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Abstract

The identification and estimation of a semiparametric simultaneous equation model
with selectivity have been considered. The identification of structural parameters from
reduced form parameters in the semiparametric model requires stronger conditions than
the usual rank condition in the classical simultaneous equation model or the parametric
simultaneous equation sample selection model with normal disturbances. The necessary
order condition for identification in the semiparametric model corresponds to the
overidentification condition in the classical model. Semiparametric two-stage estimation
methods which generalize the two-stage least squares method and the generalized
two-stage least squares method for the parametric model are introduced. The
semiparametric generalized two-stage least squares estimator is shown to be asymp-
totically efficient in a class of semiparametric instrumental variable estimators.

Key words: Semiparametric model; Sample selection; Simultaneity; Index model; Identi-
fication; Instrumental variables; Asymptotic efficiency
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1. Introduction

For the estimation of simultaneous equation sample selection models
with parametric (normal} disturbances, several methods are available in the
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econometric literature, e.g., Lee, Maddala, and Trost (1980), Lee (1981),
Amemiya (1983), Newey (1987), and Blundell and Smith (1989). The approach
introduced in Lee, Maddala, and Trost (1980) combines Heckman’s two-stage
and Theil’s two-stage least squares procedures. Amemiya (1983) considered
a class of estimators derived from modified minimum distance procedures.
Relative efficiency of such procedures has been considered in Lee (1981),
Amemiya (1983), Newey (1987), and Blundell and Smith (1989).

In this article, we will consider instrumental variable (IV) methods for the
estimation of simultaneous equation sample selection models without para-
metric distributional assumptions. Semiparametric instrumental variable
methods for the estimation of sample selection models have been considered in
Powell (1987) (see also Robinson, 1988). In Powell (1987), since his interest is on
general semiparametric instrumental variable methods, he has not focused
attention on any specific simultaneous equation structures of the model. Many
interesting issues, such as the rank identification condition, which are well-
known for the classical simultaneous equation model, have not been addressed
for the semiparametric simultaneous equation model. In this article, we are
interested in the specific structure of simultaneous equation sample selection
models. We investigate the problem of structural parameter identification, the
role of identification conditions on semiparametric instrumental variable es-
timation, and the proper construction of instrumental variables from the system.
We will also investigate the possible generalization of the (semiparametric)
two-stage least squares estimation method and the construction of efficient
semiparametric instrumental variable estimators.

2. Semiparametric simultaneous equation models with selectivity
and instrumental variable estimation

In this article, our discussion will focus on the estimation of a single equation.
The estimation of multiple equations can be easily generalized. Consider a single
structural equation:

y* =% + xJyo + uy, 2.1)

where y* is a latent endogenous variable, z* is a G-dimensional row vector of
latent endogenous variables not including y*, x is a K-dimensional row vector
consisting of all exogenous variables in the system, and xJ, where J is a selection
matrix, represents the subset of exogenous variables included in this structural
equation. The reduced form equation of z* is

Z*ZXH2+U2, (22)

where I1, is a K x G; matrix and v, is a G, row vector of disturbances. The
endogenous variables y* and z* are well-defined in the whole population, but
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their sample observations y and z are subject to selection. The latent selection
equation is

d* = x{o + &, (2.3)

where d* is a latent variable. The values of y and z are observable if and only if
d* > 0. As in Ichimura (1987) and Powell (1987), we consider the index model
framework where the joint distribution of (u,,v,,¢) conditional on x can be
a function of the index x{,. Such a framework is slightly more general than the
case where the disturbances are independent of x.

Conditional on d > 0 and x;, (2.1) implies that

Vi = zitlg + XiJyo + E(uyi| x;lo, dF > 0) + ugy;, (2.4)
where
ug = ty; — B(uy;| x;{o, df > 0). (2.5)

Let K (*) be a kernel function with a bandwidth parameter a, (Silverman, 1986,
or Bierens, 1985). Let w = (z,xJ) and o = (29,7¢)- For any possible value
(8,0 of (Bo,ls), the conditional expectation function E(y — wf|x{ = x;{,
d* > 0) of y — wp, conditional on the random variables x{ and d* > 0 evalu-
ated at the point x;{, can be estimated by the following nonparametric regres-

sion function:
e

J#Fi
x;{
L)

where n is the sample size for the observations of (y, z, x) conditional on d* > 0
(Nadaraja, 1964; Watson, 1964). Given a ,/n-consistent estimate C of {, Powell
(1987) has proposed an instrumental variable method for the estimation of f,
from the following equation:

Vi = En(y1%:0) = (Wi — Ey(w|x:) o + s, 2.7)

where
x;¢
Bt = ok (M 28 £k (M4250)

for any random variable s (see also Robinson, 1988). InstEumental variable
methods require instrumental variables for w; — E, (w|x;{) (Powell, 1987).
A simple instrumental variable estimator with instrumental variables p can be

E.(y = wh|x;() = (2.6)

-1 n

(_}; Pi(w; — En<w|x,-f:‘))> T P = En(y1x0). (28)
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However, due to the technical difficulty of handling the denominator in the
nonparametric regression function in (2.6), some modifications are needed to
overcome the difficulty. Various ways have been introduced in the literature.
Powell (1987) uses the denominator in (2.6) as the weight in the summations of
(2.8) s0 as to cancel the denominator of (2.6). An alternative suggestion is to trim
the tails of the distribution of x or the index x{ (Robinson, 1988; Klein and
Spady, 1987; Ichimura and Lee, 1991). In this article, trimming will be applied
to the index x{ when its values are greater than some upper quantile or less than
some lower quantile (see Sections A.2 and A.3 of the Appendlx) Suppose that
(¢, é,,) is a trimming indicator with value 0 when x; ;L is deleted, where g,, 18
a vector of sample quantiles. A simple unweighted instrumental variable es-
timator is

ﬁp=<_

x ¥ 1,06l &Py = En(y ] xi)). (29)

M:;

%@@&WWW-ENNM@Or

1

The trimming procedure is preferred to the Powell’s procedure. The weighting
scheme in Powell (1987) has nothing to do with the variance of the disturb-
ance i,; in (2.7). With the trimming procedure, weighting estimation method
which incorporates heteroskedastic variances can be introduced in subsequent
sections.

As in the classical simultaneous equation model, the consistency of IV
estimators depends on proper instruments constructed from the list of
exogenous variables x in the system. Consistency of the I'V estimators is possible
only if the structural equation is identifiable. In subsequent sections, we will first
address the identification problem of this system. Problems on how to select
proper instrumental variables and the construction of efficient IV estimation of
(2.7) will then be considered.

The estimation method can be generalized to cover more general cases where
the selection mechanism is determined by several inequality conditions, for
example, models with polychotomous or sequential choices. For the general
case, d* in (2.3) is a finite-dimensional (row) vector of latent equations. The
samples of y and z are observed if and only if d* > 0. The implied regression
equation (2.4) becomes a model with multiple indices (Stoker, 1986; Ichimura
and Lee, 1991). x{ will represent a vector of indices with { being a matrix. The
semiparametric estimation method above can be generalized. K(-) will now be
a higher-dimensional kernel with the dimension of x{, and the trimming will be
applied to all the indices in x{. The bandwidth a, needs to be wider in the
nonparametric regression estimation in (2.6). The detailed analysis in the Appen-
dix is applicable to the general model.
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3. Identification

Let
y* — x,nl + UI (3.1)

be the reduced form equation for y*. As in the classical simultaneous equation
model, the identification of structural parameters is directly related to the
reduced form parameters. Within the index model framework, identification of
(2.2),(2.3), and (3.1) has been considered in Ichimura (1987), Chamberlain (1986),
Powell (1987), and Ichimura and Lee (1991). Conditional on d* > 0 and x,

E(ylx,d* >0) = xm, + E(vy [ x{o, x{o > — ), (3.2)
and
E(z|x,d* > 0) = xII, + E(v, | x{o, x{o > — o). (3.3)

As shown in Ichimura (1987) for the single-index model, {, in the selection
equation (2.3) can best be identified up to an unknown scale. When the re-
gressors in x are all qualitative variables, {, cannot even be identified up to
a scale. Therefore, we consider only the model where a relevant continuous
exogenous variable is present in the index x{,. As the coefficients in the index
can only be identified up to a scale, normalization is needed. A convenient
normalization (Ichimura, 1987) is to set the coefficient of a continuous
exogenous variable to the unity. Contrary to the classical simultaneous equation
model, the reduced form parameter vectors m; and II, in (3.1) and (2.2) are not
identifiable. This is so because xm; and x{, contain the same set of variables
x and they cannot be distinguished from each other in (3.2). Similarly, this is so
for xIT, and x{,. This identification problem has been studied in Ichimura and
Lee (1991) and Powell (1987) in the analysis of index models with nonparametric
regression functions. The same conclusion has been derived in Chamberlain
(1986) from the nonparametric likelihood function of the model.

Even though 7, and I7, are not identifiable, some transformations of them
can be identified. With the normalization suggested by Ichimura (1987), let

xCo = X(1) + X2)00,

where x(1) is a relevant continuous exogenous variable in x = (x(y,, X(;)) and
X(z) is the remaining subvector of x. Conformably, x7, = x(,71; + X712,
xIl, = xqynh + xyI152, and Xy, = X(1y70,1 + X2)70.2. The reduced form
equation (3.1) can be rewritten into

y¥=xgnf + of, (34
where nf = ny, — domyy and v§ = vy + x{omy,. Similarly,

¥ = x)I1% + 03, (3.5
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where IT% = IT1,, — 6ymh, and v¥ = v, + x{omh. It follows that

E(y[x,d* > 0) = xnf + E@¥|x{o,d* > 0) (3.6)
and

E(z|x,d* > 0) = x,[Tf + E(v¥|x{o,d* > 0). (3.7)

The index x{, is distinguishable from x; =f and x,,IT¥, because x;, appears
only in x{, but neither in x) 7T nor in x;,[1¥. The transformed parameters
n¥ and IT% and ¢, are identifiable.

The structural parameters « and v are related to the reduced form parameters
n¥, 13, and J. Substituting (3.5) into the structural equation y* (before impos-
ing any explicit exclusion restrictions), we have

V¥ =z%0 + X0 + Uy
= (xy T3 4+ v3)to + X1yV0,1 + X2)70,2 + Uy (3.8)
= XI5 otg — 0,100 + Vo,2) + uf,

where uf = u; + v¥oo + y0,1%{0 and 7o = (y6.1, 70,2) is the vector of coeffi-
cients of x before exclusion restrictions on x are imposed. Comparing (3.8) with
(3.4),

nf = I3 a6 — 0,100 + Yo,2- (3.9

From (3.9), we see that the identification of the structural parameters o,
Yo.1> and y, , requires restrictions on the structural equation (2.1). With exclu-
sion restrictions in (2.1), we have J,=Jy, and (3.9) becomes =n¥ =

[IT%,(— 6o, 1)J](x}, yo). From this relation, we see that the rank identification
of the structural parameters in y = zag + xJyo + uy is that [{T15,( — ,,I)J] has
full (column) rank. For the order identification condition, it is convenient to
consider separately the two cases of exclusion restrictions of (1) x(,, appearing in
(2.1) and (2) x4, not appearing in (2.1). Consider first the case that x,, is excluded
from (2.1), which is equivalent to saying that y, ; = 0. Without loss of generality,
suppose that the first k; exogenous variables in x(, are included but the
remaining K — 1 — k; variables in x,, are excluded from (2.1), ie., yo,, =
(76,21, 0Y where 74 5, is of dimension k,. Conformably, let nf = (zf;,7¥),
% =(I1%,11%), and 8¢ = (35, 1, 8p.2). Since 74,1 = 0, (3.9) is equivalent to

nf = 3109 + Yo,21 (3.10)
and
ﬂikz = H;Zao. (311)

It follows from (3.10) and (3.11) that the rank condition is equivalent to rank
IT%, = G,. The necessary order condition is K — 1 — k; = G, i.e,, the number
of excluded variables in x», from the structural equation is greater than or equal
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to the number of endogenous variables on the right-hand side of (2.1). Consider
next the case that x;, is included in the structural equation. As in the previous
case, suppose only the first k; exogenous variables in x,, are included in (2.1).
Eq. (3.9} is now equivalent to

nfy = I3 09 — 70,100,1 + Yo.21 (3.12)
and
nt; = 300 — Yo,100,2- (3.13)

The rank identification for this case is rank [IT3;, — dp.2] = G; + 1, and the
necessary order condition is K — 1 — k; = G; + 1. In any event, the identifica-
tion condition is stronger than the identification condition for the classical
simultaneous equation model. The exact identification of (2.1) for the classical
model becomes underidentification for the semiparametric model. The order
identification condition for the semiparametric model corresponds to the
overidentification condition in the classical simultaneous equation model. The
stronger condition for the identification of the semiparametric model is appar-
ently due to the addition of a sample selection bias term of an unknown form in
the bias corrected structural equation. Exogenous variables which are excluded
from the structural equation (before bias correction), but appear in the selection
bias term through the index x{,, identify the selection bias term. Intuitively, the
included bias correction term introduces excluded exogenous variables back
into the (bias) corrected structural equation, and the effective number of the
included exogenous variables in this equation is the number of originally
included exogenous variables plus one. Therefore, the order condition for
identification requires stronger exclusion restrictions than the classical simul-
taneous equation model. For the parametric simultaneous equation sample
selection model under normal disturbances, the bias correction term has
a known nonlinear functional form, which introduces nonlinear restriction into
the bias corrected structural equation. The nonlinear bias correction term with
a particular known form due to normality helps identification even though the
excluded exogenous variables are implicitly introduced back into the bias
corrected structural equation. If the bias correction term in a parametric
simultaneous equation sample selection model were a linear function of the
index (Olsen, 1980}, then stronger identification condition similar to the one of
our semiparametric model would be needed. Putting it in another way, stronger
identification condition is needed for our semiparametric model because it does
not exclude the parametric specification of Olsen (1980).

The identification condition can be extended to the general model where x{
represents a vector of indices. To distinguish the indices in x{ for identification,
each index is required to contain a relevant continuous exogenous variable
which does not appear in the other indices (Ichimura and Lee, 1991).
Suppose x{ contains m indices. With normalization, x{ = (x1) + X(2)0¢1), --- »
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X(1m) + X2)0em ), Where x(i1), ..., Xamy are m distinct continuous variables not
contained in the subvector x(;. For this general model, 6 = [J(y), ... , 6pm ]
is now a matrix. The rank identification condition is that [IT¥, (— 6o,1)J]
has full (column) rank.

4. Semiparametric two-stage least squares estimation

For the classical simultaneous equation model, the most popular IV method
is the two-stage least squares method (2LS). A generalization of 2LS to the
estimation of parametric simultaneous equation models with selectivity has
been introduced in Lee, Maddala, and Trost (1980). The endogenous variables
are regressed on all the exogenous variables and a sample selection bias term
(inverse Mill’s ratio) in the first stage. The regression predictors are then used as
the instrumental variables in the second-stage estimation of the selection bias
corrected structural equation.

For the estimation of the semiparametric model, define the following ma-
trices:

"tn(xlg, En)(x(Z)l - E, (x| X1CA))\

A’}2 = : 3
{ tn(xnC’ én)(x(Z)n - En(x(Z)'xnC)) j
e E)wy = Ey(wlx: D))
W= : E
tn(xné; én)(wn ’ En(w | xnC))
G &) = B lx D)
7o )

£l

\ tn(xné: En)(yn — En(y|xn5)) /

where t,,(x(f, f,,) is a smooth quantile trimming function of xf introduced in
Sections A.2 and A.3 of the Appendix. The trimming function is differentiable
with respect to its arguments x{ and £, so that one can easily investigate the
impact of the randomness of 5 and the sample quantiles &, on the asymptotic
properties of the derived estimators. A semiparametric two-stage least squares
estimator (S2LS) is

.BASZLS = [W/)zz()?ziz)_lilz I’f/f_]‘1I’f/l)ez()flz‘)zz)_l)zlz f/ (4~1)

This estimator can be interpreted as being derived from a two-stage estima-
tion procedure. In the first-stage estimation, the reduced form equations for z in
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(3.7) are estlmated by a semiparametric least squares method, and the predlcted
values for z — E, (z| \g) are used as instrumental variables for z — E, (z| x{). I
addition to z, if x(y, is included in w, an auxiliary reduced form equation for
X(1y i$ also estimated by a semiparametric least squares method, and the
predicted value for x3y — E,(x(, [ x{) will be used as an instrumental variable
for x1, — E.(x(1,| x{} for the estimation of (2.7). This two-stage estimator has
a two-stage semiparametric least squares interpretation. To see these, define an
auxiliary equation for x):

X1y = — X200 + V1.4 » 4.2)
where v, , = x{,. Since w* = (z*, xJ), (3.5) and (4.2) imply that

W = x5, [IT§,(— 30, 1)J ] + v*, (4.2
where v* = (v5,{(v1,4,0)J), and conditional on d* > 0 and x,

w=x[%,(— 6. 1)J] + E@w*|x,d* > 0) + v, (4.3)

where v; = v* — E(v*| x,d* > 0). Similarly, as in (2.7), since the distribution of
* is a function of x{,,

W — En(wixig) = (X(2)i — En(x(Z)lxié))nw + Tpis 4.4)

where IT,, = [IT5,(— 8o, [)J]. A semiparametgic least squares (SLS) estimator
of I1, with trimming function t, is II, = (X3X,) 'X3W. It follows that
ﬁsst = [(X g W (X2 Iy w) ]~ "X, 11 «) Y, which has a two-stage least squares
interpretation. The regressor x;, plays an interesting role in the estimation. This
variable is exogenous in the equation system, however it behaves as if it were an
endogenous variable in the estimation. It has been excluded from the list of
regressors in the first-stage SLS estimation. This feature is compatible with the
order identification condition in Section 3.

The propositions in Appendix Section A.4 can be used to derive the asymp-
totic properties of our estimator. Some of the detailed derivations will be
referred to Appendix Section A.S. Since sample observations for (2.4) are avail-
able only after selection, all expectations will be taken as conditional expecta-
tions conditional on d* > 0. To simplify notation, the conditional argument
d* > 0 will be suppressed. Thus E(-|x{,) stands for E{-|x{,,d* > 0) in sub-
sequent presentation and the Appendix. Proposition 1 in Appendix Section A.4
implies that

)2 X tn(xiga én)(x(Z)i - En(x(Z)lxié)),(x(Z)i - En(x(2)|xié))

I ) -
P =

I =

i=1

(4.5)
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where

C= E[IT(XCO)(X(Z) - E(X(z)GCo))l(x(z) - E(X(z) [ xCo))], 4.6)

and [y is the indicator function of T, where T = [£,(30), &1 - 5(00)] With £,(6)
and & ,(0o) being respectively the pth and (1 — p)th quantiles of x{o. On the
other hand, since, from (4.2), v* = [v¥, (x{o,0)J] and E(w¥|x) = E(v¥!|x{,),
it follows that E[v* — E(v*|x{,)|x] = 0 and, by Proposition 1 in Appendix
Section A 4,

1

;VV')?F W06 ED i — By x:0)Y (xyi — Ealxi2 | x:0))

S|

:I»—-‘ lM:
-

Z ,C fn (x@2y — E (X(Z)IXLC)) (x2)i — Enl(x(2) | xif))
i= 4.7)

+ ta(x:G, E)0F — Eo(0*|x:0)) (X2yi — Eulxzy | X:))

:I»—
M=

i=1

P
—1II,,C.
It follows that under the assumption [Assumption 1(6)] that C is nonsingular,
1 o o A A SN
. WX, (X, X, XyWw D e, 4.8)

The rank identification condition that I1,, has full column rank is necessary for
the limiting matrix in (4.8) to be nonsingular. Let U, = (¢, (X1C E 7
t (x,,C ¢)i,,). Egs. (2.7) and (4.1) imply that

Bsars — Bo = [W'X2(X2X,) ' XoW] ' W' X5(X2X2) ' X5U,. (49)
Since plim, ., ., (1/n) X2 U, = E(I7(x{0)[X2) — E(x2)|xC0)] [u1 — E(uy[x(0)]) = 0,
BsaLs is a consistent estimator of .

The asymptotic distribution of fis,; s can be derived from (4.9). Let w(x;{o, d¢)
denote the conditional variance of u,. Let VE(u;|x{,) denote the first-order
derivative of E(u, | x{,) with respect to the argument x{,. As shown in (A.5.1) of
the Appendix,

1

ﬁxz = ﬁ,zl a6 En (i — By | %:)Y (s — Bty [ x:))

Z (X0, Co)l x(z)z - E(x(z)u [ x:0o))Y (u1; — E(uy;| x:o))

i=1

- E(IT(XCO)(X(Z) - E(X(Z)IXCO))I(X(z) - E(X(Z)IXCO))
x VE(uy | x{o))/n(8 — 80) + 0,(1). (4.10)

:ﬁl"
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The first term on the right-hand side of (4.10) captures the impact of
the disturbance u, in the structural equation (2.4) on the limiting distribution
of fsais, and the second component captures the randomness of the first-
stage estimator § of &, on the limiting distribution of fBsz1s. Under the
assumption [Assumption 1(4) in the Appendix] that \/ﬁ(g — dg) 1s asymp-
totically normal, N(0,V;), and is asymptotically uncorrelated with
u; — E(u; | x{o), the Lindeberg—Feller and multivariate central limit theorems
imply that

7 X, 0,2 N(©, 1),
where
4= E[IT(XCO)(X(z) —E(x¢)] x{o)) w(x{g,00)(x(2) — E(x(z) [x{))] +DVsD’

4.11)
and

D= E[IT(XCO)(X(Z) _E(x(z) | XCO)),(X(Z) _E(X(Z) [ x{0)) VE(u, | x{o)]. (412)

The above assumption [Assumption 1(4)] for the first-stage estimator will be
satisfied with parametric or semiparametric estimators of discrete choice models
such as the probit or logit estimators (under correct distributional assumptions),
the Ichimura single-index estimator (Ichimura, 1987), and the semiparametric
maximum likelihood estimator of Klein and Spady (1987) for binary choice
models, and the multiple index estimator in Ichimura and Lee (1991) for
polychotomous choice models. In general, for a choice model with L alternatives
and T sample observations where T > n, if

1 T

— > fxi Iy, oo ) + o),

JTE

where I, is a dichotomous choice indicator for the [ alternative and

flx, Iy, ..., 1) is some measurable function with zero mean, is asymptotically
normal, Assumption 1(4) will be satisfied. This is so, because

S — do) =

E* { Z SO Iy gy o Iy Wug — Eduy; | XiCo))}

= E*{f(xiall,i: v I )y — E(u1i|xi50))}
= E*{E[uli ~— Euyi | x{o)xi, 14 = l:lf(xiall,i’ aIL,i)}a
= 0,
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where E* denotes the unconditional expectation taken with the whole popula-
tion (not just the subpopulation with d* > 0).
In conclusion,

1 (Bsaus — Bo)— N(0, Q), 4.13)

where

Q=(1,Ccn,) ', A, (1,CH,) .. (4.14)

5. Semiparametric generalized two-stage least squares estimation

The S2LS in (4.1) is simple, but it is not an efficient IV estimator for the
estimation of (2.7) because it has not incorporated the complicated covariances
structure of #,; in estimation.

The disturbance i,; in (2.7) can be decomposed into three components:

Ui = t1; — Bnuy |x;0)
= (uy; — E(uy;1x:0)) — (Euluy |Xi5) — E,(u,1x:{0))
— (E{uy | x;{o) — E(uyi 1 x:00)). (5.1)

The first component represents the disturbance u,; in the structural equa-
tion (2.4) after the correction of selection bias. The second component repre-
sents the disturbance introduced in E,(u,|x;{o) by replacing (o by the
estimate {. In the parametric two-stage estimation of the sample selection
model with a discrete choice decision rule, these two components of the dis-
turbance are asymptotically uncorrelated (Heckman, 1979; Lee, Maddala,
and Trost, 1980).! This is also the case for the semiparametric model in (2.1)
and (2.3). The last component represents the error introduced by the non-
parametric estimate of the conditional expectation of uy;. Even though the
last component has a rather complicated structure, it does not influence the
asymptotic distribution of ﬁsst, due to an asymptotic orthogonality property
of the index model (see the Appendix for details, in particular, Propositions 4
and 6 of Section A.4).

! For the sample selection model with a tobit type decision rule, if the first-stage estimate is a tobit
MLE, the two components can be correlated (see Lee et al., 1980)].
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The variance of u,; in (2.4) is a function of x;{,. It can be estimated non-
parametrically. Let H be a kernel function with a bandwidth b,.? Define

wni(B’ 5) =
Zn:(J’j_W’j/})zH (@) i()’j—wjg)H <§,C;7le> :

thall _ . . (52)

JC : x;{ — xjé
J;l H< b, > _];i H< by )

where ﬁ is an initial consistent estimate of § [e.g. Bssis in 4.1)], d),,(ﬁ: 5)

provides a nonparametric estimate of the variance w(x,{,, do) of uy; at x;¢,. The

above arguments suggest the following covariance matrix:
- n aEn(,Ba ‘:) > aE;l(ﬂs (:)

=4
n+ 65’ I/n.é 65 ’

(5.3)

where /I,, is a diagonal matrix with diagonal elements d)ni(ﬁ, 5), i=1,..,n,
V. s/nis a consistent estimate of the limiting covariance matrix ¥V of /n (6 — &),
and

3E.(y — wh|x,)

AE(B.0) - -
a(s —|:t,,(X1C, gn) 65 5 eee s
~ ~ OB (y — wh|x,{
el E) oy a(;vmxnm] (54)

By a formula of inversion of a partitioned matrix, the inverse of V, ; involves
only inversion of matrices of the dimension of §:

OEB.O)( ~_y  OEMBO) » | FELBO\
T <V""’ a5 " T as >
L OEWAD) P

T A

SUl=A7 Ay

(5.5)

For the parametric simultaneous equation sample selection model, several gener-
alized two-stage least squares estimators (G2LS) have been introduced (Lee, 1981;
Amemiya, 1983). For the semiparametric model, the following estimator is
a semiparametric generalized two-stage least squares estimator (SG2LS):

Bso = [W'Xo(X5X,) ' XS "W "W X (X5 X,) ' X557 17. (5.6)

2 The kernel K with a, in (2.6) can be used. However, it is desirable to use a separate kernel function
so as to avoid unnecessary stronger requirements on the rate of convergence for bandwidth
parameters.
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An alternative SG2LS estimator is
fso=[W'E ' X,(X2 1X,) ' X2 W] !
xW'E 1X,(X5271X,) X502 1Y (5.7)

It can be shown that these two estimators have the same asymptotic distribu-
tion.? The computation of ﬁSG is simpler, but the data transformations in BSG are
intuitively appealing.

Substituting (2.7) into (5.6) and (5.7),

fsc — Bo=[W'X,(X:X,) 1X52 W]
x W' X,(X5X,) ' X520, (58)
and
fsc — Bo=[W'E 11X, (X521 X,) ' X5 W]}
XW'Z X (X2 71X,) X210, (5.9)
Proposition 1 of Appendix Section A.4 implies that

1 5 -1 1 " ey 2]
;X /1 Xz 7 Z tn(x: 8, E) (X2 — Ealx2)1x:0))
i=1
X wr:il(.éa 5)()‘(2):' - En(x(2)|xii))
p
—Cq,s
where

C,= E[IT(XCO)(X(z) - E(x(2)IXCO))/w_l(XCO,éo)(X(Z) - E(x(2)|x€v0))]
and

XA W = L0 E) (i — Enlxl X)) wm (B, 8)w; — Exwlx:0))

S| -
1=

It

i=1

4
—C,II,,.
Furthermore, let 8E{u, | x{o, )/06 denote OE(u, | x{)/0d|;-5,- An explicit ex-

pression for this derivative [Appendix Eq. (A.4.11)] is

OE(u, | x{o,d0)

28 = (x@) — E(x@ | x{o)) VE(u,|x{o)

3 For the parametric sample selection model, the asymptotic equivalency between two such similar
estimators has been shown in Lee (1981) and Amemiya (1983).
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Proposition 1 implies that

Groq - aEn(ﬁA’CA) 14
’ A 1
XZ n aé/ _')Dwa

OE (u, ,0
D, = El:IT(X‘:o)(X(z) - E(xmGCo))/w_l(xéo’éo)j%)‘)}

and

1OE,(B.0) - OEu(B.0) 5
n 96 " 00’

Ew»

where

E(u; | x{o, d0)

0 0
E, = E[IT(XCO) o™ ' (x{o, do)

E(u, |x50a50):l
\/ﬁ 0o’ '

Similarly,

13E.B,0) ~_, -
L
n 00

With (5.5), by combining the above relations,

X,2'X,5r0

I | =

and

Lo, iy
- Xy 'whrm,,
n

where

I'= Cw - Dw(Vgl + Ew);lD;r

355

(5.10)

(5.11)

(5.12)

Furthermore, from the derivations in Appendix Section A.5 [Eq. (A.5.2)],

1

Vi

X, 20, % N, T).

Egs. (5.9)—(5.13) imply that

S (Bsc — Bo) B N(O, (T, I 11,) ).

(5.13)

(5.14)
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From (45), (47, (510, and (5.11), both W'X,(X,X,) ! and
W2 1X,(X,2 1X,)" ! converge in probablhty to IT),. Hence /n(Bsc — Bo)

has the same limiting distribution of /a( BSG Bo). The asymptotic covariance
matrix of ﬂSG (or Psg) can be consistently estimated by

Qon=[WX,(X5X,) 'X52 ' W] ! (5.15)
or
Don=[WZE 1X,(X55 1X,) X3 W], (5.16)
Let Q= AZ(A’ZX )*1)2 ’ZW. By the generalized Schwartz inequality,
X527 'X, > X50(0'20)"*Q’'X,. Hence
m.,ri, =i, plim- X5 L1,

1 - A A A~ A ~n A
= I, plim- X, W, X,2X,00,) 'W'X,1I, (5.17)
n

—Q!

by (4.7), (4.14), and the fact that (l/n))f’zf)fz % A. Hence ESG is asymptotically
efficient relative to Bsus R

The SG2LS estimators fsg and ,BSG are not only asymptotically efficient
relative to the S2LS estimator ﬁsst They have also an asymptotically optimal
property. They are asymptotically efficient IV estimators for the estimation of
(2.7) (conditional on the choice of first-stage estimator of §, and the same
trimmed version). Let p; be an instrumental variable for w; and ﬁp be the IV
estimator:

By=(P'W) 'PY, (5.18)

P = [t,(x10, &Py oo s talxnls ED PR (5.19)
Eq. (2.7) implies that

B,— Bo=(P'W) 'P'U,. (5.20)
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For this case, the component E, (¢, | x;{o) — E(u;|x{o = x;{o) in 4,,; has a signi-
ficant impact on the asymptotic distribution of §,. From (A.5.4) of the Appendix,

| —

ta(x:Co, Eo)pilur; — Enluy | x:00))

=)
ok

iV I

1 n
2 _n Z Ir(xilo)(pi — E(pi| x;:00)) (uy; — E(uri 1 x:80)), (5.21)

where = means that both sides have the same limiting distribution. Similar to
4.7),

1 27 14 ’ 4
P S E(I(xlo)p (xe) — Elxa | x(o)) T,

= E(I1(x{o)(p — E(p|x{0)) (x(2) — E(xi) | x{o D T - (5.22)
The latter equality in (5.22) holds because I1(x{,) is a function of x{, alone.
From (A.5.3) and (A.5.4) in Appendix Section A.5,
P'U, 3N, 4,). (5.23)

where
Ap = E[I+(x{o)(p — E(p[x{o))w(xLo, o) p — E(p]xL0))]
+ ELr(x{o)(p — E(pIxL0)) (x(2) — E(x2) [ xLo)) V E(uy [ xCo)]
x VsE[1(x{o)(p — E(p[x{0)) (x2) — Elx2)| x{o) V E(uy | x{o)].
(5.24)

It follows that

Jn(B, — B) > N(0,Q,), (5.25)

where
Q,= {E[IT(XCO)(p ~ E(p|x{o}) (x2) — E(xq)l XCO))HW}_I
AEU(x80)(p — E(p|xLo)) (X2) — E(xa)| XD} Y. (5.26)

From (5.22), (5.25), and (5.26), we note that ﬁp has the same limiting distribution
of the following IV estimator:

By=(P'W) 'P'Y, (5.27)
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where

ta(x180,0)(p1 — Enl(p| x4 5))

0
I

: (5.28)
ta(Xnl0: €0)(Pn — En(p1x,0)) |

This indicates that for the estimation of the semiparametric simultaneous
equation model, the residuals p; — E,(p|x;{o) and p — E(p| x{,) play the crucial
role rather than the variable p itself. The asymptotlc covariance matrix of B p(or
B,) can be consistently _estimated by_Q,, = =[P'W] 'P'SP[W'P] ! The
asymptotic efficiency of fs relative to ﬁp follows from the following mequahty

1 ~ -~ -~
n,ri, =i, plim-X,3 'X,M,
n

6. Conclusion

In this article, we have considered the identification and estimation of the
sample selection simultaneous equation model without a parametric distribu-
tional assumption. Based only on index restrictions, the identification of struc-
tural parameters from reduced form parameters requires stronger exclusion
restrictions than the identification of structural equations in the classical simul-
taneous equation model. The identification in this semiparametric model re-
quires the underlying structural equation to be overidentified in the classical
sense. Exact identification in the classical model becomes underidentification for
the semiparametric model. Estimation of the structural equation by instrumen-
tal variable methods has been considered. Some two-stage estimation proced-
ures which generalize the estimation procedures for the parametric model and
the classical two-stage least squares method are introduced. Consistency and
asymptotic normality of the estimators are proved. An asymptotically efficient
instrumental variable method (conditional on the same first-stage estimator of
the parameters of the selection equation and the trimming of observations with
low index densities) has also been derived. Some interesting features of the
instrumental variable estimation in this model have been discovered. Residuals
of the variables in the model which are derived from the projection of variables
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to the selection equation indices play the crucial role for asymptotic properties
of the estimators. Exogenous variables in the system used in normalization for
the selection equation indices behave as if they were endogenous variables in
two-stage estimation procedures. The latter feature is compatible with the
identification condition for the model.

In this article, we have considered only single-equation estimation methods.
These methods can be generalized to the estimation of system equations by
some semiparametric three-stage procedures. For the semiparametric sample
selection model (without simultaneity), semiparametric efficiency bound
has been derived in Chamberlain (1986). For efficient estimation, asymptotic
efficient estimators might be derived from some semiparametric maximum
likelihood methods. For the semiparametric sample selection model without
simultaneity, Lee (1990) has considered such a procedure.* With the reduced
form equations estimated by such a method, the structural parameters may then
be estimated by Amemiya’s minimum distance procedure (Amemiya, 1978,
1983). One might conjecture that such a structural estimator could be an
asymptotically efficient semiparametric estimator. At any rate, such estimation
method is not a simple instrumental variable method.

Appendix
A.l. Model assumptions

Assumption 1

(1) The samples s;, where s; = (y;,z;,x;), i = 1, ... ,n, are 11.d. x is the vector
consisting of all exogenous variables in the equation system. The moments of
order 3 xr, where r = 2, of s exist.

(2) The parameter space @ of é is a compact subset of a finite-dimensional
Euclidean space, and J, is in the interior of .

(3) x(1, is an m-dimensional vector of continuous variables.

(4) 6 is a /n-consistent estimator, V/ﬁ(g — do) is asymptotically normal,
N(0, V;), where Vj is a positive definite matrix, and is asymptotically uncor-
related with uqy; — E(uq;| x;{y) for all i.

“In Lee (1990), both the density of index in the selection equation and the density of the disturbances
in the outcome equations are assumed to be bounded away from zero. For such a situation, there is
no need to trim the observations with lower index densities. Unfortunately, such a strong assump-
tion rules out many cases. The author is currently investigating how to relax such an assumption.
Trimming procedure introduced in this article may be valuable.
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(5) The matrix I7,, in (4.4) has full column rank.

(6) The matrices C in (4.6) and I in (5.12) are nonsingular.

Assumption 2

(1) K(v) on R™ is a kernel function with a bandwidth parameter a, defined on
a bounded support D,° ie., [, K(v)dv = 1, and lim, _, , a, = 0.

(2) K(v) is twice differentiable and its second-order derivatives satisfy a Lip-
schitz condition of order 1.5

(3) K(v})is a higher-order kernel function with zero moments up to the order s*,
s*=m+ 2, i.e,

J‘vif ... vimK(v)dv = 0,

D
forall0<i,l=1,...,mand 1 <i; + - + i, < s*.
(4) {a,} is chosen with a rate such that lim,_, , (n/In n)a{! *6M™m*2+2 = o and
lim,_  hna2™*? = oo, but lim,_, , nat*" = 0.

Assumption 3

(1) The density function p(t]d) of t = x{ in R™ is positive everywhere for each
d € O. 1t is differentiable everywhere with respect to ¢ to the order s*, and
these derivatives are continuous at (z, d) everywhere.

(2) E(s® x|t, 6)p(t]0), where s = (y,z,x) and x = (1, x), is differentiable every-
where with respect to ¢ to the order s* + 1, and these derivatives are
continuous at (¢, 5) everywhere.”

(3) E(ls®x® x|*|t,8)p(t|d), where s = (1,y,z,x) and x = (1,x), is continu-
ous at (t, §) everywhere.

4) E(s®x® x|t, 8)p(t|d), where s =(1,y,z) and X = (1, x), is twice differen-
tiable with respect to t and its second-order derivatives are continuous at
(t, 9) everywhere.

° The boundedness of D is inessential. Relaxing this assumption will make our analysis relatively
more complicated. In practice, kernel functions with bounded support are simpler to compute.

% A function h(x) is said to satisfy a Lipschitz condition of order 1 if there exists a constant ¢ such that
[h(x1) — B(x2) || < cllx; — x,|| for all x; and x;.

7 ® denotes the Kronecker product.
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Assumption 4

(1) H(v) on R™ is a kernel function with a bandwidth parameter b, defined on
a bounded support.

(2) H(v) is differentiable and its derivative satisfies a Lipschitz condition of
order 1.

(3) H(v)is a kernel function with zero moments up to the order h*.

(4) {b,} is chosen such that lim,_, .. (n/ln n)b{! * &M+ D*T — o6 and lim,,_, , nb2™
= o0, but lim,_, . nb" = 0.

Assumption 5

(1) E(s ®s]|t,8)p(t]|0), where s =(1,y,2x), of t = x{ is differentiable every-
where to the order h*, and these derivatives are continuous at (¢, 8) every-
where.

(2) E(Ils®sli*|t, d)p(t|5), where s =(1,y,zx), is continuous at (t,5) every-
where.

3) E(s®@s®x|t,0)p(t|0), where s =(1,y,z,x) and X = (1,x), is differentiable
everywhere with respect to t and this derivative is continuous at ({t,9)
everywhere.

4) E(ls®s® x| ?|t,0)p(t|d), wheres = (1,y,z,x) and x = (1, x), is continuous
at (t,0) everywhere.

As pointed out in Section 4 of the text, Assumption 1(4) will, in general, be
satisfied with parametric or semiparametric estimators of discrete choice mod-
els. Assumption 1(5) is the rank identification condition, and Assumption 1(6) is
for the limiting distributions of the S2LS and SG2LS estimators to be well-

defined with the ﬁ rate of convergence.

The kernel function K with a bounded support in Assumption 2 has implicitly
the following properties: |,,| K(v)| dv and {,, ||v|*"|K (v)| v are finite; K (v) and its first-
order derivatives are bounded; and K(v) and 0K (v)/0v go to zero at their boundary.

The conditions in Assumptions 3 and 5 can be justified by some basic
regularity conditions on the distributions of the variables in the models. How-
ever, the above assumptions are more direct. As an illustration, let f(xy)| x2)) be
the density function of x;, conditional on x,,. Since ¢ = x(;, + X35,

p(t]5) = f £ — xay81x) dv(xay) (AL

where v(xz)) is the distribution measure of x,). If f(x(1,|x,) is continuous and
bounded, the bounded convergence theorem will imply that p(t| ) is a continu-
ous function. The continuity and boundedness properties in Assumptions 3 and
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5 are used to guarantee the stochastic convergence and to control asymptotic
biases of nonparametric kernel estimates. See Lemmas 1 to 4 in Section A 4.
Assumptions 4 and 5 are needed only for the nonparametric estimates w,; of the
variance of u,;. For the asymptotic properties of the S2LS estimator, these two
assumptions are not needed.

A.2. Trimming index

To trim the tails of the index xf we can use some quantile statistics of xf
Without loss of generality, consider a single index. Let 0 < p < 3 lbea  specified
order of quantile. The first-stage estimate & in x{ = X(1) + x(z)é can be
discretized by LeCam’s device (LeCam, 1960). Let {5 } be a sequence of
J/n-consistent estimate of d,. Let |0 = max;—;, . x|, where d = (04, ... ,d,)
is the norm of § in the k-dimensional Euclidean space R*. Let R} = {(1/./n)
X(iyy ... yig)|iy, ... ,ix are integers} and let 4, be a point in RX closest to 4,
under |[|-||. The {5_ } is a discretized sequence of estimates of d,. Let &,, and
.f,,u » be respectively the pth sample quantile and the (1 — p)th sample
quantile of the observations of x;{, i=1,...,n, where xZ, = X1y + X2)0n-
Observations of xC will be trimmed whenever their values lie outside T,,
Where T - [énp:én(l p)]

The discretization device provides some technical simplification for asymp-
totlc analysis. First of all, f,,p and &, - » €an be shown to be \/n-consistent. Since

» I8 /n-consistent and ||5 — 5, < 1/ym,

VG, = 80) = /1(8, — 8,) + /A (8 — So)
= OP(I)a

. 0, is dlso /n-consistent. For any &, the samples x;{ are i.i.d. Let &,(6) be the
quantile of x{ and ¢,,(8) be the corresponding pth sample quantile of x;{,
1,

ie
pt
i ,n. From Theorem 2.2.1 in Serfling (1980), we know that for any ¢ > 0,

=0

P(|&p(8) — Ep(0) > €) < 2exp(—ndZ), n= 1, (A2.1)

where 8, = min [F5(£,(8) + ¢) — p,p — F5(£,(0) — ¢)] and F; denotes the distri-
bution of x{.® Under Assumption 3(1), the density function p(t|d) of x{ is
positive everywhere, and hence is bounded away from zero on any compact
neighborhood A (£,(30)) x A (80) of (£,(d0), 0). With (A.2.1), we can show that
for any sequence {4,} such that lim,_, ,, 5, = do.

8 This exponential bound for the sample quantile follows from Hoeffding’s inequality.
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Let ¢, = ¢//n, where ¢ is an arbitrary constant. By the mean value theorem,
Fs,(E3,) + &) — p = p(Ep(0,) + AnEn]n)e, fOr some 4,, 0 < 4, < 1. By the con-
tinuity of £,(9) at & = d¢, (£,(0,) + An8n, 0,) € A (E(D0)) X A (o) for sufficiently
large n. It follows that for large n, F; (£,(0,)+ &,) — p = be,, where b=
infy, 56 42, 600 x 4@ P(E]16) > 0. Similarly, p — F; (&,(6,) — &,) = be,. There-
fore, for large n, exp( — ndé2) < exp( — nb?¢}) = exp( — b*c?), and

I:’(\//ﬁ | énp((sn) - ép(an)l > C) < 2exp( - bZCZ). (A23)

Since c is arbitrary, it follows that \/n|&,,(8,) — £,(8,)] = O,(1) for any sequence
{d.} which converges to d,. For any finite constant M >0, define
Apn = {016 — || < M//n and &€ RL}. Ay, has the interesting property
that its cardinality is finite and bounded, say by M, independently of . This is so
since the cardinality of {(i;, ... ,i)|iy, ..., are integers and |i; — /idg | < M,
I'=1,...,k} is finite and bounded, independently of n. It is obvious that for any
sequence {J,} with 8, € 4y ,, it converges to §,. The finiteness of 4,, , and
(A.2.3) imply that

P< SUp i | EuplBa) — Epl60)] > c> < 2Mexp( — b2c?), (A.2.4)
Onedy ,

for large n, and therefore

sup \/ﬁ! énp(én) - ép((sn” = OP(I)

On€dy .,

Since J, is in R* and is a /n-consistent estimate of d,, o, will lic in Ay, With
probability close to one for large n. Hence

S Enp(8a) — Ep(0,)] = Op(1). (A2.5)
By the mean value theorem, &,(8,) = & (o) + (DE,(87)/08' WS, — o). Since
p(t]d) is continuous, 8£,(5)/04 is continuous at dy, and /n(, — o) = O,(1), it
follows that

116, — ol

_ 0
G En80) — Ex(60)] < A EnplB) — 5)|+Hf

= 0,(1), (A.2.6)

1e., Enp is a ./n-consistent estimate of £,(3). Similarly, f,,( 1 —p 1S @ /n-consistent
estimate of é(l p)(éo)
The LeCam discretization device is also useful in the following way. De-

note én (énpa én(l p)) and éO - (ép(éo) 5(1 p)(éo)) For any Statlstlc S (én) con-
structed from the sample and é,,, if we want to show that §, (é,,) converges to 0 in
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probability, it is sufficient to show that S,(&, + (1//n)h,), where {h,} is any
nonstochastic bounded sequence, converges to 0 in probability. Effectively,
one can replace the stochastic sequence {¢,} by nonstochastic sequence
{&o + (1//n)h,} in the proof of convergence in probability (see LeCam, 1960;
Manski, 1984).

A.3. Smooth trimming

The trimming can be smoothed by down weighting the observations x{ near
the sample quantiles £,, and &,(; - ). Let h, be a sequence of positive numbers
which converge to zero with a rate such that lim,_ ., (n/Inn)h{! **"Y = oo, and
let g(-) be a continuous density function on [0 1] such that g(0) = g(1) = 0.°
Denote &, = (&,p, €ni1 — ). Define the following smooth trimming function ¢, of

x{:

-~

0 i Xt <&
[ glw)dw 5, < X< Gyt

tn(x(, &)= < 1 if S+ h<x{<C&uu-p— hu
L= [ R g dw i Gy — b < X<
L0 if &q-p<xl (A.3.1)

This function is continuously differentiable in 6, &,,, and &,(; ,, with

[0 if x{ < &,
1 —
-4ﬂ5wm, if & < X< Ep + Fy
RS B RN .
T=< 0 if énp+hn<xC<§n(lfp)_hm
1 xC—E&pi - .
T <%H + 1>x(2) if Ep—py — hy < X0 < Sur—pys
L 0 if &pa-p < xE, (A.3.2)
0 if x{ <&y
atn(xCa Cn) 1 x€ - inp .
- " = - - 7 < <
0y m I\, by S XS Gapt B
0 if &+ h, < x{, (A.3.3)

 The rate of convergence of h, is designed to justify our asymptotic analysis (see Proposition 2 of
Section A.4).



L.-F. Lee |/ Journal of Econometrics 63 (1994) 341— 388 365

and
lf XC < én(l—p) - hm

0
at,,(XC, én) _ iq(xc - én(l*p)
aén(l—p) hn

- T T h +1> lf én(l—p)_hnngSénuAp)v
if  Epi-p < xC.
(A.3.4)

As n tends to infinity, t,(xC, £,) will converge in probability to the indicator
function I7(x{o), where T = [£,(6¢), &1 - »(00) ]

The above trimming procedure can be generalized to models with multiple
indices. For each index, it can be trimmed with the univariate function t,(x{, &,)
above. The smooth trimming function can then be the product of all such
univariate trimming functions.

A.4. Some useful asymptotic properties of nonparametric estimators of unknown
Sfunctions

The following Lemma 1 provides a uniform law of large numbers for func-
tions with a bandwidth sequence of parameters. Its proof relies on Hoeffding
inequality (or Bernstein inequality) and can be found in Ichimura and Lee
(1991). Lemmas 2, 3, and 4 provide results on the asymptotic biases of functions
involving a kernel function and its first- and second-order derivatives. The
proofs of Lemmas 2, 3, and 4 are also abstracted from Ichimura and Lee (1991).

Lemma 1. Let g(z,a,, 8} be a measurable function which can be represented in the
form

n

9z, an, B) = - c(z, ﬁ)h[z, PR )},
al a

where a, = O(1/n”),p > 0,d > 0, B € B, and s(z, B} is a finite-dimensional vector
value function. Let {z;} be a sequence of i.i.d. random vectors. Suppose that the
following conditions are satisfied:

(i) B is a compact subset of a finite-dimensional Euclidean space.

(iiy c(z,B) is bounded by an l-order polynomial of z uniformly in B, where | = 0.

(ii))  The first I xr moments of z exist, where r = 2.

(iv) h(-) is a bounded function. }

() E[c*(z Bh(z B,5(z, B)/a,)] = O (al) uniformly in f € B, where d < d.

(vi) h(z, B, s) satisfies the Lipschizian condition of order 1 with respect to f and
s uniformly in z; s(z, ) satisfies the Lipschizian condition of order I with
respect to B uniformly in z.
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If lim, o, (n/Inn) a2 M4 = oo then (1/m)Y 7, [9(zi, an, B) — E(g(zi, @ P))]
converges in probability to zero uniformly in S € B.
Furthermore, in addition to the above conditions, if:

(vii) E(g(z, a,, B)) converges to a limit function g*(B) uniformly in B € B, then
(1/n)Y1_ 9(z:,a,, B) converges in probability to g*(pB) uniformly in € B.

Lemma 2. Let K(v) be a function on R™ with a bounded support D such that
Ip|K()|dv < 0. t(z,8) is a continuous m-dimensional random vector. z; is a point

in the support of z. Suppose that E(c(z,z;,0) | t(z,0) = t,z;)g(t|0), where g(t|8) is
the density function of t(z, 8), is uniformly continuous at t on R™ uniformly in (0, z;).

Then
E [c(z, z:,0) ail’"K (M) Zi:|

n an
— Ele(z,2:,0) | 1(2,0) = 1(z;, 0), Zi]g(t(zi,f))IH)} - 0.

sup

zi, 8

Furthermore, if K(v) has zero moments up to the order s*; ie., [,v} - vir
xK()dv =0, for all i;>0, where j=1,....m, iy+ - +i,<s* and
jD | v]I**|K(v)|dv < oc; and E(c(z, z;,0)|t(z,0) = t,z;)g(t| 0) is differentiable with
t on R™ to the order s* and the s*-order derivatives are uniformly bounded, then

E [c(z, 2,,0) % K (M). z,}

— Efc(z,2;,0)|t(z,0) = t(z:,0), Z.-]g(t(zi,ﬁ)l(?)‘ = O(ay).

sup

zi, 0

Lemma 3. Let K(v) be a function on R™ with a bounded support D such that K(v)
goes to zero at the boundary of D and its gradient 0K (v)/ 0v is bounded. Suppose
that (8/01)[E(c(z, z;, 0)|t(z,0) = t,z;)g(t| 6)], where g(t|0) is the density function
t(z,0), are uniformly continuous at t uniformly in (z;,0). Then

oK <t(z,-, 0) — t(z, 9))

a’l
+1
" ov

lim sup|E c(z,zi,H)a

n—oo zi,0

Zi

- %{E[C(Z,Z.-,H)It(z,ﬁ) = 1(z;,0),219(1(z:, 0)10) } | = 0.
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Furthermore, if K(v) has zero moments up to the order s*,

E(c(z, z:,0)| t(z,0) = t,2z;)g(t | 8) is differentiable at t everywhere to the order
s* + 1, and these derivatives are uniformly bounded, then

6K<t(zi’0) - t(z,9)>
sup |E|c(z, z;,0) n

m+1 N
20 ov

Zi

0
- a{E[C(Z’Zi’HHI(Z’ )_ I(Zl,()) Zi ]g(l is |9 } - O(a )

Lemma 4. Let K(v) be a twice differentiable function on R™ with a bounded
support D such that K (v) and its gradient 0K (v)/v go to zero at the boundary of D,
and the gradient dK(v)/Ov and its Hessian matrix 0>K(v)/0vdv' are bounded.
Suppose that (02/0t0t")[E(c(z,z;,0)|t(z,0) = t,2;)g(t| 0)] are uniformly continu-
ous at t everywhere uniformly in (z;,0). Then

2K <w>
ay

hm sup E|c(z,z;, 0) prEE 5000
vOv

n—-«x zi,0 n

Zi

62

— 5 {E[e(z. 2,0 | £(2,0) = 1(21,0), z1g(¢(2:,0)|0)} | =

Let x{ be an m-dimensional vector of indices and K be an m-dimensional
kernel function. Denote

An(s|x:{) =

mZ K( - f*), (A4.1)

( _1)n1¢1

where s = 1, y, z, or x. Under Assumption 3(3), the variance of 4,(w | x;{) has the
familiar order O(1/nal’) uniformly on C x @, where C is any compact subset of
x{ in R™; ie.,

sup var(A4,(s| x;{} x;) = O( 1m>. (A.4.2)
na

CxO n
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Assumption 2 implies that K(-) is bounded. It follows from Lemma 1 that if
lim,_, o, (1n/Inn)all 20" = « |

sup  [A,(s]x0) — E[A,(s|x:0)|x: ][>0 (A4.3)

(xi{,)eCxO

Under Assumptions 3(2) and 3(3), Lemma 2 guarantees that

sup |[E[A4,(s]x:0)[x;] — A(s| x;{,8)| = O(ay)), (A.4.4)
where
Als|x;,0) = [E(s [ x0)p(xL10) 1| x = xics (A.4.5)

ie, A(s|x;{,d) is the product of p(x;{|d) and the conditional expectation
of s conditional on x{ evaluated at the point x,{. To simplify notation in
subsequent presentation, we adopt the convention that E(s|x{ = x;{) denotes
the conditional expectation E(s|x{) evaluated at the point x;{, ie.,
E(s|x{ = x;{) = E(s]| x{)| x= ¢ for any random variable s. Since with probabil-
ity close to one, T, will be contained in a compact subset of R™ for large n,
Au(s|x;{) converges in probability to A(s|x;{,8) on T,x @. Since p(x{|d) is
continuous and is positive everywhere, it is bounded away from zero on T, x .
Hence the uniform convergence of A,(1|x{) implies that infr,, o A4,(1|x{) is
bounded away from zero in probability.!® E,(s| x;{) as a ratio of 4,(s|x;{) over
A,(1]x,{) will converge in probability to E(s|x{ = x;{) uniformly on 7, x ©.

The first-order derivative of A4,(s| x;{) is
xi{ — C>
a1<<
0A,(s1x:0) 3 “@ ) aag

36, (-1 ;,"“;,S’ )33, a0

Under Assumption 3(3), the variance of 84,(s|x;{)/06 has the familiar order
O (1/nay*?) uniformly in (x;{,8) € C x @. Assumption 3(2) justifies the condi-
tions in Lemma 3 and hence

0A,(s|x:{) BA(s| x;{, )
E x| - /2 =0 Ad7
P [ 2%, q 25, ’ (147
where
0A(s|x;(, 9) OE(s(x; — x)|x{ = x;{,x;) oL
- t{ - }( £19)
+ E(s(x; — x)|x{ = x{, xi)% Vp(x;{19), (A4.8)

0y,

1®The trimming of indices is designed mainly for this purpose. Otherwise, trimming would not be
needed.
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where Vp(x{|d) denotes the first-order derivative of p(x{|d) with respect
to x{ (see Ichimura and Lee, 1991). Lemmas1 and 3 imply that if
lim,.ﬂoo(n/ln n)a(nl +4/nm+ ) +1 _ 0,

04,(51x0)  DA(s]xL.0)

P
0. A49
00 0o ( )

T,x0

Similarly, under Assumptions 3(3) and 3(4), Lemmas 1 and 4 imply that if
lim, ., (n/Inn)a{t *omMm++2 — o

*Au(s1xil)  0*A(s|xil,9)| »
ililz) 3605 — 3505 —0. (A.4.10)
Since E, (s x;{) = An(s|x;:{)/ An(1]x:0),
OE,(s|xi{) _ [0A.(s]x0) 0A, (1| x;:{) P
65 - < 65 E,,(SIX,'C) 65 )/An(1|xlg)

converges in probability to 0E(s| x{ = x;{)/0J, where

OE(s|x{) [ 0A(s|x(,0) 0A4(1]x¢,0)
w5 - ( % —EGIx) ——F5— )/A(lGCﬁ)

from (A.4.3), (A4.4), and (A.4.9). Since E(u,|x)= E(u,|x{y), as shown in
Ichimura and Lee (1991, Lemma 4), we have explicitly the following expression:

_ 0L(90)
n (x — E(x[x{o)) %6,

OE(uy [ x{)
REA

VE(u; | x{o), (A.4.11)

where VE(u,|x{,) is the first-order derivative of E(u, | x{,) with respect to x{,.

The following propositions and lemmas will be used repeatedly for our
asymptotic analysis in Section A.5. They are summarized here because they are
of interest on their own and provide convenient reference.

Proposition 1. Let A (&y) be a compact neighborhood of & = (€x(00), £(1 - pld0))
such that for any &=(E,¢0-p)e N (Eo) &, 6u-plS T where T=
[E(00) — 4, &1 —p)(00) + 4] for some A >0 (a constant not depended on &).
Suppose that:

(1) tu(x;C, &) is a bounded smooth trimming function defined in Section A.3, which
vanishes at any x;{ outside the interval [£,, & — 5]

(2) A,(s|x:0)DA(s]| x:C,0) uniformly in (x;,0)e T x @, where O is a compact
neighborhood of dqy, and A(s|x{, 8) is continuous in 6 and x(.

(3) f(d) is wuniformly continuous and bounded on A,, where A, =
{dld= A(s|x(,0),(x{,8) e Tx O}.
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(4) a(s) is bounded by a square integrable polynomial of finite order.
Then

plim sup
no o O xA(L)

3 il £)als) f (Aufs1x.0)

:l*—‘

— E{t.(x{, O)a(s)f(A(s]| x{,0))}| =

_ In addition to the above assumptions, if A(s|x{, d)is continuous in 6 and x( a.e.,
0 is a consistent estimate of dq, and &, is a consistent estimate of &g, then

phm Z ta(xiC, E)als;) £ (Au(s| x:0)) = E {Ir(xCo)a(s) (A (s | xCo, 80))

n—ow i=1

where T = [£,(00), &1 - py(d0)]-
Proof.
1 n
sup = Y (4 E)als:) f (Au(s| x:0)) —

OxHa) |Mi=1

ln
> las)l sup | f(Au(s1x:8)) — fA(s] x:L,9))]

Rz (x:0,0)eTxO

3 st EJats) f (A1 L,0)

:I»—

because t, is bounded by one, f(A4,(s|x;{)) converges in probability to
f(A(s]x;(,8)) uniformly on Tx®, and (1/n)Y_,|a(s;)| = O,(1). Because
SUPo x 4oy | ta(xL, &) f(A(s]x(,0))| is bounded and a(s) is bounded by a poly-
nomial of s, the uniform law of large numbers in Lemma 1 with d =d =0
implies that as n goes to infinity,

{ta(xil, O)alsi) [ (Als|x:L,6))

1

S |-
™M=

1

— E[tu(x:L, E)als) f(A (5] x:£,8))]} 5 0

uniformly on @ x A" (&y). The second part of the conclusion follows by the
Lebesque dominated convergence theorem. Q.E.D.

Proposition 2. Let A (£o) be a compact neighborhood of £o = (£,(60), &(1 - p){(D0))
such  that  for any &=({plu-p)E N (o) [EpCa-plE T  where
T =[£00) — A, &1 - p(00) + 4] for some A >0 (a constant not dependent
on §). Let x{ = (x{y,x{y) and, conformably, & = (£,,&,), where x{, is a single
index. Let t,(x{),&2)) be the trimming function for the indices x{,) defined in
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Section A.3. Suppose that:

(1) q is a continuously differentiable density function having a support [0, 1].

(2) A(s|x:0)-D A(s|x:8,6) uniformly in (x;(,8) e Tx @, where O is a compact
neighborhood of 8y, and A(s|x{,d) is continuous in 6 and x{.

(3) f(d) is uniformly continuous on Ay, where Ajg={d|d= A(s|x{, ),
(x(,0)e TxO}.

(4) a(s) is bounded by a polynomial of order I, | = 0. The r x l-order moment of
s exists, where r = 2.

(5} The functions q((x{y,, — &1, p)/hn) ta(xC 2y, E(2y) of XC have finite supports con-
tained in T for all £ e N (&) for large n.

(6) B[t (x2y.Ea))als) fAA(s|xL,8))| x{ 1 191 (x4 | 6) is uniformly continuous at
x{y, uniformly on © x A (&y) and n, where g,(t| ) is the marginal density
of x{,.

Then, under the rate that lim,_, . h, = 0 and lim,,_, , nh! "2 /lnn = o,

plim sup

n—xc @xAH(&)

1 &1 i - P o . I
" Z h_q(%)%(&é(z),f(Z))a(si)f(An(ﬂxis))
i=1 Mn n

— E[ta(xCan S als) A | xONxEy = &4 ,191(81,,10)] = 0.

In addition to the above assumptions, if § is a consistent estimate of 6, and f,, is
a consistent estimate of &, then

. 1 &1 7 i’: - Al pn o v
plim 3 (5 Y Gt (4,5 50D

n- o i=1"n

=E UTQ,(XC(Z)(éo))a(S)f(A (s1xLo)xL1(80) = fl,p(éo)] gl(él,p(50)|50)a
where T = [f(z),p(ao), 5(2),(1—,;)(50)1

Proof

1 &1 i1 — <$1,p
n i;1 n CI(%%)%(X;‘C@); ¢i2y)
X a(si)[f (An(s | x:0)) — f(A(s | x:¢, 5))]’

12 1 X —
< sup — ) fa(Si)lh—Q<%’>

Ox At M i=1

x sup [ f(Aa(s]x:0) — f(A(s| xi(, 9))l. (*)

(x;{,0)e TxO
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By Lemma 1, as nh{! *?"/lnn = oo,

J 1 iC1—~f1,p i xiCl_él,p
20 e o) o )

By Lemma 2,

0.

1 _
sup_[Eatol a5 ) - Ba 1, = (e d)

O x A (Go)

—0.
Since E(|a(s)|[x{, = &,,,)g:1(£1,,]9) is bounded on @ x A7 (&), it follows that
sop =+ S latsil-a (225 ) - 0,0

Ox iyt i=

and hence () goes to zero in probability. Similarly, by Lemma 1,

Zo1
sup Z nd ( X ,,> ta(Xil(2): S2))als:) [ (A(s] XL, 9))
- [ ( > (xC2)s €2))als )f(A(s|xC,5)):”—p>(),
Since
1 1— &1
Bl ot a1

= fE [ta(xC 2y E2p)als) f(A(s | xE, O)|xy = &1, + ] g1 (Eq,p + hav]|0)q(v)dy,
it follows that

sup
@ x N ()

1 _
E| o (Z 2 st Glato) (461500
— E[t.(x{(2), E2)als) f(Als] xE, O))IxCy = él,p]gl(él,plé).

E [t,(x{ 2), E2y)a(s) f(A(s | xE, 0))[xEy = &y, p + hyv]

< J\ sup
@ x N (dg)n

xg1(&1,p + hav]6) — E [ta(xL(2), $2))a(s) f(Als| xE, 0))[xCy = &)

xg1(&y,,16)|q(v)do

—0
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by the uniform continuity. The first part of the result follows from the above
convergences. The second part of the result follows by the Lebesque dominated
convergence theorem. Q.E.D.

Lemma 5. Let C (81, ...,5 1,841, ... ,5.:5;) be a sequence of measurable func-
tions of an iid. sample {5;} and d,(3) be a measurable function such that
E(|d,(5)]) < oo uniformly in n. Suppose that:

(1) sup|E(Cu(51, - ,5,; 5:)18:) — C(3)| = O(ay)), for some measurable function

C(5;), and
(2) sup var(C,(8y, -+, 5,5 5)15;) = O(1/nay,).

If s* > r/2, lim,_ . #na? = oo, and lim,_, , nas" = 0, then
1
LG CalSys oo 15035 — CGEP 0.
\,nz 1

Proof. This result can be easily proved by the Markov inequality (Lee, 1992,
p. 79, Lemma 6).

Proposition 3. Let V, f,(s,a) and V ? f,(s,a) denote the first- and second-order
derivatives of f,(s, a) with respect to a. Suppose that:

(I) The nonparametric function A,(s|x;{o) satisfies the conditions in Lemma 5,
and

(2) supgerl V2 fulsi An(s | x:00))] < O,(1)d,(s:), where A, (s1x:{o) is a consis-
tent estimate of A(s|x;{o,80) and d,(s;) is a measurable function such that
E(I1(x;{o)d,(s;)) < oo uniformly in n.

Then
Tr(x; Lo )alsi, Au(s] x:80))

|-
'Mrs

<~\
=1

W

-

|~

- _Z T7(x:80) fu(si, A(s] %0, 80))

NL

+ —

—

i

Ir(x:{o) Vo fulsi, A(s] x:Lo, 80))

H
7M=

X (Ap(s|x go)“ A(s]x:80,00)) + 0p(1).

Proof. By a Taylor expansion,

HM;

7 IT(xiCO)f;l(SisAn(Slxigo))

Sl

Z I7(x;{0) fu(si, A(s]x:0,00)) + Ly + R,
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where

™=

L,= % ' I7(x;8o) Vo fulsi, A(s | x:0, 00) ) Au(s| x:{o) — A(s] x:{o, 80))

13

1

and

% 2 rlsilo) Vaflo Ans 1504465 o) — AG 1 x:Lo0,00))%

\/ P=

I\JI'—‘

where A,(s]| x;{o) lies between A,(s|x;{o) and A(s|x;{y, ). Since

IR < Oy = Y. Ir(xLo)da(s) [ An(s | o) = A(s]x:Lo.00) T
viti=1

by our assumption, Lemma 5 implies that R, converges to zero in probabil-
ity. Q.E.D.

Lemma 6. Let {5;} be an i.id. sample and ®,(5,,5,,a,) be a sequence of vector-
valued random functions with bandwidth a,. Suppose that:

(7) There exist square integrable functions hi(S) such that |E(®,(§,,5,,a,)|5;)|
hi(5;) for j=1,2.
2) E(d’ (51,52, a,)) = O(ay) and var (9,(51,5,,a,)) = O (1/ay).
(3) lim,_,  E(®,(5,,52,a,}|5;) = ¢;(5;), ae., for some measurable functions y;,
j=1,2.

(4) lim /mas =0 and lim,_,  nal, = .

n— ooV

If Y ((5) and r,(S) are zero a.e., then

1 h n
Y ¥ 5.5 0) 0.
S — 1)i=1 j#i

On the other hand, if E{[{(5) + Y21 [¥ () + ¥2(3)]'} = Z which is non-
zero, then

Y Y 0,654, DN, ).
\/n(n—l i=1 j#i

Proof. These results follow from Powell, Stock and Stoker (1989) and the
Lindeberg central limit theorem. Q.E.D.

Proposition 4. Suppose that K is an r-dimensional kernel function with a bounded
support D such that jblK(v) |dv < oo and with a bandwidth a,. Let

Ads1ta) = o 3k (SR )

Jj#i an
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and let g(x{o|d¢) be the density of x{o. Denote A(s|xly,d0) = E(s]|x{o)g(x{o]d0)-
Let f,(s,x(o) be measurable functions such that sup,|f,(s,xo)| is square inte-
grable. Suppose that:

(1) E(s|x{0)g(xCo|de) is uniformly continuous at x{,, and
(2) E(/,(5,x80) | xCo) =0 a.e., for all n.

r

If im,_,  na, = oo, then

I =

Z Sulsi, x: o) [An(s ] x:0o) — A(s] xiﬁo,ﬁo)]—p>0.

)

vV i

Proof. Define

®n(§i’§jaan) =fn(5i,xiévo)|:% s;K <M) — A(s|x;L, 60):|9

n n

where § = (s, x). It follows that

LS fulse xio)[Anls| X Co) = Als] xiLo, 50)]

For any ¢ > 0, for large n Lemma 2 implies that

|E(Py(51,52, a,)151)]

1 3 —
< Iftseoxaton B ook (M0 ) szl

n

$ 8Sup"fn(slaxl‘:0)"

n

which is square integrable. Since ¢ is arbitary, the above relations imply that
E(®,(s;,s;, a,)|5;) converges to zero. On the other hand,

E(d)n(s_j’ S-i, an)lgi)

=siE [fn(sj’ XjCo)% K <M)

n n

Xi:| - E[f;n(sj’ ijo)A(S | ijo, d9)]

= SiJ\E[f;t(S, X;{o + azv)|x;{o = x:lo + a,0,x;19(x:o + a,v]|d9)K(v)dv

—E {E[fn(S,xCoNXCo)]A(S | XCoaéo)}
=0,
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by the condition (2). The conclusion of the proposition follows from
Lemma 6. Q.E.D.

Proposition 5. Suppose that K is an r-dimensional kernel function with a bounded
support D such that jDIK(v)Idv < oo and with a bandwidth a,. Let

2 xi{o — x;{o
An l K - 2

(s1x:8o) = =1 n}gl < a )

and let g(x{o|0y) be the density of x{,. Denote A(s|x{o,d0)= E(s|x{o)x

g(xCo|80). Let f,(s,x{y) be measurable functions such that sup,|f,(s,x{o)| Is

square integrable. Suppose that:

(1) E(s|xLo)g(xLy|00) is uniformly continuous at x{,.

(2) E(f,,(s,xCo)| xLo)g (x| 86) is continuous in x{q a.e. uniformly in n.

(3) There exists a measurable function h(x{y) such that |E(f(s,x{o}|x{o)l
< h(x{o), with E|h(x{p)A(s|xCo,00)| < oo for large n.

() Tim, o, E(fu(s, x{o)|xCo) = c(xCo) ae.

Iflim,_  na’, = o and lim,_, ,na2* = 0, then

1

/
v i

Ful(sis x:Lo) [ An(s | X:0) — A(s| x:Lo,80)] = N(O, &),

B
M =

1

where
@ = E{[s-c(x{o)g(x{old0) — Els-c(xLo)g(xLo00)) ]
x [s-c(x{0)g(xlo|d0) — E(s-c(xLo)g(xLo| d0))]1}-

Proof.

T 2 o v Lo LA o) — A xidos )] = n_lwlz“;eb (51055

HM:

where

P (Sw 1’ n) —'ﬁt(snxt‘:O)|:a S K<Xl—coiig_o> - A(S|Xi¢e 50):|

n

By (1), E(®,(5;,5;,a,)|5;) converges to zero. On the other hand,

)

- E{E[f,,(s, XCO)|XCOJA(S|XC0,50)}-

E(®,(5;, 5, a,)15) = s; E[f,,(sj, Jgo) <ﬁ%’{°>
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!

by condition (2), it follows that, by conditions (3) and (4) and the Lebesque
convergence theorem,

lim E(®,(5;,5;, aa)15) = 8ic(x:{0)g(xi{o]00) — E(c(x{o)E(s]x80)g(x{o 1 00)) ace.

n—oc

Since

lim{ |:f,,(5],xJCO) <x >

— E[fuls, xCo)xCo = xiLo1g(x:l0l o )} =

The result of the proposition follows from the second part of Lemma 6. Q.E.D.

Proposition 6. Suppose that K is an r-dimensional kernel function with a bounded
support D such that |,|K(v)dv < oc and with a bandwidth a,. Let

1 xilo — x;C
Dn(5|xiCO)= mz S VK<%>’
Jj#Fi n

where VK (v) = 0K (v)/dv is the gradient vector of K, and let g(x{y|do) be the
density of x{y. Denote

. G .
D(s[x{o,00) = Bxlo) {E(s1x{0)g(xLo]d0)}.

Let f,(s,xCo) be measurable functions such that sup,|f.(s,x{o)| is square inte-
grable. Suppose that:

(1) K(v) vanishes at the boundary of D.
(2) (©/0(xCo)) {E(s|xLo)g(xLa o)} is uniformly continuous at x{g.
(3) E(fu(s, xCo) | xLo) = 0 ace., for all n.

If lim, , ,nal*? = o, then

ﬁ.(snmo)[D (s]1x:{0) — D(s] X0, 30)120.

)

\_
HM:

NN

Proof. Define

G515 1) = f,.(s,,xgo)[ L VK(CG;X"C‘))—D(stiCO,éo)].

It follows that
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By conditions (1) and (2), Lemma 3 implies that

1 e — x
El: Jar+1 VK (————ICO p; xJCO)

Hence E(®,(5;, 5}, a,)|5;) converges to zero. On the other hand, under condition (3),

]

= Sial JE[fn(Sa x;{o + a)|x;lo = X;{o + anv, X}

n
D

x g(xlo + a,v]d0) VK(v)dv

- E{E L1u(s, xEo)IxCo 1D (s | X0, 50)}
=0.

x,-] converges to  D(s|x;{o,d0)-

E(®,(5;,5,a.,)5;) = s;E |:fn(sj>xj§0)a—,1ﬁ VK (M)

- E[fn(sj,ijO)D(s | XJCD,éo)]

The result of the proposition follows from the first part of Lemma 6. Q.E.D.

A.5. Asymptotic properties

The asymptotic distributions of

1 -, - | PPN 1 OE,(p -
_X,ZUn’ _X,ZAn—lUm (ﬁ )AJIUn

\/ﬁ v n \/ﬁ 0o

can be derived from Propositions 1-6.

Q>
Il

1t s — sl )Y, — Byt )

:7‘ =

S

4+ {Cpn+ Cop+ C3n) A6 — 80) + Carnv/nléy — &),

where

S
I
-
M=

P

n

||M= -

—_

ta(x:C0s Eo)(X2yi — Enlx2y|Xi{0)) (1 — E,(u(]x:00)),

bl 2 aEn i—
tn(x:0, €)X 2y — Enlxz) x; )Y —(g—é',tx—g’),

. M NeALYs
e )t — Byl |0}y a5,

_ Ot (x;
(xe2yi — En(x(l)lxiC))'(uli E,(u, |sz)) fn (g; é)a

0
I
|

@)
N
=
I
. |
M= 31— 20—
D=

= 0=
i
-
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3 &\ a n\Ai _9 3
pa (x2y — Ealx2y | %:0)) (uy; — E,(u | x; ))[—(g‘éﬁ

Proposition 1 implies that

C4,n =

S |-
1=

Cy > —E (u(xco)(xm — E(x)|x%0))

OE(u; | x{o,00)
il ’

and C,_, converges to zero in probability. As lim,_, , (n/lnn) A} ** = oo, Prop-
osition 2 implies that C; , and C, , converge to zero in probability. To see the
latter, consider the single-index model for simplicity. From (A.3.2), since g
has support on [0,1] and is vanishing outside [0, 1], for large n (A.3.2) can be
rewritten as

at..(XC,f)zi x{ =¢, X 1 X —a-p T+ o
06’ I\ SR h 2>

n n n

(A.3.3) can be written as

onxlo) _ 1 (x =&
o,  m\"n )

and (A.3.4) is

atn(szé) — l q(xé’ - é(l—ll) + hn)
aé(l -p hn hn '

Hence C;,, = CY), — C¥), where

1& 1 iA_ 7p ' &Y 2
= Z h_ <x(§h ¢ )(uu — E(uq [x:0)(x2)i — Enlx2) | Xi0)Y X255

and

1 "1 X; é(l ) + h
T n Z‘ hy, ( h,
X (uy; — Ep(uy Ixic_))(x(Z)i - En(x(2)|xic_))lx(2)i-
By the equivalent expressions for (A.3.3) and (A.3.4) above, C, , has a similar

expression. Proposition 2 is applicable to these terms. For example,

plim C(31,)n =E[{u, — E(y IXCO))(X(Z, — E(x(z)|XZ0))/X(2>|XC0]P(XCO|5o)|x§0:§p(5a)

n—x

=E[(u; — E(, |X§0))(X(2) - E(X(2)|XCO))'X(2)|XC0]P(XC0|50)|x40:§,,(50)

k)
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because E(u; — E(uy|x{¢)|x) = 0. Thus, both C; , and C, , converge to zero in
probability.

Consider the term C, ,. To simplify notations, let
Xi{o — X;lo
ot k(e i)
(n - 1) l”lnj¢L g ay
x:Co — x;{
Bni Z K co JQO ,
( an J#Fi An

_ 1 : xi{o — x;lo
g gk ()

j#i

Let A; = E(x@yi|xi{o)p(xi{o|00), B;= p(x;{o|do), and C;= E(uy|x;{o)%
p(x;{o}00) be their limits. By a Taylor expansion,

Co,n = L Z tn(xigo’éo)(x(l)i - E(X(Z)i‘xiCO))/(uli — E(uy;1x:o))
VI =1
+ L, + R,
where
Ly=~-— Z tal(xilo,€0) & <u1. E(uyi| xi{o)(Au — 4
1 ey C;,—C
= Z ta(xilo. Co) (X2)i — E(x2)i 1 Xil0)) 5 (Cui i)
\’/’n i=1 Bi
+ Y taios C) Bl o) s — Euns| xdo))
Vit i=1
, 1
+ (x@yi — E(x2yi | x:ilo)) E(ui 1 x:{0)] B, (B, — By)
and
2 n
Rn = ‘: z t (’CIQO’ 60)52 (Am - Ai)/(Cni - Cl)
vhi=1 ni
2 2 ~ ~ ,
+ — Z ta(xilo, €0 (uy; By — Ci) — m] FE (Am A)) (B, — B;)
Vhi=1 m
2 2 ~ 1
+— Z (X CO»éO)[ - Am + (xll ni T Ani):]??(Bm' - Bi)(Cm' - Cl)
\/ﬁx=l Bni
2 n
+t Z (x COvéO [ Am(ulle_ Cm)+AmCm _(XZIBm_ Anz)C J
VRi=1
1
X = (Bm — B; )2

[>T}
3
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Since lim, ,,, na?™ = oo and lim, ., na®*" = 0, R, converges to zero in probability
by Proposition 3. As lim,_ ., na™ = oo, L, converges to zero in probability by
Proposition 4. Hence

-
M=

XyU0,=

1
\/ﬁ AL

ta(x:0,&0) X2y — E(x2)i| x:Lo)) (U1 — E(uy:1x:{0))

1
i

oE )
N E<IT(x£O)(X‘2’ — E(xz[x{o)) —(IMX—C()Q>

00’
X /(S — o) + 0,(1), (A.5.1)

which is asymptotically normal N(0, 4), where A4 is defined in (4.11), under the
property that /n(é — &,) is asymptotically uncorrelated with (u; — E{uy]x{o)).

For the asymptotic distribution of the SG2LS, by a mean value theorem

A7,

o~

1
N

Il
‘b—‘
1=

ta: 8, EN Xyt — By [X:0)Y 0 (B, 8) 1ty — Enluty 1x:))

<\
=

i=1

ta(x: o, fo)(X(Z)i — B, (x| xilo)) wpi 1(ﬂo:éo)(uli — B,y [x{o))

2
T

Il
B e
F

1

el P 5 aEn 1 i — &
ta(x:, ENx 2y — E,,(x(zylxié))'w;il(ﬁ,é) %XO Jn(é — do)

S| -

i

it
—

_ 9 _ _ -
(u1; — Enluy fxiC))ag [tn(xiCaé)(xQ)i - En(x(Z)lxiC))/ w,;l([f,é)]

I |
M=

i
-

+

i

— s 1 = vz Y
X /(6 — o)+ n z L6 G EWuy; — By | xi0))(x2y — Enlx(2) | x:0))
i=1

de ' ( -
X—.—

B,0) _ 4 1 _
aﬁ’ﬁ )\/n(ﬁ — Bo) + " Z (uy; — E,(uy | x;0) X2y — Ealxz) | x:))

<ot (1P i, — go)

oE ,0
= ngj‘)n —E I:IT(XCO)(X(z) - E(X(z) | xCo))/wwl(xCO’éo) j%:'

X (3 — 80) + 0,(1),
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where
1 n
= *? Z ta(x:8o, E0)(X2)i — Balxzy| xil0))

(ﬁo’ 0o )uy; —Eq(uy 1 x:40)).

To simplify notations, let

1 - xi{o — X‘CO)
Hni = H ? y
(n—1)by ,;, < b,
Xl — XjCo
R, = —_—— ),
" (n - 1 b? ngulj < bn )

1 Xilo — styo
Sm - .
n— 1)b;"§,“” ( b,

Let H; = B,,R, = C;,and S; = E(u?;| x;{o) p(x:{o|5o) be their limits respectively.
By Proposition 3, as lim, , ., nal™ = oc, lim, ., na¥" =0, lim,_, nb}" = o,

and lim, ,  nb" =0,

© 1 < : Y
C(O,)n = 7 Z (X0, €0 ) X2y — E(x2)i 1 x:{0))
Vit i=1
x " M (xilo,00) U1 — Euyi| x;{o)) + Li” + 0,(1),
where
n 1 ,
LY = = L3 o, E)o ™ (xio. ol — B xiLo)) 5 (Aw — A
Vit i=1 i
" 1
- % Z ta(x;l0. Eo)w ™ 1 (xio, do) (X2 — E(X(z)iinCO))/E(Cni - C)
V=1 i

LY il o) (iLor So)[E (s xilo) gy — Euril x:Lo))
1
+ (x2): — E(x2):l Xilo)YEW1:1x:{o)] E(Bm' — B))

Zn: n(Xilo, Eo) 2 (x:L0, 80) (X2 — E(x2)i| x:{o))

:T""

><(ull - E(u11|x1€0)) {(Sm - §; ) - 2E(u11 | xlCO)(Rm - )

- [E(u%i|xi€0) — 2E(uqi] xilo) 1 (Hpi — Hi)}~
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Since E[x2); — E(x)i| xi{o)|xi{o] = 0, E[uy; — E(uy;[ x:{o)|x;] = 0, and the other
functions in L{* are functions of x;{o, Proposition 4 implies that L{*) converges to
zero in probability when lim,,_, , na = o¢ and lim,_, , nb} = oo. Similarly,

- Lﬁ é ’""‘fign)a—Ei(L_aéLm i (B.8) 1 — Enluy | x:0))

N \Lﬁ ,Zil l"(x"go’50)%‘“51(50,50)&4“ — B (uy | xilo))
_ % z (i, g)aEn_(y—&;M (. 6)%%0 5)
* %21 (s = EAudx.—E))%[r( gg)a_En(y—aéM%l(g’g)]
X Jn(d — o) + '11,»221 £, (6,8 E gy — E(uy | x:0))
Xaﬁ’[w 0 (B, 6)} JAR = Bo)
+ %Z (s Byl |0 o =P )

1S LD g, gy

OE(u | x{o,0)

1. OE(u, | x{o,0
2 w l(xéo,50)4( ] b 0)]

= Cgi.)n —E [IT(XCO) 35’

x /(6 — 8o) + 0,(1),
where

C(d)" — .
0. 3

n(xiCOaéO) w, '(Bo. do)ur; — En(uy | x:{0)).

HM:

1
NCE

Since lim,, na,f""”’ = 50, lim,, na¥ =0, lim,..nb2" = oc, and
lim,_, , nb3"" = 0, Proposition 3 implies that

W, — RER- Z ; (x,so,co)aE(ul | xilo, d0)

i Y ufl(x,(o,o‘o)(u“-— E(uy] xilo))

+ L, + o,(1),
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where
OE(u, | x;{o, 6 _ 1
Lgh= — 7 Z ta(x:lo, O)W|+COO) (xii()aéo)Ei(Am' — Ay
# = § st oo x| S0
ni=1
0C; OB;
— (w1 — Euy| ;o)) {5 — 2E(uy; | x:{0) =5 % }] (Bni — B)
1 n
- _fﬁ Z w(Xilo, &0l (xiCO>5O)(uli — E(uyi] xilo))
1 0B; ~
XE?E(CM_ C Ee ilo,¢o)w™ 1 (x:{0,d0)
0B, OB
X(uy; — By | xilo))Eluy; | x:00) < 3% 65)
g ac,,, oC;
+ ﬁz; ta(xil0> E0) 1 (xilo, Oo)(uy: — Etri | X:o)) = ( % >
2 0 OE(u, | x;{o, 0
+ ﬁi;1 tn(xiCO,fo)wiz(xiCOa(So)(uu—E(“ubﬁ(o))%
1 1 d aE i ,5
X B(uygil x:{o) E(Rm‘ —R;)— ﬁ .';1 ta(x:{o> fo)%&)@
1
X 0~ *(x;8o, 80)(ur; — E(uy;| xiCO))ﬁ(Sni -5
aE i ,6
+ ? Zt X;{o, &)™ (x150a50)(141: E(ulifxiCo))ﬂia%CO—O)
R\ 1
X (S, — 2 E)H_IZ(H’” —_ H,) .
Since
OE(uy | x{o,00) of(o )
BT = (x — E(x|x{o)) 26, E (uy | x{o),

by Propositions 4 and 6, L¥, converges to zero in probability as

lim,, ,  na”

m+2 — o0 and lim,_ ., nb™ = cc . Hence it follows after some matrix
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manipulation and simplification that

X (ﬁf) X aE;(ﬁic‘) - OE(LD\
X4A, <V 5 >

1 " P I ’ — I N
- Z ta(Xios o) (X2 — E(xX2)i| xilo)) @ (x;{0,00) (u1; — E(uyi! x:{o))
Jni=1

. o w4 o < OE(uy|x{o,00)
—E[IT(XSO)(X(Z)—E(x(2)|x’so))w I(XQo,()o)’la?u}

OE x(g,0 ~ OF x{q,0 -1
x (V(;‘ + E[lﬂxco)——(”‘g;"’ °)w*1(xco,oo)ﬁ——(“‘$§,‘° °)J>

- . . OE@1x:{9,00) _ L .
{T Z zeoaCo)‘——l adso Yw "(xiCa, 00)(uy — E(uy;| x:{0))
ni=

+ Vit /no - o‘o)} +o,(1)
2N, I), (A5.2)

where I' is in (5.12).
For the instrumental variable estimator in (5.18),

1 ~ 1z ., .
—PU, = — z tn(x:C0, Eo)Piluyi — Euluy | x:o))
N Jni=
1 = &, OE,(u, IXzf) & .
- n 'gl tn(xigaé)pi 65/ \,'l’l(() 00)
1, Ot (xi£,8) —
03 pilui—E, s ) 22852 5
| R ot,(x;{, &) .
X plle — (udm))% (&, — &)

1
1 n

== Z ta(x:ilo, Eo)piluy; — En(uy | x:80))
Jhi=

OE (u, | x{o,00)

Y }/ﬁ(é — 8o) + 0,(1). (A5.3)

- E|:1T(XC0)P’
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Since

OE(u; | x{o,60) C((So)
T—( E(x(x{o))

VE(u, | x{o),
it follows that

BB (1 | Lo, éo)] ,

E[E(p’IXCo) o5

and therefore,

OE o
E[’ e el J - E[Ir(xcoxp — E(plxto)) %}‘”)}

On the other hand,

—_ Z ta(x:8o, Eo) pi(uy; — E.(u1]x:¢o))

nll

n

1
=— Z ta(xilo, o) Piltr; — Eu 1] ;o))

ni=1

1 2 L1
- ﬁigl ta(x;o, o) pi E(Cm' - C)

+— Z ta(x:o, Eo) PIE (u1,|x,Co) ( — Bi) + 0,(1).
\/ﬁl 1

With a high-order kernel of orders s* such that lim,_ , a2 = 0,}! Proposi-

tion 5 implies

n

! 1
ﬁ igl tn(x:{o, fo)PiEi(Cni - C)

= ? Z {Ir(xlCo)”nE(P [x:0) — E[I7(x:{o)E (ulilxiCO)E(p”xiCO)]} +0,(1)
i=1

! This rate requirement implies lim,_, ,na?*" = 0 in Assumption 2. This stronger requirement is
needed only here. It guarantees that the asymptotic bias of the following term will converge to zero.
Using p; — E,,(plxif) instead of p; will eliminate such an asymptotic bias and this stronger rate
requirement will not be needed. This indicates the advantage of using p; — E,(p|x;{) as an
instrumental variable instead of p;.
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and
Ly E ! B B
ﬁ 121 t(xo, Eo) Pi (“1i|xiCo)§i( i — Bi)
1 n
= Z {IT(XiCO)E(P;'|Xi‘:0)E(U1i|Xi§o)
\/l’l i=1
— E[I7(x:{o) E(pi | xilo)E(u ;| x:{o) 1} + 0,(1).
Therefore,
1 n
- Y tu(x:Co, So) pilur; — En(uy | xilo))
Jhi=1
1 n
= Z Ir(xilo)(pi — E(pil xilo)) (u1i — E(uy;1x;:{0)) + 0p(1).  (A5.4)
Jhi=1
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