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Abstract 

The identification and estimation of a semiparametric simultaneous equation model 
with selectivity have been considered. The identification of structural parameters from 
reduced form parameters in the semiparametric model requires stronger conditions than 
the usual rank condition in the classical simultaneous equation model or the parametric 
simultaneous equation sample selection model with normal disturbances. The necessary 
order condition for identification in the semiparametric model corresponds to the 
overidentification condition in the classical model. Semiparametric two-stage estimation 
methods which generalize the two-stage least squares method and the generalized 
two-stage least squares method for the parametric model are introduced. The 
semiparametric generalized two-stage least squares estimator is shown to be asymp- 
totically efficient in a class of semiparametric instrumental variable estimators. 

Key NW&: Semiparametric model; Sample selection; Simultaneity; Index model; Identi- 
fication; Instrumental variables; Asymptotic efficiency 
JEL class~jicution: C14; C34 

1. Introduction 

For the estimation of simultaneous equation sample selection models 
with parametric (normal) disturbances, several methods are available in the 
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econometric literature, e.g., Lee, Maddala, and Trost (1980), Lee (1981), 
Amemiya (1983), Newey (1987), and Blundell and Smith (1989). The approach 
introduced in Lee, Maddala, and Trost (1980) combines Heckman’s two-stage 
and Theil’s two-stage least squares procedures. Amemiya (1983) considered 
a class of estimators derived from modified minimum distance procedures. 
Relative efficiency of such procedures has been considered in Lee (1981) 
Amemiya (1983) Newey (1987) and Blundell and Smith (1989). 

In this article, we will consider instrumental variable (IV) methods for the 
estimation of simultaneous equation sample selection models without para- 
metric distributional assumptions. Semiparametric instrumental variable 
methods for the estimation of sample selection models have been considered in 
Powell (1987) (see also Robinson, 1988). In Powell (1987), since his interest is on 
general semiparametric instrumental variable methods, he has not focused 
attention on any specific simultaneous equation structures of the model. Many 
interesting issues, such as the rank identification condition, which are well- 
known for the classical simultaneous equation model, have not been addressed 
for the semiparametric simultaneous equation model. In this article, we are 
interested in the specific structure of simultaneous equation sample selection 
models. We investigate the problem of structural parameter identification, the 
role of identification conditions on semiparametric instrumental variable es- 
timation, and the proper construction of instrumental variables from the system. 
We will also investigate the possible generalization of the (semiparametric) 
two-stage least squares estimation method and the construction of efficient 
semiparametric instrumental variable estimators. 

2. Semiparametric simultaneous equation models with selectivity 
and instrumental variable estimation 

In this article, our discussion will focus on the estimation of a single equation. 
The estimation of multiple equations can be easily generalized. Consider a single 
structural equation: 

y* = z*clg + x.Jy, + Ur, (2.1) 

where y* is a latent endogenous variable, z * is a G,-dimensional row vector of 
latent endogenous variables not including y*, x is a K-dimensional row vector 

consisting of all exogenous variables in the system, and xJ, where J is a selection 
matrix, represents the subset of exogenous variables included in this structural 
equation. The reduced form equation of z* is 

z* = XI72 + v2, (2.2) 

where 112 is a K x G1 matrix and v2 is a G1 row vector of disturbances. The 
endogenous variables y* and z* are well-defined in the whole population, but 
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their sample observations y and z are subject to selection. The latent selection 
equation is 

d* = xi0 + E, (2.3) 

where d* is a latent variable. The values of y and z are observable if and only if 
d* > 0. As in Ichimura (1987) and Powell (1987) we consider the index model 
framework where the joint distribution of (u,, L’~,&) conditional on x can be 
a function of the index xiO. Such a framework is slightly more general than the 
case where the disturbances are independent of x. 

Conditional on cl: > 0 and Xi, (2.1) implies that 

yi = ZiCt0 + XiJy, + E(uii 1 Xico> d* > 0) + udi, 

where 

(2.4) 

~di = Uli - E(uli 1 Xiio, d* > 0). (2.5) 

Let K ( .) be a kernel function with a bandwidth parameter a, (Silverman, 1986, 
or Bierens, 1985). Let w = (z, xJ) and PO = (a,,,~~). For any possible value 
(8, [) of (PO, co), the conditional expectation function E(y - w/I 1 xc = Xii, 
d* > 0) of y - wb, conditional on the random variables xc and d” > 0 evalu- 
ated at the point xii, can be estimated by the following nonparametric regres- 
sion function: 

~,(pj-Wj~~K(xi~~“xjr) 

E,(JJ - Wflj Xii) = “’ n 

= ( 

’ 
K 

Xii - Xji 

j#i a, 

(2.6) 

where n is the sample size for the observations of (y, z, x) conditional on d* > 0 
(Nadaraja, 1964; Watson, 1964). Given a @-consistent estimate < of [, Powell 
(1987) has proposed an instrumental variable method for the estimation of fiO 
from the following equation: 

Yi - Erz(y I Xii^) = (Wi - En(w I Xii^))Po + fini, 

where 

(2.7) 

for any random variable s (see also Robinson, 1988). 1nst;umental variable 
methods require instrumental variables for Wi - E,(w I Xii) (Powell, 1987). 
A simple instrumental variable estimator with instrumental variables p can be 

i$l P;(Wi - En(w lxif,,) i$l p:(yi - E,(ylxi[)). (2.8) 
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However, due to the technical difficulty of handling the denominator in the 
nonparametric regression function in (2.6), some modifications are needed to 
overcome the difficulty. Various ways have been introduced in the literature. 
Powell (1987) uses the denominator in (2.6) as the weight in the summations of 
(2.8) so as to cancel the denominator of (2.6). An alternative suggestion is to trim 
the tails of the distribution of x or the index xi (Robinson, 1988; Klein and 
Spady, 1987; I_chimura and Lee, 1991). In this article, trimming will be applied 
to the index xi when its values are greater than some upper quantile or less than 
some lower quantile (see Sections A.2 and A.3 of the Appendix). Suppose that 

t,(x,& [,,) is a trimming indicator with value 0 when 
a vector of sample quantiles. A simple unweighted 
timator is 

Xif is deleted, where FE is 
instrumental variable es- 

bp = i tn(xii? fn)Pi(wi - En(w IXii^)) > -1 

i=l 

x i tn(XiC tn)Pi(Yi - E~(Y I xii^)). (2.9) 
i=l 

The trimming procedure is preferred to the Powell’s procedure. The weighting 
scheme in Powell (1987) has nothing to do with the variance of the disturb- 
ance B,i in (2.7). With the trimming procedure, weighting estimation method 
which incorporates heteroskedastic variances can be introduced in subsequent 
sections. 

As in the classical simultaneous equation model, the consistency of IV 
estimators depends on proper instruments constructed from the list of 
exogenous variables x in the system. Consistency of the IV estimators is possible 
only if the structural equation is identifiable. In subsequent sections, we will first 
address the identification problem of this system. Problems on how to select 
proper instrumental variables and the construction of efficient IV estimation of 
(2.7) will then be considered. 

The estimation method can be generalized to cover more general cases where 
the selection mechanism is determined by several inequality conditions, for 
example, models with polychotomous or sequential choices. For the general 
case, d * in (2.3) is a finite-dimensional (row) vector of latent equations. The 
samples of y and z are observed if and only if d * > 0. The implied regression 
equation (2.4) becomes a mode1 with multiple indices (Stoker, 1986; Ichimura 
and Lee, 1991). xc will represent a vector of indices with [ being a matrix. The 
semiparametric estimation method above can be generalized. K ( .) will now be 
a higher-dimensional kernel with the dimension of xc, and the trimming will be 
applied to all the indices in xi. The bandwidth a, needs to be wider in the 
nonparametric regression estimation in (2.6). The detailed analysis in the Appen- 
dix is applicable to the general model. 
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3. Identification 

Let 

y* = x711 + Ui (3.1) 

be the reduced form equation for y*. As in the classical simultaneous equation 
model, the identification of structural parameters is directly related to the 
reduced form parameters. Within the index model framework, identification of 
(2.2) (2.3) and (3.1) has been considered in Ichimura (1987) Chamberlain (1986), 
Powell (1987) and Ichimura and Lee (1991). Conditional on d* > 0 and x, 

E(ylx,d* >O) = xxi + E(vl Ix[~,x[,, > -E), (3.2) 

and 

E(zlx,d” > 0) = xZ12 + E(Q IxiO, x&, > - c). (3.3) 

As shown in Ichimura (1987) for the single-index model, co in the selection 
equation (2.3) can best be identified up to an unknown scale. When the re. 
gressors in x are all qualitative variables, co cannot even be identified up to 
a scale. Therefore, we consider only the model where a relevant continuous 
exogenous variable is present in the index xcO. As the coefficients in the index 
can only be identified up to a scale, normalization is needed. A convenient 
normalization (Ichimura, 1987) is to set the coefficient of a continuous 
exogenous variable to the unity. Contrary to the classical simultaneous equation 
model, the reduced form parameter vectors rci and II2 in (3.1) and (2.2) are not 
identifiable. This is so because xrri and xc0 contain the same set of variables 
x and they cannot be distinguished from each other in (3.2). Similarly, this is so 
for xn, and xiO. This identification problem has been studied in Ichimura and 
Lee (1991) and Powell (1987) in the analysis of index models with nonparametric 
regression functions. The same conclusion has been derived in Chamberlain 
(1986) from the nonparametric likelihood function of the model. 

Even though rcl and Zi’* are not identifiable, some transformations of them 
can be identified. With the normalization suggested by Ichimura (1987) let 

xi0 = X(1) + +,~o, 

where xcl) is a relevant continuous exogenous variable in x = (xc,,, xcZJ) and 
xcZj is the remaining subvector of x. Conformably, xxi = xcij~il + ~~~,rri~, 

xn2 = X(l)&1 + X(2,~22, and wo = x(~o~, 1 + x(2)1/0.2. The reduced form 
equation (3.1) can be rewritten into 

y* = XQj7cT + v:, (3.4) 

where XT = 7r12 - &n,, and UT = u1 + x[orcll. Similarly, 

z* = xc2,nz* + u;, (3.5) 
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where II,* = Lrz2 - &r&1 and v: = v2 + x[~x;~. It follows that 

E(y1 x, d* > 0) = xcz,nT + E(v; 1 xc,,, d* > 0) (3.6) 
and 

E(z 1 x, d* > 0) = x&; + E(v; 1 xc,,, d* > 0). (3.7) 

The index xc0 is distinguishable from xcz,rct and x,,,L’,*, because x(i) appears 
only in xi,, but neither in xc2,nT nor in x~~,L’~. The transformed parameters 
rcT and II,* and &, are identifiable. 

The structural parameters tl and y are related to the reduced form parameters 
TLT, n,*, and S. Substituting (3.5) into the structural equation y* (before impos- 
ing any explicit exclusion restrictions), we have 

y* = z*&J + xyo + U] 

= (x,&I,* + v&l f X(l,YO. 1 + X(2,YO,2 + u1 (3.8) 

= X&72*% - Yo, 1~0 + Yo,2) + UT, 

where UT = u1 + V~*CQ + yo,lxiO and y0 = (yb,i, Y&)’ is the vector of coeffi- 
cients of x before exclusion restrictions on x are imposed. Comparing (3.8) with 

(3.4) 

6 = Z% - Yo,i& + Yo,2. (3.9) 

From (3.9) we see that the identification of the structural parameters CI~, 
yo, 1, and yo, 2 requires restrictions on the structural equation (2.1). With exclu- 
sion restrictions in (2.1) we have y. = Jy, and (3.9) becomes rrT = 
[n:, ( - do, I)J](xb, yb)‘. From this relation, we see that the rank identification 
ofthe structural parameters in y = ZCQ, + xJy, + u1 is that CL’,*, ( - 6,, Z)J] has 
full (column) rank. For the order identification condition, it is convenient to 
consider separately the two cases of exclusion restrictions of (1) x(i) appearing in 
(2.1) and (2) xcl) not appearing in (2.1). Consider first the case that x(i) is excluded 
from (2.1) which is equivalent to saying that yo, I = 0. Without loss of generality, 
suppose that the first kl exogenous variables in xc2) are included but the 
remaining K - 1 - kl variables in xc2) are excluded from (2.1), i.e., yo,2 = 

(Yb,21> 0)’ where yo, 21 is of dimension kl Conformably, let rcf = (rc:;, rcr; )‘, 
IZ,* = (If~;,l7~;)‘, and do = (S& 1, 6b,2)‘. Since yo, 1 = 0, (3.9) is equivalent to 

ET1 = n2*1xo + YO,Zl (3.10) 

and 

rrr2 = II&). (3.11) 

It follows from (3.10) and (3.11) that the rank condition is equivalent to rank 
II:, = G1. The necessary order condition is K - 1 - k, > G1, i.e., the number 
of excluded variables in xc2) from the structural equation is greater than or equal 
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to the number of endogenous variables on the right-hand side of (2.1). Consider 
next the case that x(i) is included in the structural equation. As in the previous 
case, suppose only the first k, exogenous variables in xcZJ are included in (2.1). 
Eq. (3.9) is now equivalent to 

761 = flI,*lEO - Yo 1 0 1 + Yo 21 -6, . (3.12) 

and 

XT2 = n;,ao - Yo,160,2. 

The rank identification for this case is rank [Z7Tz, - 60,2] = Gi + 1, and the 
necessary order condition is K - 1 - kl 3 Cl + 1. In any event, the identifica- 
tion condition is stronger than the identification condition for the classical 
simultaneous equation model. The exact identification of (2.1) for the classical 
mode1 becomes underidentification for the semiparametric model. The order 
identification condition for the semiparametric mode1 corresponds to the 
overidentification condition in the classical simultaneous equation model. The 
stronger condition for the identification of the semiparametric mode1 is appar- 
ently due to the addition of a sample selection bias term of an unknown form in 
the bias corrected structural equation. Exogenous variables which are excluded 
from the structural equation (before bias correction), but appear in the selection 
bias term through the index xiO, identify the selection bias term. Intuitively, the 
included bias correction term introduces excluded exogenous variables back 
into the (bias) corrected structural equation, and the effective number of the 
included exogenous variables in this equation is the number of originally 
included exogenous variables plus one. Therefore, the order condition for 
identification requires stronger exclusion restrictions than the classical simul- 
taneous equation model. For the parametric simultaneous equation sample 
selection model under normal disturbances, the bias correction term has 
a known nonlinear functional form, which introduces nonlinear restriction into 
the bias corrected structural equation. The nonlinear bias correction term with 
a particular known form due to normality helps identification even though the 
excluded exogenous variables are implicitly introduced back into the bias 
corrected structural equation. If the bias correction term in a parametric 
simultaneous equation sample selection model were a linear function of the 
index (Olsen, 1980) then stronger identification condition similar to the one of 
our semiparametric model would be needed. Putting it in another way, stronger 
identification condition is needed for our semiparametric mode1 because it does 
not exclude the parametric specification of Olsen (1980). 

The identification condition can be extended to the genera1 mode1 where xi 
represents a vector of indices. To distinguish the indices in xc for identification, 
each index is required to contain a relevant continuous exogenous variable 
which does not appear in the other indices (Ichimura and Lee, 1991). 
Suppose xc contains m indices. With normalization, xi = (xc1 i) + x&$,,, . . , 
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+,,) + x(&,,J where xc1 lj, . . . , +,,) are m distinct continuous variables not 
contained in the subvector xC2). For this general model, 6 = CC+,,, . . . ,6,,,] 
is now a matrix. The rank identification condition is that [II:, ( - &,Z)J] 
has full (column) rank. 

4. Semiparametric two-stage least squares estimation 

For the classical simultaneous equation model, the most popular IV method 
is the two-stage least squares method (2LS). A generalization of 2LS to the 
estimation of parametric simultaneous equation models with selectivity has 
been introduced in Lee, Maddala, and Trost (1980). The endogenous variables 
are regressed on all the exogenous variables and a sample selection bias term 
(inverse Mill’s ratio) in the first stage. The regression predictors are then used as 
the instrumental variables in the second-stage estimation of the selection bias 
corrected structural equation. 

For the estimation of the semiparametric model, define the following ma- 
trices: 

^ ^ 
where t,,(x[, 5,) is a smooth quantile trimming function of x[ introduced in 
Sections A.2 and A.3 of the Appendix. The trimming function is differentiable 
with respect to its arguments ,x5 and & so that one can easily investigate the 
impact of the randomness of 6 and the sample quantiles 5, on the asymptotic 
properties of the derived estimators. A semiparametric two-stage least squares 
estimator (S2LS) is 

/7szLs = [I+~?,(d;x,)-‘~?; I+-‘I?x,(~?;x,)-‘~?; r. (4.1) 

This estimator can be interpreted as being derived from a two-stage estima- 
tion procedure. In the first-stage estimation, the reduced form equations for z in 
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(3.7) are estimated by a semiparametric least squares method, and the predicted 
values for z - E,(z 1 SF) are used as instrumental variables for z - E,(z 1 xf). In 
addition to z, if x(i) is included in w, an auxiliary reduced form equation for 
x(i) is also estimated by a semiparametric least squares method, and the 
predicted value for r,i, - E,,(.u(,, ( xi) will be used as an instrumental variable 

for xC1) - E,,(x(,, 1 xi) for the estimation of (2.7). This two-stage estimator has 
a two-stage semiparametric least squares interpretation. To see these, define an 
auxihary equation for xC1,: 

X(1) = - “(2)&l + u1.* 3 

where ci,* = xi,,. Since W” = (z*, xJ), (3.5) and (4.2) imply that 

(4.2) 

w* = x,z,cfl;,(- &,W] + r*, (4.2’) 

where L’* = (v?,(vi.,, O)J), and conditional on d* > 0 and x, 

w=x,z,[fl;,(-&,,Z)J]+E(v*lx,d*>O)+v,, (4.3) 

where vd = v* - E(v* 1 x, d* > 0). Similarly, as in (2.7) since the distribution of 
U* is a function of xlO, 

LVi - E,(w (Xi;^) = (Xcz)i - E,(x(,, I Xif))IZ, + Gni, (4.4) 

where 17, = [n,*, ( - ao, I)J]. A semiparametric least squares (SLS) estimator 
of H,V with trimming function t, is fr, = (X;X,))‘X; 6’. It follows that 

p^s,,s = [(x,n,y(r?,ir,)]~‘(x,ri,)f~, which has a two-stage least squares 
interpretation. The regressor x (i) plays an interesting role in the estimation. This 
variable is exogenous in the equation system, however it behaves as if it were an 
endogenous variable in the estimation. It has been excluded from the list of 
regressors in the first-stage SLS estimation. This feature is compatible with the 
order identification condition in Section 3. 

The propositions in Appendix Section A.4 can be used to derive the asymp- 
totic properties of our estimator. Some of the detailed derivations will be 
referred to Appendix Section A.5. Since sample observations for (2.4) are avail- 
able only after selection, all expectations will be taken as conditional expecta- 
tions conditional on d* > 0. To simplify notation, the conditional argument 
d* > 0 will be suppressed. Thus E(. Ixio) stands for E(. Ixi,,,d* > 0) in sub- 
sequent presentation and the Appendix. Proposition 1 in Appendix Section A.4 
implies that 
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where 

C = ECIT(XSO)(XW - E(x(,, I xio))‘bc,, - WQ, I xio))l, (4.6) 

and IT is the indicator function of T, where T = [4,(S,), <Cl _,,(6,)] with {,(6,) 
and &r _pj(do) being respectively the pth and (1 - p)th quantiles of xio. On the 
other hand, since, from (4.2)‘, v* = [vz, (x[~,O)J] and E(v;I* lx) = E(u~ 1 xco), 
it follows that E[v* - E(u* 1 x[~)/x] = 0 and, by Proposition 1 in Appendix 
Section A.4, 

E,(x(,J I xii^))‘(X(,,i - En(x(2, I Xii”) 

(4.7) 

+ i ,i tn(XiL 5^,)(VT - En(v* IXii^))‘(x(2)i - J&(X(Z) I Xii^,) 
r-l 

It follows that under the assumption [Assumption l(6)] that C is nonsingular, 

t I$+,(x; 2,,-‘3 wz n;cn,. (4.8) 

The rank identification condition that n, has full column rank is nec_essary for 
the lifn:lting matrix in (4.8) to be nonsingular. Let U, = (t,,(xr[, &,)&r, . . . , 
t,(x,[, &,)&,,)‘. Eqs. (2.7) and (4.1) imply that 

/?s2rs - /IO = [ +&(x;&-‘x; IF-’ IW,(&x,)-‘& 5,. (4.9) 

Since plim,, m (l/n) 2; 6, = E(~ddo)Cx,,, - E(x&io)l’Cu, - WI I d’dl) = 0, 
P SZLS is a consistent estimator of eo. 

The asymptotic distribution of /?s2Ls can be derived from (4.9). Let O(Xi[o, 6,) 
denote the conditional variance of Udi. Let VE(u, Ixio) denote the first-order 
derivative of E(ui ) xio) with respect to the argument xco. As shown in (A.5.1) of 
the Appendix, 

- W,(xioHx,2, - W(2) I xio))‘(+, - JW2, I XL)) 

x Wul I xioM@ - 60) + o,(l). (4.10) 
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The first term on the right-hand side of (4.10) captures the impact of 
the disturbance ud in the structural equation (2.4) on the limiting distribution 
of /?sIszLs, and the second component captures the randomness of the first- 
stage estimator s^ of & on the limiting distribution of jsszLs. Under the 

assumption [Assumption l(4) in the Appendix] that &(s^ - 6,) is asymp- 
totically normal, N(0, V,), and is asymptotically uncorrelated with 
u1 - E(ui 1 xio), the LindeberggFeller and multivariate central limit theorems 
imply that 

where 

d = EC~,(xi,)(x~, - E(+, I &))‘d& bJ(x~~~ - Wq,, I do))1 +ov,o’ 

and 

(4.11) 

D = EC~r(&)(x,,, - E(+, I &))‘bp, - W+zj I do)) W~I I &)I. (4.12) 

The above assumption [Assumption l(4)] for the first-stage estimator will be 
satisfied with parametric or semiparametric estimators of discrete choice models 
such as the probit or logit estimators (under correct distributional assumptions), 
the Ichimura single-index estimator (Ichimura, 1987) and the semiparametric 
maximum likelihood estimator of Klein and Spady (1987) for binary choice 
models, and the multiple index estimator in Ichimura and Lee (1991) for 
polychotomous choice models. In general, for a choice model with L alternatives 
and T sample observations where T > n, if 

\‘k(cs^- 6C)) = L i f(Xi, Zl,i, ... ,I,,i) + Op(l), 
Jri=l 

where II is a dichotomous choice indicator for the 1 alternative and 
f(x, Ii, . . , IL) is some measurable function with zero mean, is asymptotically 
normal, Assumption l(4) will be satisfied. This is so, because 

E* i f(xj, Zl,j, ... ,IL,j)(uli - E(uli I xiio)) 
j= 1 
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where E* denotes the unconditional expectation taken with the whole popula- 
tion (not just the subpopulation with d* > 0). 

In conclusion. 

where 

52 = (ZI;CZI,)- ‘IZ;AIZ,(l7;CI7,)- ‘. (4.14) 

5. Semiparametric generalized two-stage least squares estimation 

The S2LS in (4.1) is simple, but it is not an efficient IV estimator for the 
estimation of (2.7) because it has not incorporated the complicated covariances 
structure of liEi in estimation. 

The disturbance lini in (2.7) can be decomposed into three components: 

li,i = Uli - E,(u, I~ii^) 

- (En(ul I Xii01 - E(uli I xiio)). (5.1) 

The first component represents the disturbance udi in the structural equa- 
tion (2.4) after the correction of selection bias. The second component repre- 
sents the-disturbance introduced in E,(u, 1 xiio) by replacing i0 by the 
estimate [. In the parametric two-stage estimation of the sample selection 
model with a discrete choice decision rule, these two components of the dis- 
turbance are asymptotically uncorrelated (Heckman, 1979; Lee, Maddala, 
and Trost, 1980).’ This is also the case for the semiparametric model in (2.1) 
and (2.3). The last component represents the error introduced by the non- 
parametric estimate of the conditional expectation of uii. Even though the 
last component has a rather complicated structure, it does not influence the 
asymptotic distribution of /?szLs, due to an asymptotic orthogonality property 
of the index model (see the Appendix for details, in particular, Propositions 4 
and 6 of Section A.4). 

’ For the sample selection model with a tobit type decision rule, if the first-stage estimate is a tobit 

MLE, the two components can be correlated (see Lee et al., 1980)]. 
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The variance of udi in (2.4) is a function of Xiio. It can be estimated non- 
parametrically. Let H be a kernel function with a bandwidth b,.’ Define 

%iCB, $1 = 

where /? is an initial consistent estimate of /I [e.g., $‘s,,s in (4.1)], &,,(F, s^) 
provides a nonparametric estimate of the variance w(xiiO, 6,) of udi at xicO. The 
above arguments suggest the following covariance matrix: 

(5.3) 

where 2, is a diagonal matrix with diagonal elements c&,~(~,c?), i = 1, . . ,n, 

c,b/n is a consistent estimate of the limiting covariance matrix V, of \I%($ - SO), 
and 

(5.4) 

By a formula of inversion of a partitioned matrix, the inverse of p,,, involves 
only inversion of matrices of the dimension of 6: 

(5.5) 

For the parametric simultaneous equation sample selection model, several gener- 
alized two-stage least squares estimators (G2LS) have been introduced (Lee, 1981; 
Amemiya, 1983). For the semiparametric model, the following estimator is 
a semiparametric generalized two-stage least squares estimator (SG2LS): 

’ The kernel K with a. in (2.6) can be used. However, it is desirable to use a separate kernel function 

so as to avoid unnecessary stronger requirements on the rate of convergence for bandwidth 
parameters. 
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An alternative SG2LS estimator is 

jjo = [w,c^-‘~2(~;~~1~?2)~1~?;c^-1~]~1 

x ~/c^~l~,(~;c^-l~,)~l~;~ -1 jT. (5.7) 

It can be shown that these-two estimators have the same asymptotic d@tribu- 
tion.3 The computation of fiso is simpler, but the data transformations in /Iso are 
intuitively appealing. 

Substituting (2.7) into (5.6) and (5.7) 

/?so - po = [w’xz(x;x2)~~x;c^~~w]-~ 

x wfx,(x;xz)~lx;c-‘u, 

and 

(5.8) 

P”So - PO = [~‘c^-‘~z(~;c^~‘~,)-‘~;c^-’ I@]-’ 

x ~~c^-l~,(~;~-l~,)~l~;c^-l~,. 

Proposition 1 of Appendix Section A.4 implies that 

(5.9) 

where 

C, = ECIT(XSO)(XW - E(xC,, I~io)))~-~(x~~,~o)(x~~) - E(~dx5o))l 

and 

Furthermore, let i3E(ul I xlo, &,)/ad denote aE(u, I xl)/aSlbza,. An explicit ex- 
pression for this derivative [Appendix Eq. (A.4.1 l)] is 

mu1 I do, 60) = (x 
a6 (2) - WQ, I do))’ VWul I do). 

3 For the parametric sample selection model, the asymptotic equivalency between two such similar 

estimators has been shown in Lee (1981) and Amemiya (1983). 
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Proposition 1 implies that 

where 

and 

Do, = E ~d~io)(xm - 
[ 

a&l I do, 60) 
E(x~~)Ix~o))Iw-~(x~o,~o) ast 

1 

Similarly, 

With (5.Q by combining the above relations, 

(5.10) 

and 

; x;c^-l wJ+:rn,, (5.11) 

where 

r = C, - D,(Vi’ + EJ’D;. (5.12) 

Furthermore, from the derivations in Appendix Section A.5 [Eq. (A.5.2)], 

&&imlCn % N(0, r). (5.13) 
J n 

Eqs. (5.9)-(5.13) imply that 

(5.14) 
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From (4.5) (4.7) (5.10) and (5.11), both @11J??2(??;x2))1 and 

I?J? ‘l_?Z(x;zP ‘2,))’ converge in probability to II;. Hence JYi(j?so - PO) 

has the same limit@g distribution of $i(p so - be). The asymptotic covariance 

matrix of PSG (or Pso) can be consistently estimated by 

ti o,n = [~1)~2(~~x2)-1x;c^-lw]~1 (5.15) 

or 

n” G,n = [~~c^~l~~(~;c^-‘~,)-l~~~~l~-l, (5.16) 

Let Q^ = _?,(r?;x,)) ’ _f; @‘. By the generalized Schwartz inequality, 

x;,?rk, 3 ~;~(~‘~~)-‘Q’x,. Hence 

II;rIl, = Il~plimlX;i.P1~~ll, 
n 

(5.17) 

by (4.7), (4.14), and the fact that (l/n)x;cl?, 5td. Hence Fso is asymptotically 
efficient relative to &.Ls. 

The SG2LS estimators /!so and /J”So are not only asymptotically efficient 
relative to the S2LS estimator j?sZLs. They have also an asymptotically optimal 

property. They are asymptotically efficient IV estimators for the estimation of 
(2.7) (conditional on the choice of first-stage estimator of 6e and the same 
trimmed version). Let pi be an instrumental variable for wi and p, be the IV 
estimator: 

jp = (P?+‘P~ r, (5.18) 

where 

(5.19) 

Eq. (2.7) implies that 

jp - Do = (P’w)-lP’fi,. (5.20) 



For this case, the component E,(u, 1 Xi[o) - E(ur lxiO = Xi[o) in Gni has a signi- 

ficant impact on the asymptotic distribution of jP. From (A.5.4) of the Appendix, 

’ $ ,$, I,(xiio)(Pi - E(Pi I xilo))‘(Uli - E(uli I Vito)), (5.21) 
L 

where 1 means that both sides have the same limiting distribution. Similar to 

(4.7) 

I, ~‘~-i:W,hZ,)~‘(x,,, - W,,,I.&))~, 

= W,(.~O)(P - UP I xio))‘(qz, - Wqa I do))~lw. (5.22) 

The latter equality in (5.22) holds because Zr(.x[o) is a function of xi0 alone. 

From (A.5.3) and (A.5.4) in Appendix Section A.5, 

i pyj, D 

\n 
+N(O, dp)r (5.23) 

where 

A, = EC~,(x;oNp - UP I -uio))‘Wio~ ~o)(P - HP I xio))l 

+ EC~ddo)(~ - UPI xSo))‘(x,,, - W+, I xi011 vE(ul I xi011 

x VsEC~.(xio)(~ - E(P I .Go))‘(xcz, - Wq,, I xi01 ~E(uI I xio)l’. 

(5.24) 

It follows that 

\ W$ - b’) 5 NCAQ,), (5.25) 

where 

QP = {El~,(xi,)(p - UP I xio))‘(xc,, - E(xm I xio))nw) -’ 

x A,{E(~,(.x;o)(p - E(P I x~o))‘(x~~, - Wqz,l~CYo))~,) - “. (5.26) 

From (5.22), (5.25) and (5.26) we note that BP has the same limiting distribution 

of the following IV estimator: 

BP= (P+-‘P+, (5.27) 
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rn(xiL k&i - E,(P I x~i^))’ 

I;= (5.28) 

‘I LCGL 5d~n - WJ I xni3, , 

This indicates that for the estimation of the semiparametric simultaneous 
equation model, the residuals pi - E,(p 1 xii,,) and p - E(p 1 xco) play the crucial 
role rather than the variable p itself. The asymptotic covariance matrix of p”, (or 
p,) can be consistently estimated by d,,, = [p’@‘-‘~‘~P[wlP]-‘. The 
asymptotic efficiency of BsG relative to flP follows from the following inequality: 

ll;fII, = Ir;plim~~~?i~2nW 

= Q,? 

6. Conclusion 

In this article, we have considered the identification and estimation of the 
sample selection simultaneous equation model without a parametric distribu- 
tional assumption. Based only on index restrictions, the identification of struc- 
tural parameters from reduced form parameters requires stronger exclusion 
restrictions than the identification of structural equations in the classical simul- 
taneous equation model. The identification in this semiparametric model re- 
quires the underlying structural equation to be overidentified in the classical 
sense. Exact identification in the classical model becomes underidentification for 
the semiparametric model. Estimation of the structural equation by instrumen- 
tal variable methods has been considered. Some two-stage estimation proced- 
ures which generalize the estimation procedures for the parametric model and 
the classical two-stage least squares method are introduced. Consistency and 
asymptotic normality of the estimators are proved. An asymptotically efficient 
instrumental variable method (conditional on the same first-stage estimator of 
the parameters of the selection equation and the trimming of observations with 
low index densities) has also been derived. Some interesting features of the 
instrumental variable estimation in this model have been discovered. Residuals 
of the variables in the model which are derived from the projection of variables 
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to the selection equation indices play the crucial role for asymptotic properties 
of the estimators. Exogenous variables in the system used in normalization for 
the selection equation indices behave as if they were endogenous variables in 
two-stage estimation procedures. The latter feature is compatible with the 
identification condition for the model. 

In this article, we have considered only single-equation estimation methods. 
These methods can be generalized to the estimation of system equations by 
some semiparametric three-stage procedures. For the semiparametric sample 
selection model (without simultaneity), semiparametric efficiency bound 
has been derived in Chamberlain (1986). For efficient estimation, asymptotic 
efficient estimators might be derived from some semiparametric maximum 
likelihood methods. For the semiparametric sample selection model without 
simultaneity, Lee (1990) has considered such a procedure.4 With the reduced 
form equations estimated by such a method, the structural parameters may then 
be estimated by Amemiya’s minimum distance procedure (Amemiya, 1978, 
1983). One might conjecture that such a structural estimator could be an 
asymptotically efficient semiparametric estimator. At any rate, such estimation 
method is not a simple instrumental variable method. 

Appendix 

A.I. Model assumptions 

Assumption 1 

(1) 

(2) 

(3) 

(4) 

The samples si, where si = (yi,zi,xi), i = 1, . . . ,n, are i.i.d. x is the vector 
consisting of all exogenous variables in the equation system. The moments of 
order 3 x Y, where r >, 2, of s exist. 

The parameter space 0 of 6 is a compact subset of a finite-dimensional 
Euclidean space, and ho is in the interior of 0. 

x(r) is an m-dimensional vector of continuous variables. 

6 is a &i-consistent estimator, ,~?i(s^ - 6,) is asymptotically normal, 
N(0, V,), where V, is a positive definite matrix, and is asymptotically uncor- 
related with Uli - E(uri 1 Xiio) for all i. 

4 In Lee (1990), both the density of index in the selection equation and the density of the disturbances 

in the outcome equations are assumed to be bounded away from zero. For such a situation, there is 
no need to trim the observations with lower index densities. Unfortunately, such a strong assump- 
tion rules out many cases. The author is currently investigating how to relax such an assumption. 

Trimming procedure introduced in this article may be valuable. 
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(5) The matrix n, in (4.4) has full column rank. 

(6) The matrices C in (4.6) and r in (5.12) are nonsingular. 

Assumption 2 

(1) 

(2) 

(3) 

(4) 

K(v) on R” is a kernel function with a bandwidth parameter a, defined on 
a bounded support D,5 i.e., SD K(v) dv = 1, and lim,, 7) a, = 0. 

K(v) is twice differentiable and its second-order derivatives satisfy a Lip- 
schitz condition of order l.‘j 

K(v) is a higher-order kernel function with zero moments up to the order s*, 
s* = m + 2, i.e., 

s v’;l . vkK(v)dv = 0, 

D 

for all 0 < il, 1 = 1, . , m, and 1 < il + ... + i, < s*. 

(a,} is chosen with a rate such that lim,,, (n/in n)a~‘f6’r)(m+2)t2 = cc and 
lim n,mnu,f(mf2) = co, but lim,,, n&* = 0. 

Assumption 3 

(1) 

(2) 

(3) 

(4) 

The density function p(t 16) of t = xc in R” is positive everywhere for each 
6 E 0. It is differentiable everywhere with respect to t to the order s*, and 
these derivatives are continuous at (t, 6) everywhere. 

E(s @ X ) t, 6)p(t ItI), where s = (y, z, x) and X = (1, x), is differentiable every- 
where with respect to t to the order s* + 1, and these derivatives are 
continuous at (t, 6) everywhere.7 

E( IIs @ X 0 XII2 1 t, d)p(t Id), where s = (l,y,z,x) and X = (1,x), is continu- 
ous at (t, 6) everywhere. 

E(s @ X @ X 1 t, 6)p(t 1 d), where s = (1, y, z) and X = (1, x), is twice differen- 
tiable with respect to t and its second-order derivatives are continuous at 
(t, 6) everywhere. 

s The boundedness of D is inessential. Relaxing this assumption will make our analysis relatively 

more complicated. In practice, kernel functions with bounded support are simpler to compute. 

6A function h(x) is said to satisfy a Lipschitz condition of order 1 if there exists a constant c such that 

II h(x,) - h(x2) 11 < c I/ x1 - x2 11 for all x1 and x2. 

’ @ denotes the Kronecker product. 
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Assumption 4 

(1) 

(2) 

(3) 

(4) 

H(v) on R” is a kernel function with a bandwidth parameter b, defined on 
a bounded support. 

H(v) is differentiable and its derivative satisfies a Lipschitz condition of 
order 1. 

H(v) is a kernel function with zero moments up to the order h*. 

{b,} is chosen such that lim.,,(n/ln n)b~i61”(m+1)f1 = cc and lim,,,nb,2” 
= co, but lim,,, nbt** = 0. 

Assumption 5 

(1) 

(2) 

(3) 

(4) 

E(sOsIt,6)p(tIO), where s=(l,y,z,x), of t=x( is differentiable 
where to the order h*, and these derivatives are continuous at (t,h) 
where. 

E( /I s 0 s I/ * I t, 6)p(t Ia), where s = (1, y, z, x), is continuous at (t, 6) 
where. 

E(s 0 s 0 XI t, d)p(t (O), where s = (l,y,z,x) and X = (1,x), is differentiable 
everywhere with respect to t and this derivative is contmuous at (t,6) 
everywhere. 

E( II s 0 s 0 X I/ * I t, 6)p(t Id), where s = (1, y, z, x) and X = (1, x), is continuous 
at (t, 6) everywhere. 

every- 
every- 

every- 

As pointed out in Section 4 of the text, Assumption l(4) will, in general, be 
satisfied with parametric or semiparametric estimators of discrete choice mod- 
els. Assumption l(5) is the rank identification condition, and Assumption l(6) is 
for the limiting distributions of the S2LS and SG2LS estimators to be well- 

defined with the & rate of convergence. 
The kernel function K with a bounded support in Assumption 2 has implicitly 

the following properties: SD I K(v)1 dv and JD 11 v IIs* IK(u)( dv are finite; K(v) and its first- 
order derivatives are bounded; and K(v) and aK(v)/av go to zero at their boundary. 

The conditions in Assumptions 3 and 5 can be justified by some basic 
regularity conditions on the distributions of the variables in the models. How- 
ever, the above assumptions are more direct. As an illustration, let f(xcl, I xc,)) be 
the density function of x(i) conditional on xCZ). Since t = xcl) + xc2,6, 

p(t 18) = f(t - x(dlx(,,)dv(x(,,), (A.l.l) 

where v(xC2)) is the distribution measure of xC2). If f(xcl, 1 xc*)) is continuous and 
bounded, the bounded convergence theorem will imply that p(t 16) is a continu- 
ous function. The continuity and boundedness properties in Assumptions 3 and 
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5 are used to guarantee the stochastic convergence and to control asymptotic 
biases of nonparametric kernel estimates. See Lemmas 1 to 4 in Section A.4. 
Assumptions 4 and 5 are needed only for the nonparametric estimates W,i of the 
variance of uIi. For the asymptotic properties of the S2LS estimator, these two 
assumptions are not needed. 

A.2. Trimming index 

To trim the tails of the index x[, we can use some quantile statistics of xf 
Without loss of generality, consider a single index. Let ,O < p < i be a-specified 
order of quantile. The first-stage estimate 6 in xc = x(r) + xc2,6 can be 
discretized by LeCam’s device (LeCam, 1960). Let {i,,} be a sequence of 

J!‘i-consistentestimateof&,.Let 11611 =max,=,,,,,,,16~1,where6=(6,,...,6,)’ 

is the norm of 6 in the k-dimensional Euclidean space Rk. Let Ri = {(l/,/yi_) 

x (ir , . . . , ik) 1 i,, . .._i. are integers} and let & be a point in Ri ChXeSt to 6, 

under 11.11. The (6,) IS a discretized sequence of estimates of do. Let tnP and 
&,(l_-pj be respectively the pth sample quantile and the (1 - p)th sample 
quantile of the observations of Xii, i = 1, , n, where xc, = x(r) + xcZj&. 
Observations_of _xi[ will be trimmed whenever their values lie outside T,,, 

where G = CSnp, kc1 -J. 
The discretization device provides some technical simplification for asymp- 

totic analysis. First of all, &, and FncI _ PJ can be shown to be fi-consistent. Since 

s^, is fi-consistent and /I & - &,, /I d l/fi, 

= O,(l), 

i.e., g,, is also J&consistent. For any 6, the samples Xii are i.i.d. Let r,(S) be the 
pth quantile of xi and c,,(S) be the corresponding pth sample quantile of Xii, 
i=l , ... > II. From Theorem 2.2.1 in Serfling (1980), we know that for any E > 0, 

P(l&@) - &@)I > 4 d 2exp( - #I, n3 1, (A.2.1) 

where 6, = min [Fa(sP(S) + E) - p,p - Fa(<JS) - E)] and F6 denotes the distri- 
bution of xc.* Under Assumption 3(l), the density function p(t 16) of xc is 
positive everywhere, and hence is bounded away from zero on any compact 
neighborhood JV(~,(S,)) x M(6,) of ([,(S,), 6,). With (A.2.1), we can show that 
for any sequence (6,) such that lim,,,,S, = do, 

AI 5n,(4l) - 4,(Sn)l = O,(l). (A.2.2) 

‘This exponential bound for the sample quantile follows from Hoeffding’s inequality 
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Let E, = cl&, where c is an arbitrary constant. By the mean value theorem, 
Fd,(rp(8,,) + E,) - p = p(5,(6,) + &,E,IS,)E, for some /2,, 0 < & d 1. By the con- 
tinuity of 5,(S) at 6 = 6,, (t,(S,) + &a,, 6,) E N (t,(S,)) x N (6,) for sufficiently 
large ~1. It follows that for large n, Fa,(tP(6,J + E,) - p 3 b&,, where b = 

inf~f,B)Eil~(rp(do))X~(do~~(t 14 > 0. Similarly, P - Fa,(Sp(&) - E,) 2 h,. There- 

fore, for large n, exp( - ~52~) < exp( - nb2e,2) = exp( - b2c2), and 

P(,,:Z 1 ~,Jc?,,) - [,(S,,)l > c) d 2exp( - bZc2). (A.2.3) 

Since c is arbitrary, it follows that ,,h 1 &,,(S,) - t,(S,)l = O,( 1) for any sequence 
(6,) which converges to 6,. For any finite constant M > 0, define 

A M,n = (6 116 - 6, )I < M/J% and 6 E Rt}. A,,, has the interesting property 
that its cardinality is finite and bounded, say by M, independently of n. This is so 

since the cardinality of {(i r, . . ,ik)lil, . ,ik are integers and Iii - ,,$&,I < M, 
I= 1, . . . , k} is finite and bounded, independently of n. It is obvious that for any 
sequence (6,) with 6, E AM,,, it converges to aO. The finiteness of AM,n and 
(A.2.3) imply that 

P 
( 

sup \l’X I &,(S,) - <,(S,) I > c d 2Ai? exp ( - b2c2), (A.2.4) 
&SAM,, 

for large n, and therefore 

Since &, is in Ri and is a J&consistent estimate of &,, & will lie in A,,, with 
probability close to one for large n. Hence 

./%I ir,,(&) - t,c&J = O,(l). (A.2.5) 

By the mean value theorem, t,(&) = t,(S,) + @[,(8,*)/&5’)(~~ - 6,). Since 

p(t 16) is continuous, at,,(s)/&? is continuous at &,, and jk(gn - 6,) = O,(l), it 
follows that 

= O,(l), (A.2.6) 

i.e., &, is a &i-consistent estimate of t,(6,). Similarly, &Cl _PJ is a $Gconsistent 
esttmate of (cl _ pj(fiO). 

The_ LeCam piscretization device is also useful in the following way. De- 

note 5, = (&, 5,,(r PPJ and 50 : (t&G), ((1 P,@,)). For any_statistic M&J con- 
structed from the sample and <,, if we want to show that S,(&,) converges to 0 in 
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probability, it is sufficient to show that S,,(tO + (l/>)h,,), where {h,} is any 
nonstochastic bounded sequence, converges t,o 0 in probability. Effectively, 
one can replace the stochastic sequence {&} by nonstochastic sequence 

{to + (ll,FW,j in th e proof of convergence in probability (see LeCam, 1960; 
Manski, 1984). 

A.3. Smooth trimming 

The trimming can be smoothed by down weighting the observations Xii^ near 
the sample quantiles cnP and &r -PI. Let h, be a sequence of positive numbers 
which converge to zero with a rate such that lim,,,,(n/lnn) hj,1+41*) = cx), and 
let q( .) be a continuous density function on [0 l] such that q(0) = q(1) = 0.9 

Denote 5, = (&,, t,,(r PP,). Define the following smooth trimming function t, of 
Xc: 

I 

0 if xi < tnp, 
xi- 5np 

S, q(w) dw if tng G xi d tnP + h,, 

t,(xi, 5,) = 1 if 5np+h,<xi<5n(l~,,-h,, 
1 _ .ry+I 

q(w)dw if irn(I+pj - h, < xi G 5n+pI, 

0 if 5n(IPpj G xi. (A.3.1) 

This function is continuously differentiable in 6, &,, and tncl _pJ, with 

TO if 

if 

if 

I 0 if 

atn(xi3 5,) = 
at,, 

if xi < tip, 
if i”,,< xi< 5,,+ h,,, 

if tnp + h, < xi, (A.3.3) 

9 The rate of convergence of h. is designed to justify our asymptotic analysis (see Proposition 2 of 
Section A.41. 
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and 

LO if 5ncl-p) < xi. 
(A.3.4) 

As n tends to infinity, t,(x[, &) will converge in probability to the indicator 

function IT(xiO), where T = [5,(S,), (cl -,,(6,)]. 
The above trimming procedure can be generalized to models with multiple 

indices. For each index, it can be trimmed with the univariate function t,(x[, &) 
above. The smooth trimming function can then be the product of all such 
univariate trimming functions. 

A.4. Some useful asymptotic properties of nonparametric estimators of unknown 
functions 

The following Lemma 1 provides a uniform law of large numbers for func- 
tions with a bandwidth sequence of parameters. Its proof relies on Hoeffding 
inequality (or Bernstein inequality) and can be found in Ichimura and Lee 
(1991). Lemmas 2,3, and 4 provide results on the asymptotic biases of functions 
involving a kernel function and its first- and second-order derivatives. The 
proofs of Lemmas 2, 3, and 4 are also abstracted from Ichimura and Lee (1991). 

Lemma I. Let g(z, a,, /Y) be a meusuruble,function which can be represented in the 

f orm 

where a, = 0 (l/nP), p > 0, d > 0, /? E B, and s(z, fi) is a finite-dimensional vector 
value function. Let {zi} be a sequence of i.i.d. random vectors. Suppose that the 

following conditions are satisfied: 

(i) B is a compact subset of a finite-dimensional Euclidean space. 
(ii) c(z, /?) is bounded by an l-order polynomial of z uniformly in /I, where 1 3 0. 
(iii) The first 1 x r moments of z exist, where r 2 2. 

(iv) h( .) is a bounded function. 
(v) E [c’(z, p)h’(z, f3, s(z, P)/u,)] = 0 (a:) uniformly in fl E B, where dd d. 
(oi) h(z,/?,s) satisfies the L’ zpsc tztun condition of order 1 with respect to /I and h’ 

s uniformly in z; s(z,p) satisfies the Lipschizian condition of order I with 
respect to p uniformly in z. 
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If lim,,,(n/lnn)a,2”+““d~b= 00, then (l/n)Cl_, Cg(zitan,P) - E(g(zi,an,P))I 
converges in probability to zero untformly in /I E B. 

Furthermore, in addition to the above conditions, zf: 

(vii) E(g(z, a,, p)) converges to a limit function g*(p) uniformly in p E B, then 

(lln)C;=1g(zi,4I>B) converges in probability to g*(p) untformly in /3 E B. 

Lemma 2. Let K(v) be a function on R” with a bounded support D such that 

St, 1 K(v)1 dv < co . t(z, 0) is a continuous m-dimensional random vector. zi is a point 
in the support ofz. Suppose that E(c(z, zi, 0) 1 t(z, t3) = t, zi)g(t 1 O), where g(t 1 f3) is 
the density function of t(z, g), is uniformly continuous at t on R” uniformly in (0, zi). 
Then 

C(Z,Zi,O)$K 
t(zi, O) - t(z3 0) 

)I 1 zi a, 

Furthermore, tf K(v) has zero moments up to the order s*; i.e., lt,v’,l ... vk 
x K(v)dv = 0, for all ij > 0, where j = 1, . ,m, iI + ... + i, < s*, and 

St, ll~ll”*l~(~)ld v < CC ; and E(c(z, zi, t3)l t(z, t3) = t, zi)g(t IO) is difSerentiable with 
t on R” to the order s* and the s*-order derivatives are uniformly bounded, then 

Gi, 0) - t(z, 8) )I 1 zi a, 
- EC+,zi,Q)lt(z,W = t(zi,Q, zils(t(zi,Q)l@ = O(d). 

Lemma 3. Let K(v) be a function on R” with a bounded support D such that K(v) 
goes to zero at the boundary of D and its gradient aK(v)/av is bounded. Suppose 

that (a/at)[E(c(z, zi, fI)l t(z, 0) = t, z,)g(t I O)], where g(t I 0) is the density function 

t(z, g), are untformly continuous at t uniformly in (zi, f3). Then 

aK t(zi, 0) - tk 6) 
a, 

&i 
zi I 

- ~/E[c(z,zi,Uf(r,tl) = t(zi,e),zilg(t(zi,e)le)) = 0. 
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Furthermore, if K(v) has zero moments up to the order s*, 

E(c(z, zi, O)l t(z, fl) = t, zi)g(t 1 H) is d’J7 1 erentiable at t everywhere to the order 

s* + 1, and these derivatives are uniformly bounded, then 

sup 
21.0 

Lemma 4. Let K(v) be a twice differentiable function on R” with a bounded 

support D such that K(v) and its gradient aK(v)/av go to zero at the boundary of D, 
and the gradient i3K(v)/av and its Hessian matrix a2K(v)/avav’ are bounded 
Suppose that (a2/atat’)[E(c(z, zi, 0)l t(z, 0) = t, z,)g(t IO)] are uniformly continu- 

ous at t everywhere uniformly in (zi, g). Then 

lim sup 
n-rrj Z,,B I 

a2K ttzi, 0) - t(z, e) 

E ck zi, 0) & a, 
n avad 

zi I 
- &{ECc(z,zi,Q)It(z,@ = t(zi,e),zilg(t(zi,e)le)) = 0. 

Let xi be an m-dimensional vector of indices and K be an m-dimensional 
kernel function. Denote 

1 n 
AAs 1 xiO = (n _ 1~~; iiiS~K 

=. ( 

Xii - Xji 

’ a, 
) 

(A.4.1) 

where s = 1, y, z, or x. Under Assumption 3(3), the variance of A,,(w I Xii) has the 
familiar order 0(1/n&‘) uniformly on C x 0, where C is any compact subset of 
xc in R”; i.e., 

SUP var (A,(s I Xii)1 Xi) = 0 nl_ . 
Cx@ ( 1 II 

(A.4.2) 
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Assumption 2 implies that K( .) is bounded. It follows from Lemma 1 that if 
lim n-tm(n/lnn)a~‘+21’)” = co, 

sup A,(sIxii) - ECAn(sIxii)Ixil 500. (A.4.3) 
(x,[,e)ECXO 

Under Assumptions 3(2) and 3(3), Lemma 2 guarantees that 

sup IE[An(~Ixii)lxil - A(SIXiCtS)I = o(ai*), (A.4.4) 
CXB 

where 

A(sIxii,d)= CE(~Ixi)~(xiI~)Il.~=xi~, (A.4.5) 

i.e., A(s I Xic,S) is the product of p(Xi[l6) and the conditional expectation 
of s conditional on x[ evaluated at the point Xii. To simplify notation in 
subsequent presentation, we adopt the convention that E(s 1 xc = Xii) denotes 
the conditional expectation E(sl xc) evaluated at the point Xii, i.e., 
E(s I xc = Xi(‘) = E(s I xi)Ixizxii, for any random variable s. Since with probabil- 
ity close to one, T,, will be contained in a compact subset of R” for large IZ, 
A,(s 1 xi(‘) converges in probability to A(s I Xii, 6) on TV x 0. Since p(x[ 16) is 
continuous and is positive everywhere, it is bounded away from zero on T, x 0. 
Hence the uniform convergence of A,(1 I Xi(‘) implies that infr, XO A,(1 I Xi(‘) is 
bounded away from zero in probability. lo E,(s I xii) as a ratio of A,(s I Xii) over 
A,(1 I xii) will converge in probability to E(s I xi = Xi(‘) uniformly on T, x 0. 

The first-order derivative of A,(s I Xii) is 

aAn(s I xii) 1 * ai aK (xii a, “jr) 

adk 
= (n _ l)a;+r jTisj(xi - “j)aS, a0 . 

(A.4,6) 

Under Assumption 3(3), the variance of aA,(s 1 xi[)/% has the familiar order 
O(l/na,mf2) uniformly in (xii, 6) E C x 0. Assumption 3(2) justifies the condi- 
tions in Lemma 3 and hence 

(A.4.7) 

where 

aA 6 I xii> 4 
adk 

aE(s(xi - x)lxi = xiirxi) ai 
at 

+ E(s(xi - X)IXC = XiC,Xi)g Vp(Xi( Id), 
k 

(A.4.8) 

“‘The trimming of indices is designed mainly for this purpose. Otherwise, trimming would not be 

needed. 
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where Vp(x[ 16) denotes the first-order derivative of p(xi 16) with respect 
to xc (see Ichimura and Lee, 1991). Lemmas 1 and 3 imply that if 
lim n j m (q/in n) a: + 4’r)‘m + ‘I+ ’ = a , 

aAn(s I xii) 
sup 

a6 - 

aA(s I xii,s) zoo. 

a6 
(A.4.9) 

i-” X 0 

Similarly, under Assumptions 3(3) and 3(4), Lemmas 1 and 4 imply that if 
lim n_m(~/ln~)~~‘+6~r~~m+2~+2 = ~0, 

a2An(s I xii) 
sup 

a2A(s I xii>s) z. 

7” X 0 am - a6661 (A.4.10) 

Since E,(s l -Xii) = A,(s I Xii)/‘An(l I Xii), 

aEn(s I xii) = 
ad ( 

aAds i xii) _ E,(s I x,i)aAnu I xii) 

a6 I a6 )i 
An(1 I xii) 

converges in probability to aE(s 1 x[ = x,[)/%, where 

aws I xi) aAts I xi, 6) 

as = ( as 
_ E(s I xi) aAt1 I xi, 4 

as Ii A(1 I XL@ 

from (A.4.3) (A.4.4) and (A.4.9). Since E(u, Ix) = E(ui I Ox, as shown in 
Ichimura and Lee (1991, Lemma 4), we have explicitly the following expression: 

a&l 14) 
ask 

= (x - E(x 1 xc,,)) F Wu, I XL)> 6=&J k 

(A.4.11) 

where VE(ui IxiO) is the first-order derivative of E(ur I xio) with respect to x[e. 
The following propositions and lemmas will be used repeatedly for our 

asymptotic analysis in Section A.5. They are summarized here because they are 
of interest on their own and provide convenient reference. 

Proposition I. Let N(tO) be a compact neighborhood ofto = (c,(S,), [cl _,,(6,)) 

suck that for any ir = (cP, tC1 _J E N(tO), [tP, &I _J E T where F= 
[t,(S,) - A,~C1-,,(60) + A] for some A > 0 (a constant not depended on 0. 
Suppose that: 

(4 

(4 

(3) 

t,(xi[, 5) is a bounded smooth trimming function dejined in Section A.3, which 
vanishes at any Xii outside the interval [tP, C.$~ _J. 
A,(s 1 xi~)~A(s I xii, 6) uniformly in (Xii, 6) E TX 0, where 0 is a compact 
neighborhood of a,,, and A(s I xc, 6) is continuous in 6 and xc. 

f(d) is uniformly continuous and bounded on Ad, where Ad = 
{d/d = A(s~x[,~),(x[,~)E TX@}. 
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(4) a(s) is bounded by a square integrable polynomial ofJinite order. 

Then 

plim sup n_3o ex~N(5,, k itI t,(xii,4:)a(si)f(An(SIXii)) 

- E (M& SM)f(A 6 I xi> @I) = 0. 

In addition to the above assumptions, if A(s 1 xi, 6) is continuous in 6 and xi a.e., 
s^ is a consistent estimate of &, and 4, is a consistent estimate of to, then 

~JZ i ,i t,(xiC tn)a(si)f (An(s I Xii^,) = E {Z~(xC~)a(s)_f(A(s I XCO> 60))), 
r-l 

where T = C&,(&I, <cl -&b)l. 

because t, is bounded by one, f(A,(s I Xii)) converges in probability to 
f(A(slxii,s)) uniformly on TX@, and (l/n)Cy=, 1 a( = O,(l). Because 

sup0 x~(~,) I t,(xL5)f(A(s I XL @)I is b ounded and a(s) is bounded by a poly- 
nomial of s, the uniform law of large numbers in Lemma 1 with d = d= 0 
implies that as n goes to infinity, 

- E [tn(Xii, S)a(si)f(A (s I Xii, d))I >z 0 

uniformly on 0 x Jlr(ce). The second part of the conclusion follows by the 
Lebesque dominated convergence theorem. Q.E.D. 

Proposition 2. Let ~9’” (to) be a compact neighborhood ofto = (<,(S,,), <Cl _,,(6,)) 
such that for any < = (5,,4-J E J(&k C5pT5cI-pJ c T where 
r= c4,@J - 45(1-p@0) + 4 f or some A > 0 (a constant not dependent 

on 5). Let xc = (xcl, xccz,) and, conformably, 5 = (tl, tc2,), where xc1 is a single 
index. Let tn(x[C2j,~C2j) be the trimming function for the indices x[~~) de$ned in 
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Section A.3. Suppose that: 

(I) q is a continuously d@erentiable density function having a support [0, 11. 
(2) A,(s 1 Xii)~ A(s 1 xi<, 6) uniformly in (Xii, 6) E TX 0, where 0 is u compact 

neighborhood of &,, and A(s 1 xc, 6) is continuous in 6 and xi. 
(3) f(d) is untformly continuous on A,, where Ad = {d 1 d = A(s I x[,d), 

(x[,6) E TX 0). 
(4) a(s) is bounded by a polynomial of order 1, 1 3 0. The r x l-order moment of 

s exists, where r 2 2. 

(5) The functions q((x[,,, - ~,,,)lh,)t,(xi,,,, ((2)) of xi havejinite supports con- 
tained in T for all 4 E N (to) for lurge n. 

(6) E [tn(x5C2,, <C2J)a(s)f(A(s I xi, 6)) I x[,]g, (xi1 Ifi) is uniformly continuous at 
xii, unijormly on 0 x .,V(rO) and n, where gI(t 16) is the marginal density 
of XIy,. 

Then, under the rate that lim,,, h, = 0 and lim,,, nh~‘+2’1r)/ln n = cu, 

plim sup 
n+z ox,v(:,,) n izl iF 

11 ’ iq(xi:Ii ll,p) 
tn(Xii(*), i”czJa(si)f(A,(s I XL’)) 

- ECt,(xi(,,,5~2,)a(s)f(A(sIxi))lxi, = t~,,l.y~(t~,pl@ = 0. 

In addition to the above assumptions, ifs^ is a consistent estimate of &, and f,, is 
a consistent estimate of to, then 

= EC~,,,,(xi,,,(~,))a(s)f(A(sIxio))lxi,(~~) = irl,,(S,)l~,(51,,(60)16,), 

X a(si)Cf (A,(s I Xii)) -.f(A(s I XiC> S))l 

X SUP If (Ants Ixii)) -f (A(s I xii> 411. 
(X,<,6)E TX@ 

(*) 
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Since E(la(s)l lxcl = ~l,p)gl(<l,plS) is bounded on 0 x M(<,,), it follows that 

e~~~toI~ jl l”tsi)lt 4 ( xii1 k ‘l”) = Op(l), 
n 

and hence (*) goes to zero in probability. Similarly, by Lemma 1, 

Since 

it follows that 
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by the uniform continuity. The first part of the result follows from the above 
convergences. The second part of the result follows by the Lebesque dominated 
convergence theorem. Q.E.D. 

Lemmu 5. Let C,(Si , . . . , Si 1, Si + 1, . ,&,;ii) be a sequence of measurable func- 

tions of an i.i.d. sample {Si} and d,(S) be a measurable function such that 

E(ld,(Y)J) < cc uniformly in n. Suppose that: 

(4 SUP I E(CGI > ... , s,; F;) 1 ii) - C(.$)I = 0 (a:*), for some measurable function 

C(S,), and 
(2) SUP var(C,(s,, ‘.. ,S,; Si)JSi) = 0(1/n&). 

[fs* > r/2, lim,,,,na,2r = co, and lim,,, nu?* = 0, then 

Proof This result can be easily proved by the Markov inequality (Lee, 1992, 
p. 79, Lemma 6). 

Proposition 3. Let Va fn(s, a) and V f fn(s, a) d enote the jirst- and second-order 

derivatives off,(s, a) with respect to a. Suppose that: 

(4 

(4 

The nonparametric function A,(s I xiio) satisjies the conditions in Lemma 5, 

and 
SUP~,~~~~ 1 V,“fn(si, A,(s) xi(O))1 < O,(l)d,(si), where A,,(s I xii0) is u consis- 
tent estimate of A(sIx~[~,&) and d,(si) is a measurable jknction such that 

E(l,(xi[,)d,(si)) < 03 uniformly in n. 

Then 

,‘ii igI IT(XiiO)fn(si, An(s) xi(o)) 

= ,‘ii i$I IT(Xiio)fn(si,A(sIxiio,60)) 

+ 5 ,$ zi4xiiO) Kbfn(si,A(s I xiiO9 6O)) 
I 1 

X (Ants I Xiio) - A(s I Xiio> 6,)) + Op(l). 

Proof: By a Taylor expansion, 

5 itI zT(XiiO)fn(Si9 Ants I xiiO)) 

= $ i$l ~~(Xiio)f,(~i~A(sIXiio~~o)) + L + Rn, 
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where 

Lo = 5 ,$ zT(xiiO) Kz.Ltsi, A(s I xiiO>sO))(An(s I xiiO) - A(s I xiiO,bO)) 

I 1 

and 

R, = !j 4 ,i IT(XilO) ~,2f,(Si,A,(sIxiio))(A,(sIxiio)- A(SlXiio,S,))2, 
J 1-l 

where &(s I xiio) lies between A,(s I Xi(o) and A(s I xico, 6,). Since 

IRnl G Op(lI$ ,$ ~,(xii~)d,(~i)C~,(sIxiio)- A(4xiio~S,)12 
I-1 

by our assumption, Lemma 5 implies that R, converges to zero in probabil- 
ity. Q.E.D. 

Lemma 6. Let {Si} be an i.i.d. sample and an(S1, S;, a,) be a sequence of vector- 
valued random functions with bandwidth a,,. Suppose that: 

(1) There exist square integrable functions hj(S) such that IE(@,(S1,FZ, a,)lij)l 
< hj(~j) for j = 1,2. 

(2) E(@,(S,,FZ,a,)) = O(az) and var(@,(F,,sz,a,)) = 0(1/a:). 

(3) lim,,, E(@,(sl , iz, a,,) ISj) = ~j(Sj), a.e., for some measurable functions Ii/j, 
j= 1, 2. 

(4) lim,,,$ia~ = 0 and lim,,,na; = co. 

Zf +bl(S) and ti2(5) are zero a.e., then 

On the other hand, ifE([tj,(s) + $Z(S)][$I(S) + tj2(S)]‘j = C which is non- 
zero. then 

Proof: These results follow from Powell, Stock and Stoker (1989) and the 
Lindeberg central limit theorem. Q.E.D. 

Proposition 4. Suppose that K is an r-dimensional kernelfunction with a bounded 
support D such that SD I K(v) I dv < m and with a bandwidth a,. Let 

1 n 
htsl xicO) = cn _ 1~~; j+iS3K 

=. ( 

xiiO - xjiO 

’ a, 
1 
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and let g(xiO I&,) be the density ofx[,,. Denote A(s 1 xio, 6,) = E(s 1 xiO)g(x[OlbO). 
Let fn(s,xlO) be measurable functions such that sup, 1 fn(s,x[o)l is square inte- 
grable. Suppose that: 

(I) E(s 1 x[,,)g(xiO Id,,) is uniformly continuous at xiO, and 
(2) E (fn(s, xc,,) I xc,,) = 0 a.e., fir all n. 

U”lim,+, nai = CC, then 

Proof Define 

where S = (s, x). It follows that 

5 i~I.L~si~xi~O)cA.(sI xiiO) - A(s I xiiO,sO)l 

For any E > 0, for large n Lemma 2 implies that 

IE(~,(S,,S,,a,)l.~,)/ 

d ~suPIL(s1,xlio)l, 
n 

which is square integrable. Since F is arbitary, the above relations imply that 
E(@,(si, sj, a,)ls;) converges to zero. On the other hand, 

E(@n(~j,fi,an)l~i) 

= Si 
J 

E[fn(~,xJo + U,U)lXjio = Xii0 + U,U,Xi]g(Xi(o + a,ul s,)K(v)do 

- E{ECf,(s,xi,)lxio)lA(sIx~o,~~)} 

= 0. 
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by the condition (2). The conclusion of the proposition follows from 
Lemma 6. Q.E.D. 

Proposition 5. Suppose that K is an r-dimensional kernel function with a bounded 
support D such that ~,,IK(v)l dv < a! and with a bandwidth a,,. Let 

An(s I xiiO) = tn _ 

and let g(xcO 16,) be the density of xcO. Denote A(s 1 x~~,&,) = E(s 1 x(o) x 
g(xio I&,). Let fn(s, xiO) be measurable functions such that sup,, Ifn(s, xio)l is 
square integrable. Suppose that: 

(I) E(s 1 xco)g(x[o I&,) is uniformly continuous at xcO. 
(2) E(fn(s,x&)l x<~)~(x[~ (6,) is continuous in xi0 a.e. uniformly in n. 

(3) There exists a measurable function h(x[,) such that IE(fn(s,xio)lxio)l 

d h(x[,), with E I h(x[o)A(s I xio, S,)l < co for large n. 

(4 lit-n,,, W./A d’O)lxiO) = 4xiO) a.e. 

Vlim,,, n nur = CC and lim n-t ol na,f’ = 0, then 

where 

@ = E{ Is~~~~o)s(x<o 160) - Ws.c(dOMxSO I ~,))I’ 

x Cs~cMOMxSo 160) - E(s.c(xio)g(xio I SO))1 ). 

Proof: 

where 

By (l), E(@,(ii, gj, a,)1 Si) converges to zero. On the other hand, 

E(@tt(~jtsi,an)lsi> = siE .Ljsj,xjCOi~K 
( xjiO i ‘iiO)lxi] 
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Since 

lim {E[h(Sj,xjr,)~K(‘jCo~ xi’o)iXi] 

n-oc 

- EC.L(s~xi~)lxi~ = xiiolg(XLoI 60) = 0 

by condition (2), it follows that, by conditions (3) and (4) and the Lebesque 
convergence theorem, 

lim E(@,(Fj,fi, G)l,)= ~iC(xiio)S(Xiiol~o) -E(c(xio)E(slxio)s(xio 160)) a.e. 
n-cc 

The result of the proposition follows from the second part of Lemma 6. Q.E.D. 

Proposition 6. Suppose that K is an r-dimensional kernel function with a bounded 
support D such that JDIK(v)\ dv < cc and with a bandwidth a,. Let 

1 
DJs I xicO) = tn _ I)~;+ 1 j+i 

i sjvK(xiCO; ‘j(O), 

n 

where VK(v) = aK(v)/av is the gradient vector of K, and let g(xco 16,) be the 
density of xio. Denote 

W I do, 60) = a(xio) a {WlxioMxiol~o)~ 

Let fn(s, xCo) be measurable functions such that sup, Ifn(s, xio)l is square inte- 
grable. Suppose that: 

(1) K(v) vanishes at the boundary of D. 

(2) (a/a(xc,)) {Us Ixiok7& I &I)1 1 is uniformly continuous at xio. 

(3) E ( fn(s, xio) I xio) = 0 a.e., for all n. 

If lim,,,,naL+’ = CC, then 

5 i~~f~(si,xi~o)[D,(slxilo) - D(~lXiC’o~~o)I~O~ 

Proof Define 

@n(Si, sj3 an) =fntsi, xiiO) [~sjVK(xi~o~x’:0)-D(s~Xi:,.60)]~ 

It follows that 
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By conditions (1) and (2), Lemma 3 implies that 

~[~j~ ~~(x~~o ,xiio)l~i] converges to D(SlXi[o,G,). 

Hence E(@,(&, sj, a,)/ Si) converges to zero. On the other hand, under condition (3), 

X g(Xi[o + U,V / do) VK(U) do 

- E{EC~~(~,X~~)IX~~I~(~IX~O~~O)} 

z 0. 

The result of the proposition follows from the first part of Lemma 6. Q.E.D. 

AS. Asymptotic properties 

The asymptotic distributions of 

‘&ri,, LX;(i,‘fi,, -~ 1 aE,(j, r^, /l^_ 15 

$7 Jii ,hi ad n ” 

can be derived from Propositions l-6. 

where 

= co,, + {Cl,, + CZJ + c,,.}$4- 60) + G.-h& - 501, 

C 0,n = 5 ,$ tn(XiiO, 50)(xc2)i - En(x<2,lxiiO))‘(uli - En(u~ I Xiio)), 
1 1 

- 

C 1,n = - k i$l tn(xiC f)(xc2)i - &(x(2, I XiC))’ aEn($! xii)> 

C 2,n = - k iil t,(xic r)(U,i - E,(u, I xic))’ aEn(ii! xin> 

C 3.n = A i$I (xcz)i - En(Xc2) I xic))))‘(uli - E,(uI I XiO) “‘!$b ‘I> 
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Proposition 1 implies that 

and CZ,, converges to zero in probability. As lim,,, (n/In n) hi’ +4’rJ = cc , Prop- 
osition 2 implies that CS,n and C4,” converge to zero in probability. To see the 

latter, consider the single-index model for simplicity. From (A.3.2) since 4 
has support on [0, l] and is vanishing outside [0, 11, for large IZ (A.3.2) can be 
rewritten as 

(A.3.3) can be written as 

. 
’ 

and (A.3.4) is 

at,(xi, 5) 1 
ag(,_, = cq 

Hence CS,n = , C$“, - C$“!, where , 

_ 
(uli - E,(u~ Ixir))))(xcz)i - En(x(2) I Xii))‘X(2)i~ 

and 

X (uli - En(ul I Xii))(Xc2)i - &(x(2, I Xii))‘X(2,i. 

By the equivalent expressions for (A.3.3) and (A.3.4) above, C4,n has a similar 
expression. Proposition 2 is applicable to these terms. For example, 

plim G,!, = EC+, - E(u, I &)D,,, ~ E(x,,,Ixi,)~x~,,Ixiol~(~5~I~~)l~r~=r~~6~~ 
n-Lo 

=EC(u, - WI M))(xc2, - ~~~~2~I~io~)‘~~2~I~5~1~~~501~0~1xio=5p~~0~ 

= 0, 
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because E(u, - E(uI 1 xiO) 1 x) = 0. Thus, both C3,n and Ca,n converge to zero in 
probability. 

Consider the term Co,,. To simplify notations, let 

Let Ai = E(x(,,i I Xii,)p(Xi[, 1 do), Bi = p(xi[o I do), and Ci = E(u,i I Xiio) X 

p(Xi[o]d,) be their limits. By a Taylor expansion, 

C ~,n = 5 ,$ tn(Xiio, toI(Xc2)i - E(X(,,ilXiio)Y(uli - E(u,i I Xiio)) 

1-l 

where 
+ L + 4, 

L = - 5 ,i t,(xiio><o) k(u,i - E(u,ilxiio))(A,i - Ai) 
L-l I 

- 5 fl tn(xiio, 50) (x<z)i - E(x(2,i I \-iCo))‘~ (G - Ci) 
I 

+ $g ,ct trz(xiio~SVo)CE(x (2)ilxiio)‘(uli - E(uli Ixiio)) 
I- 

+ (xc2)i - E(x(2,i I xiio))‘E(uli I Xiio)I k (Bni - Bi) 
I 

and 

R, = JL i tn(Xiio, to)dl_(A.i - Ai)‘(C,i - Ci) 
\;‘ij i=l II, 

+ $ ,$ ~n(xiio~to)C - A”Xi + (xziB,i - dil'l&,(Bni - Bi)(Cni - Ci) 
nl t “L 

X z (B,i - Bi)‘. 
nr 
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Since lim,,, naim = cc and lim,,, nu,4s* = 0, R, converges to zero in probability 

by Proposition 3. As lim,,, nay = co, L, converges to zero in probability by 
Proposition 4. Hence 

x ,/i(cf - 6,) + o,(l), (A.5.1) 

which is asymptotically normal N(O,d), where d is defined in (4.11), under the 

property that ,,%(s^ - 6,) is asymptotically uncorrelated with (ur - E(ur ) x(o)). 

For the asymptotic distribution of the SG2LS, by a mean value theorem 

= + ,i tn(xiiO, 50)(x,2)i - En(X(,, I XiCo)YWi ‘(PO, do)(Uli - J%(~I I XL’O)) 
l-l 

- ~ ,~ t,(Xii, ~)(X~z)i - E,(x(,, ( Xii))‘Wni’ (~, ~) “Efl(~~! xin ,‘~(s^ - 6,) 
1-l 

+ i ,i (uli - En(ul IXiC))& Ctn(Xii, C)(Xcz)i - E(X,.Z, I xiC)I’ wi ‘(B> 611 
1-l 
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where 

Let Hi = Bi, Ri = Ci, and Si = E(ufi 1 Xii~)~‘(xi~~ IS,) be their limits respectively. 
By Proposition 3, as lim,,,, na,2”’ = cc, lim,,, nut”* = 0, lim,,,, nb?’ = x , 
and lim,,, nbfh* = 0, 

where 

- $ ,f; r,(xi~o,~o)~~2(-~ii0,~O)(X~2)i - E(xcz)IIX~~O)) 
I- 

x(uli - E(ulilxi(o))~ {(Sni - Si) - 2E(uliIXii,)(Rni - Ri) 
I 

- [E(ufi I xiio) - 2E(uli I Xiio)I (Hni - Hi)}. 
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Since E[X,2,i - E(X~Z)i 1 xiio)lxiio] = 0, E[uli - E(uli 1 Xi[o)lXi] = 0, and the other 
functions in Lj$ are functions of Xiio, Proposition 4 implies that LL”’ converges to 
zero in probability when lim,,, nar = x and lim,, J: A,” = a. Similarly, 

1 =,(k;^)i_,fi 

ii a6 n n L 

+ i ,$ (uli - En(u~ IxiO) 
aE,(y - Wgl Xi;, 

L-l a6 

x w,.‘(~,~) 
at(xii, 4) _ - 

a61 v n(4, - 40) 

= c’d’ 
o.n - E IT(x~o) 

awu, I xi-O>SO) o- ‘(xio 6o) mu1 I -xio>do) 
a6 a8 1 

x ,‘?I($ - 6,) + o,(l), 

where 

c b”.‘” = .‘, i$I tn(xilO> (0) aEn(ul ~~‘O~ “) W, ‘(BO, 6O)(~,i - E,(u, 1 Xiio)). 

Since lim,,, n~,2(~+~) = cr,, lim,,, nu:* = 0, lim,,, nh,2” = x , and 

lim,,, nhzh* = 0, Proposition 3 implies that 

c64’, = + ,z, tn(xiio, eo)aE(ut ~“~doL- ‘(Xiio,Sd(U,i - E(u,tl-xiio)) 
L 

+ L64)n + o,(l), 
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where 

1 n 
+ s izl t,(Xi10,~0)W~1(XiS0,60) 

[ 

aE(uI I xiCO>GO)A, 
a6 I 

-(Uli-E(UlilXiio)) 2 -2E(uliIxii,i~ &(Bni- Bi) 
II 1 

- 2 ,$ tn(Xiio, 50)ap ‘(xilo~~o)(Uli - E(uli I xii011 
I 

Since 

x$ z lcni - ci) - ’ i tn(xiiO> 40)w-‘(xi10,dO) 
I 4% i=l 

X(Uli-EE(U~ilxiio))E(U~ilXiio)~ T -a6 
lI caBni aBi) 

1 n 
+ siTI tn(Xii09 5OIo ~l(qCo,~,)(uli-E(~lilXi~O))~~~-~) 

2 n 
+ \iiiI;, tn(XiiO, 501° ~Z(Xi:o,SO)(llli-E(Uli,XiiO))aE(U1 ~~bo,60) 

X E(uli I Xii01 k(Rni - Ri) - $ ,$ tn(XiiO, 40) 
aE(ul I xiiO2 6O) 

I n1 1 

ad 

X We2(xii0, dO)(Uli - E(uli I xiiO))k(Sni - Si) 
L 

1 n 
+ siF;, tn(Xii09 lOI ~Z(x~~O,~~)(U~~-E(u~i/xi~o))aE(U1 ~~50”o) 

X(si-2~)~(H.i-Hi). 

aE(ul;;yo’ “) = (x _ E (x, x(o))’ a;;o) VE (~1 Ix5oL 
k k 

by Propositions 4 and 6, Lr!,, converges to zero in probability as 

lim n+mnar+2 = cc and lim,,, nb,” = CC. Hence it follows after some matrix 



manipulation and simplification that 

rti(xii09 to) 
aE(ul I xiiO> iiO) 

X as (0 ‘(Xiio, ho)(Uli - E(uli I Xi50)) 

3 N(Q r), (A.5.2) 

where r is in (5.12). 
For the instrumental variable estimator in (5.19, 

mu1 I xio,~o) 
a6, 

1 
,/Z(6^ - 6,) + oP(l). (A.5.3) 
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it follows that 

E E(p,, xi ) aE(ul I do, 60) 
0 ad’ = 0, 

1 

and therefore, 

a% Ido, 60) 
as, 

1 [ 
= E IT(x~o)(P - Eblxio))’ 

awl Ido, 60) 
a6, 

1 
. 

On the other hand, 

iii1 tn(Xiio, <o)Pi(Uli - En(ul I xiio)) 

-ffjl ~~(xi;0,50)Pi~Ic,i-Ci) 
L 

+ $ ,$ tn(xiio> to)PlE(uli I xiio) k (Bni - Bi) + op(l). 
111 1 I 

With a high-order kernel of orders s* such that lim,,, ais* = 0,” Proposi- 
tion 5 implies 

$ jl tn(xiiO> i"O)Pi kCcni - Ci) 
L 

ii This rate requirement implies lim,,,na:S* = 0 in Assumption 2. This stronger requirement is 
needed only here. It guarantees that the asymptotic bias of the following term will converge to zero. 

Using pi - E,( p 1 xitf) instead of pi will eliminate such an asymptotic bias and this stronger rate 
requirement will not be needed. This indicates the advantage of using pi - E.(p(x,[) as an 
instrumental variable instead of pi. 
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Jn i= 1 Di 

= i ,tl {zT(XilO)E(piIxiio)E(u,iIXiivo) 
I 

- E[l,(xiSO)EM I -xiio)E(uli I Xiio)l> 

Therefore, 

+ o,(l). 

= i i$l I,(Xiio)(Pi - E(Pi I xiio))‘(U~i - E(uli IXiio)) + o,(l). (A.5.4) 
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