, €
Z(H)~ D(0, r) and complex numbers A, ..., 4, € C such that

L(F)=Y i,F(z,) for FeH(D).

Proof of the Proposition and of Lemma 2. Suppose L is of rational type.
Then L has a representation as in (2). Choose a polynomial H#0 with
ord, (H)zk,+1 for ve{l,..,n}. If P is an arbitrary polynomial, then
ord,(PH)>k,+ 1 for ve {1, .., n} and so L(PH)=0.

Conversely, suppose that there exists a function He H(D), H#Q, such
that L(PH)=0 for all polynomials P. The functional L has an integral
representation as in Lemma 1 (this includes the definition of a number
re(0, 1) as described). Then we have

jz"H(z)Fl(z)dz=o for neN,. (4)

4

There is a number " € (0, r) such that F, is holomorphic in {ze C: r' < |z|}.
Then the function HF, is holomorpic in the annulus {zeC:r' <|z| <1}
So it has a Laurent expansion H(z) Fi(z)=3 . __ d,z" converging for
r' <|z| < 1. From (4) it follows that 4_, =0 for y e N. This shows that HF,
has a holomorphic continuation to the unit disc D. Denote this extension

of HF, to D by F,e H(D). Then we have F,(z) = F,(z)/H(z) for r < |z] <1
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and we see that F, has a meromorphic extension to D. Since F, is
holomorphic in {ze C:r’ <|z|}, the function F, has a meromorphic exten-
sion to C. This extension will also be denoted by F; (by abuse of language).

The function F, is rational and poles can only occur in D(0, r') = D(0, r).
For ze D(0, r) we have F,(z)= F,{z}/H(z). This shows that we can have a
pole of F, in D(0, r) only where H vanishes and the order of the pole of
F, cannot exceed the order of the zero of H. From this and the integral
representation of L we conclude by an application of the Residue Theorem
that L is of rational type. If H can be chosen to have simple zeros in
D(0, r), then F, can only have simple poles at these zeros. So L is a point
evaluation functional of the described type. |

We need two more lemmas.

LemMma 3. Suppose L: H(D) — C is a continuous linear functional and let
Ge H(D). For arbitrary €€ (0, 1] define G,e HD) by G,(z)=G((1 —¢)z)
for ze D. Then there exists a constant K >0 such that

IL(G,— G}l <eK  for ee(0,1]. (5)

Proof. Assume that the Taylor expansion of G at 0 is given by G(z)=
2. o¢,2". The functional L can be represented by a sequence (a,), ., Of
complex numbers satisfying (1). There are numbers , > 1 and K, > 0 such
that

la,| 17 < K, for veN,.
Since 1/r;€(0, 1), the Taylor expansion of G at 0 converges for z=1/r,.

Hence the sequence (c,/r}) is bounded and so there is a constant
K, > 0 such that

ve Np

fe,I/ri<K, for veN,.

Now define K=K, K, > | v/ri€(0, o). Then for (0, 1] we get

v=1

LG, -G < Y laye,| (1= (1—ey)<e Y. viae,|

v=1

v

v=1

< wlel v -

=¢ Y l|a,|r} - <eK K, ) —=¢K |
v=1

yml 1 "
LEmMMA 4. Suppose M = 0. Then there exist numbers ¢,, Re (0, 1) such
that

1 + eM < 1
1—(1—¢)?)z)2 1—|z]> 1—]z|?

for O0<e<¢g and R<|z) < 1.

(6)
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Proof. Choose Re(0,1) with R*> M/(M +2). Then there exists a
number £,€(0,1) such that MR ((1—-¢e)>M+2—¢) for ee(0,¢,].
Inequality (6) now follows by direct computation. ||

For a continuous linear functional L: H(D) — C we define

M, ={Ge X sup Re L(F)=Re L(G)}.

Fe x|

Since the set ] is compact, we have 4, # .
Let L be a functional for which there exist complex numbers z,, ..., z,e D
and 4,, .., 4, € C* such that

L(F)= Z A,F(z,) for FeH(D).

v=1

Then we get the estimate

" A
sup Re L(F)< ¥ 4|

Fe Xy y=1 l_lzv

1

The case where we here have equality will be important for us. We say that
a continuous linear functional L: H(D) - C is of “special type,” if there
exist a natural number ne N, pairwise distinct points z,, .., z,€ D, and
complex numbers 4, ..., 4, € C* such that

L(F)=Y A4F(z) for FEH(D) and
L (7)
sup Re L(F)= ) Al

Fe X y=1 l—]zvlz.
Now we can state our main result.
THEOREM 1. Suppose L: H(D)—»C, L#O0, is a continuous linear
Sunctional. Then

(a) L is of special type or
(b) the set M, consists of a single point Ge A,. The function G is an
extreme point of A, and I'(G) is a set of uniqueness.

Note that if L: H(D)— C is of special type and has a representation as
in (7) and if Ge#,, then {z,..,z,} =T (G). In general no further
information on I'(G) can be expected in this case.

Proof of Theorem 1. The proof proceeds in several steps.
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1. Suppose L: HD)—-C, L#0, is a continuous linear functional
that is not of special type and let Ge .#; be given. We claim that I'(G) is
a set of uniqueness. To obtain a contradiction assume this is not the case.
Then there exists a function H, € X", H, 20, with H, | I'(G) =0. Note that
I'(G) cannot have a limit point in D, for otherwise H, =0 by the unique-
ness theorem for analytic functions. So 7'(G) consists of isolated points or
is empty.

The basic idea of the proof is to construct a variation G € #; of G with
Re L(G) > Re L(G). Since G € .#, and so Re L(F) <Re L(G) for all Fe xt;,
this will give us a contradiction.

The variation G may be written as

G(z2)=G((1 —e)z)+ eH,((1—¢)z) for zeD

with sufficiently small ¢ > 0. The function H, will be obtained from H, by
dividing out and shifting some of the zeros of H,.

2. The functional L has an integral representation as in Lemma 1. To
be able to apply Lemma 2 we modify the function H, as follows.
The number of zeros of H, contained in the disc D(0, r) is finite. Hence
there exists a polynomial P, such that

0 C\D(0, r)
ord (P,)=< ord (H,) for ze< DO, r\I(G)
ord,(H,)—1 D0, ryn I'(G).

Since ord,(P;)<ord,(H,) for zeD, there is a function H,e H(D) with
H, =P H,. Indeed H,e X, because H,e X and P, has no zeros on the
unit circle. Furthermore, H,#0 and H, | I'(G)=0. By construction of H,
a point ze D(0, r) 1s a zero of H, if and only if ze D(0, r) »n I'(G). Each of
these zeros is of first order.

3. Let K>0 be a constant chosen according to Lemma 3. Now
consider two cases.

(a) There exists a polynomial P, such that Re L(P,H,)> 0. In this
case define
2K

Hy=—""———
" Re L(P,H,)

P,H,.

Then we have
H;eX, H;#0, Re L(H,)=2K, H,(z)=0 for zeI(G). (8)

(b) There exists no polynomial P, such that Re L(P,H,;)>0. In
this case we would also like to have a function H, with the properties (8).
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Such a function need not exist, but it is possible to single out an element
z,€ I'(G) and to construct a function H; with the following properties

(a) Hye X', H;#0, Re L(H3)=2K, Hy(z)=0 for ze F'(G)\{z,},
(b) Re(Hs(z,)/G(z,)) <0.

(8)

This can be seen as follows. From our assumptions on L we conclude that
Re L{e“PH,) <0 for all polynomials P and all numbers se [0, 2r]. This
implies L(PH,)=0 for all polynomials P. Now apply Lemma 2 with
H=H,. This shows that there exist a number meN,, pairwise distinct
points z, ..., z,,€ Z(H,) n D(0, r) € ['(G), and numbers 4,, .., 4, € C* such
that

L(F)=Y i,F(z,) for FeH(D). 9)

Here m # 0 since L #0.
The functional L is not of special type. Therefore

m m i
Re( Y ZVG(z,,))< Y ——l-i—z (10)
v=1 v=1 1 - lzvl
We have {z,, .., z,,} & ['(G) and so |G(z,)| = 1/(1 — |z,|*) for ve {1, ., m}.
Thus inequality (10) is only possible if there exists a number ke {1, .., m}
with

Re(4,G(z,)) < ] 5.
1—z,]

Without loss of generality we may assume k = 1. Now define a=1,/|4,]
and = G(z,)/|G(z,)|. Then |a] = |b| =1 and Re(ab) < 1. This implies a # b.

Since ord,, H,=1, there exists a function F,e X" with Fy(z,)#0 and
Hy(z)=(z—12z,) F4(z) for zeD. Then F;%#0 and F;(z)=0 for ze I'(G)\
{z,}. It is possible to choose a number &, > 0 such that z; =z, + 6,(b —a)/
Fi(z;)eD. Now define H,(z)=(z—2z}) Fy(z) for zeD. Then H,e.x,
H,#0, and A,(z)=0 for ze I'(G)\{z,}. Using (9) we get

Re L(A;) = Re(4(z, — 21) F5(z,)) = 4,1 8,(1 — Re(ab)) > 0.

Finally, we have

ﬁ3(21) _ 0y ~
Re( Gz0) )— _IG(21)| (1 —Re(ab)) <.
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If we now define

)
=——__H,
Re L(f,)

H;

then (8') is true.
4. Put M=1+ M(H;)< « and apply Lemma 4 to find constants ¢,,
Re (0, 1) such that (6) is valid.
The set I'(G)n D(0, R) is finite. So there exist a number ge N, and
pairwise distinct points u,,..,u,€D such that {u,..,u,}=I(G)n

D(0, R). We want to construct a function H,e H(D) with the following
properties

(a) Re(H,(z)/G(z)) <0 for ze{uy,..,u,;=I(G)nD(O,R),

(b) M(H,)<M, (11)

(c) ReL(H,)=3K/2
The function H, will be obtained from H, by shifting some zeros of H;. We
will give the details of this construction for the first case in 3 and will
indicate the slight modifications in the second case.

Put k,=ord,(H;)eN for ve{l,..,q}. Then there exists a function
F,e o such that

Hy(z) = Fa(z) [T (z = w)*
v=1

for zeD and  Fyu,)#0 for ve{l,.,q}

Choose numbers ¢4, ..., ¢, € [0, 2n] with

o Falu,) £
Re (e"‘"‘v kil 24 (u,—u )"") <0 for ve{l,..,
Gy 1L g i d)
HEV
and define u, ,=u,—(1/n)e™ for ve {1, .., q} and neN. Then u, ,—u,
for n — co. This implies that if » is sufficiently large, then

Re(e"‘"’”%z(:—“)) ﬁ (uv—u,,‘,,)""><0 for ve{l,..,q}. (12)

Hn#EV

For ne N and ze D define

B,(2)=Fa(2) [] (z—u, )"

I

v

580/123/2-7
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Then B,e H(D) for neN and lim, _, ., B,(z)= H,(z) for ze D. Inequality
(12) implies that if n is sufficiently large, then

Re(B,(u,)/G(u,))<0 for ve{l,..q}. (13)
For sufficiently large n we have
C i k li[ ( ) ! )
»=SUu z—u, )" — z—u)" | S ——7 14
sop | I e =11 [+ M(Fy) (
and for these n
M(B,)=sup |B,(z)| (1 —]z1%)
zeD
< C,sup |Fy(z) (1= |zI?) +sup [H;(2)] (1 —z|?)
zeD zeD
M(F,)
L——7— H,)) <1+ M(H;)=M.
Ty MU < 1+ M) (15)

It follows that the sequence (B,), . is locally uniformly bounded. Since it
converges pointwise to H;, Vitali's theorem shows that the sequence
(B,),.n converges locally uniformly to H;. Thus by the continuity of L

Re L(B,) > Re L(H;)=2K for n— . (16)

From (13), (15), and (16) we finally see that is is possible to choose
N,eN large enough such that the function H,= B, satisfies the
conditions (11).

In the second case of Step 3 the function H, has zeros at each of the
points u,, ..., u, with the one possible exception of z,. If we apply the above
zero-shifting technique to the other points, we can again construct a
sequence of holomorphic functions (B,), . 5 converging locally uniformly to
H; such that for sufficiently large n inequality (15) is true and inequality
(13) is true for all points u, different from z;. For the point z, this is also
true, because by (8')}(b) we have Re(H;(z,)/G(z,)) <0 and so Re(B,(z,)/
G(z,)) <0 for sufficiently large #. So in this case, too, it is possible to
choose N, €N large enough such that H,= B, has the properties (11).

5. We now define Q. (z)=G((1 —¢)z)+eH,((1—¢)z) for £€(0, 1)
and zeD. Then Q,e H(D). We want to show that Q, e ] for sufficiently
small ¢ > 0. For this we need inequality (6) and the properties (11)(a) and
(11)(b) of the function H,.

Inequality (11)(a) implies that there exists a number &, > 0 such that

H4(uv)
Gy | <!

'1+82 for ve{l,..,q}.
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The continuity of the function z+ H,(2)/G(z) at u, for ve {1, ..., ¢} shows
that there is a number &,> 0 such that (J?_, D(u,, 8,) =D, G(z)#0 for
zeU?_, D(u,, 6,) and

H,(z ¥
’1_,_ R G4(( )) 1 for zevgl D(u,, 3,).
Then
q
‘1+ I:;“((Z)) for e€(0,e,] and  ze | Dlw,,d)).  (17)
v=1

There exists a number &, >0 such that

q q
€(0,¢;] and ze () D(u,, 8,/2) implies (1—e)ze |) D(u,,d5)
v=1 v=1

(18)
and

£€(0, ¢;] and z e D(0, R)\( U D(u,, 62/2)>

implies (1-—¢)ze D(0, R)\( ) Dlu,, 52/4)>. (19)

v=1

Since 7' (G)n D(O, R) = {u,, .., u,} we have

1 . q
T for zeD(O, R)\( U

v=1

1G(2)l < D(u,, 52/4))-

From the usual compactness and continuity arguments it follows that there
exists a number 4, >0 such that

|G(2)| + 6, < for zeD(0, R)\( O D(u,, 52/4)). (20)

1
l—l212 v=1

Finally, choose a number ¢, > 0 such that

e |H,((1—2)z)| <0, for £€(0, &,4] and ze D(0, R). (21)

Now define
S;={zeD:R<|z| <1},

q

S,= U D(u,, 6,/2),

v=1
S, = D(0, 2 R")‘\ () D, 6,/2)
y=1

and g5 =min{e,, &, &3, &4} >0. We have §;US, U S5,=D
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Suppose e€ (0, &5 ]. Then for ze S, we get from (11)(b) and (6)

1Q.2)| <|G((1—¢) z)| + & |Hy((1 —¢) z)]
< 1 + eM
Tl1-(1—g)lz]?  1—(1—g)?|z|?

< 1 + eM < 1
D S N T e T e

For ze S, we have (1—¢)zeJ¢_, D(u,, J,) by (18) and so by (17)

Hy((1—¢)z)| _ 1 ]
G((1—¢)z)| T 1—(1—¢)?|z)?  1—|2|¥

1Q.(2) = 1G((1—¢) 2)| (1 +¢

Finally, for z€ S; we have (1 —¢) ze D(0, R)\(U*_, D(u,, §,/4)) by (19)
and so by (21) and (20)

1
< .
—(1—e)*lz]* " 1—z|?

[Q.(z) = |G((1 —¢) z)I +53<1
It follows that if ¢€ (0, 5], then

1
IQE(Z)ls-i—:I_Z? for zeD

and so Q,€ X].

6. For neN consider the functions R,e H(D) defined by R, (z)=
H,((1—1/n) z) for ze D. The sequence (R,), . converges locally uniformly
to H,. Therefore Re L(R,) — Re L(H,) for n — co. By (11)(c) it is possible
to choose N,eN large enough such that Re L(R,,)> K and 1/N,<es.
Then G'=Q,,y,€#; and so by (5)

Re L(G)—Re L(G)=Re L(G,,y,— G) + —]é— (Re L(Ry,))

2
1
= N‘ (Re L(RNZ)) - \L(Gl/Nz —G)
2
2—1— (Re L(Ry,)— K)>0.
N,

This is a contradiction since G € .4, and so

sup Re L(F)=Re L(G).

FeX|
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So we have proved that if L is not of special type and if G € 4, then I'(G)
is a set of uniqueness.

7. If L is not of special type and if Ge .#,, then G is an extreme
point of #]. To see this assume G 4 Fe ¥, with Fe H(D). Then

21G(2)1* +2|F(2)I*=G(z) + F(2)|* + |G(z) - F(z)|?

2
Sm for zeD.
From this inequality we conclude Fe )" and F(z)=0 for ze I'(G). But
I (G) is a set of uniqueness and so F=0. Hence G is an extreme point
of ].
8. If L is not of special type, then .#, consists of a single point.
Note that .4, is a convex set. If G,,G,e #, and G,+# G,, then
1(G, + G,)e #,. But (G, + G,) cannot be an extreme point of .4, . This
contradicts 7.
The proof is complete. |

3. THE COEFFICIENT REGIONS OF )]

For neN, let A,: HD)— C"*! be the continuous linear mapping
defined by

A, (F)=(F(0), F'(0), .., F"/n!)  for Fe H(D).

Then the coefficient regions of X] are K, = {A4,(F): Fe A;}. So far only
Ko=D and K, (cf. [Wir]) are explicitly known. It is easy to see that in
general the set K, is a compact convex subset of C"*! containing 0 e C**!
in its interior. Obviously, the set K, is determined by its boundary K,,. As
an application of Theorem 1 we can prove the following uniqueness
theorem for the boundary points y e 0K,,.

THEOREM 2. Suppose neN and y=/(cy,..,c,)eC**! is a boundary
point of K, with |cy| <1. Then there exists a unique function G € X, with
A, (G)=y. For this function I'(G) is a set of uniqueness.

Note that if Ge ] and G(z}=3.2° , ¢,z is the Taylor expansion of G
at 0, then |¢o| < 1.

Without the assumption |c,| <1 the above uniqueness statement is not
true in general. To see this define G,(z)=1 and G,(z)=1+2z* for zeD.
Then G,, G,e ¥}, G, #G,, and 4,(G,)=A4,(G,)=(1,0)e dK,.
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Proof of Theorem 2. Assume neN, y=(cg, .., c,)€0K,, and |¢co| <.
Since K, has nonempty interior, the set of support points coincides with
the set of boundary points of K, (cf. Introduction). Therefore, y is a
support point of K, and so there exists a continuous linear functional
L:C"*' 5 C such that Re L is not constant on K, and

Re L(x)<Re L(y) for xeKk,. (22)

There are numbers a,, ..., a,€ C such that

E((éOs ey én)) = Z aviv for (609 ey én)ec”-'- 1-
v=0

Since Re L is not constant on K,,, at least one of the numbers ay, ..., a, is
different from O.

Assume q,#0 and aq,= --- =a,=0. Then x,=(ad,/|a,l,0,..,0)eK,
and Re L(x,)<Re L(y) by (22). On the other hand Re L(x,)=|a,| and
Re L(y) =Relagcy) € lagc,| < laol. This is a contradiction. Hence at least
one of the constants a, .., a, must be different from 0.

Now define L=LoA4,: HD)—»C. Then L is a continuous linear
functional and we have

n (v)
L(F)= Y a, F v’(O) for Fe H(D).
v=0 :

Since one of the numbers 4y, ..., g, is different from O and the representa-
tion of a continuous linear functional L: H(D) — C as a sum of evaluation
functionals is unique, L is not of special type and L Z0.

If Ge X, and A4,(G)=y then Ge #,. To see this note that we have
by (22)

Re L(F)=Re L(A4,(F))<Re L(y)=Re L(G)  for FeX;.

Theorem 1 shows that G is uniquely determined and that I'(G) is a set of
uniqueness. ||

4. THE SUPPORT POINTS OF %,
The results obtained in Sections 2 and 3 for the class ] may of course
be reformulated for the class #,. Here we will content ourselves with the

following theorem about the support points of %, .

THEOREM 3. (a) If Fe®, is a support point of ®B,, then F is a convex
combination of a unimodular constant u (identified with the corresponding
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constant function on D) and a support point Ge &, of %,; ie., there are
constants A, A,€ [0, 1] with A, + A, =1 such that F= A, u+ 4,G.

Conversely, every convex combination of a unimodular constant and a
support point of &, is a support point of &,.

(b) A function G € %, is a support point of B, if and only if A/(G)# .

Proof. (a) The proof follows from ideas similar to those of Coroliary 2
in [C-W1. It offers no serious difficulties, so we omit it.

(b) Assume Ge%, and A(G)# . Then there exists a point
zq€ A(G). Hence

1G'(zo) = /(1 = [20]*) = sup |F'(zo)I. (23)

Fe@l

If we define L(F)=G'(zy) F'(zy) for Fe H(D), then L: HD)—C is a
continuous linear functional. It is clear that Re L is not constant on &, and
by (23) we have

Re L(F)<Re L(G) for Fed,.

It follows that G is a support point of %, .

Conversely, assume that Ge 4, is a support point of &,. Then there
exists a continuous linear functional L: H(D) — C such that Re L is not
constant on &, and

Re L(F)<Re L(G) for Fe®,. (24)

The functional L can be represented by a sequence (a,),en, Of complex
numbers satisfying (1). Define ¢, =(1/(v+1))a,,, for ve N,. Then from
(1) it follows that

lim sup ¢, |V < 1.
Y — O

Consider the continuous linear functional L: H(D)— C corresponding to

the sequence (c,),.n,- Then we have

L(F)=L(F) foral Fe H(D) with F(0)=0. (25)

Since Re L is not constant on &,, the functional L is not identically 0.
Inequality (24) and equality (25) show that G’ e ;. If L is not of special
type, then A(G)=TI(G')# & by Theorem 1. If L is of special type, then
this is also true by the remark following Theorem 1. ||
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5. CONCLUDING REMARKS

(a) Whether a functional given by
L(F)= Y A,F(z,) for Fe H(D)
v=1

is of special type or not, depends on the coefficients 4,, ..., 4, and the points
Zy, .., Zy. For n=1 the functional is always of special type. For n=2 the
answer is in principle known and can be obtained from the complete
description of the variability regions, which are in our notation defined by
V(z,;z2, wy)={F(z,): FeX| A F(z;)=w,} [Bol]. Here we will just give
two examples.

Fix re (0, 1) and ce C*. Define the functional L: H(D) — C by
L(F)=F(0)+ cF(r) for Fe H(D).

If in addition re (0, \/5/2) and ¢ <0, then L is not of special type. To see
this assume L is of special type. Then there exists a function G € ] with

Re L(G)=Re(G(0) + cG(r)) =1+ |c| /(1 —r?).

This is only possible if G(0)=1 and G(r)= —1/(1 —r?). Now [Bol, p. 46,
Satz 4.2.1] shows that Ge #] and G(0)=1 imply

Re G(r) = I—ﬁr > !

NIRRT

This is a contradiction.

Ifre [\/?:/2, 1), then L is of special type. To see this apply [Bol, p. 18,
Satz 2.2.1, Case 3]. This shows the existence of a function Ge ¥ with
G(0)=1 and G(r)=¢/(|c| (1 —r?)). It follows that

sup Re L(F)=Re L{G) =1+ |c|/(1 —#?)

Fex,

and so L is of special type.

(b) Statements similar to the theorems given above are true for other
classes of holomorphic functions satisfying a growth condition. For
example, one of these classes is the set of all functions F holomorphic in C
with

|F(z)| <e*  for zeC.
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