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ABSTRACT

In this study three exactly soluble problems in linear transport
theory are considered.

In the first problem, the one velocity, time independent, isotropic
scattering, neutron transport equation with r~t cross sections is solved
exactly by two-sided Laplace transforms. The homogeneous solutions and
the Green's functions are exhibited for both the infinite medium and the
finite sphere. The diffusion approximation is compared to the exact re-
sult.

In the second problem, a typical translationally invariant linear
transport problem for a half-space is solved by the eigenfunction method.
Using some derived identities for the solution of the associated homogen-
eous Hilbert problem it is shown that the usual cumbersome integrals oc-
curring in half-space problems can be reduced to a simple form.

For the third problem the particle density of a simple model of the
exosphere is obtained by solving exactly the collisionless Boltzmann
equation. The main point of the solution is that it is a discontinuous,
multivalued function of the constants of motion. Results, of course,

agree with those of other methods based on Newtonian mechanics.



CHAPTER I

INTRODUCTION

The complexity of the integro~differential equations occurring in
linear transport phenomens permit few problems to be exactly soluble.
However, as has been suggested by Wigner (;), use of invariance properties
permit not only simplification of the equation, but may in fact allow com-
plete solutions to be found. The first two problems in this thesis are
problems which do have the "complete" symmetry necessary for solubility.

The first problem that is considered is the one velocity, time inde~
pendent, isotropic scattering, neutron transport equations with cross sec-
tions which vary as r~1. The invariance of this equation under the trans-
formation r + ar, o > 0 suggests (}) simplicity of the equation in spher-
ical coordinates and the use of Mellin transforms, but for convenience the
ususl transformation 1s made so that Laplace transforms are applicable.
Solutions to the infinite and finite sphere problems are then shown to be
expressible in quadrsture and are compered to the usual diffusion approxi-
mation.

The second problem consldered 1s & typical one dimensional translation-
ally inverient trensport equation. Insteed of exploiting the full symmetry
of the problem we solve the two independent verlables equation by the ususl
elgenfunction technique. The completeness of these eigenfunctions is then
uged to solve some typleal helf-gpece problems. Several ldentities derived

for the solution of the assovclated homogeneous Hilbert problem are used to



simplify the resulting cumbersome integrals.

In the third problem, a simple model of an exosphere, the linear col-
lisionless Boltzmann equation for particles in an external gravitational
field is solved exactly by using the method of characteristics. The solu-
tion is shown to be a discontinuous, multivalued function of the constants

of motion.



CHAPIER IT

THE NEUTRON TRANSPORT EQUATION WITH r-1 CROSS SECTIONS

A. PRELIMINARY REMARKS

In this chapter the one velocity, time independent, isctropic scat-
tering neutron transport equation with cross sections which vary as r-1
is solved by Laplace transform techniques. While the r-! dependence of
the cross sections makes this model mainly an exercise in mathematical
physics; with little modification the results czn be applied to electron
transport in velocity space with cross sections which vary as v-2,

The time independent integral equation for the stationary neutron

density, o(F), in the one velocity spproximstion can be written:

Where (%) is the isotropic source density, C(T) is the average number of

o . - o > ba . : 2
secondaries emitted after a collsion cccurs at T, and o) is the probabil-

ity that a neutron suffer a collision at T for small ¥. For the model

: : g 5 ) : o
being considered, G(¥) = C, o(F) = or-1, C and ¢ being dimensionless con-

stants. Using the spherical symmetry of the proglem the homogeneous egq-

uation for an infinite medium can be reduced to: (see Appendix A)

o]

n(8) = Co f de' q(e') X(je - 9']) (11-2a)

=00



n(e) = rp(r) lr_>ae_29 (I1-2Db)
1 (o}
and K(e) = f %z‘-[i ;z (II-2c)
tanh 6

(a is an arbitrary constant with length dimensions).

As two-sided Laplace transforms will be used exclusively in this
chapter, the notation and analyticity properties will be standardized and
exhibited now.

The transform of the kernel,

0

K(z) = f e 2 k(|o]) a0 (1I-3)

-00

has the following representation: (see Appendix B)

. o+ ;-
K(z) = = w(—rz -y (2 (I1-})
for -a < Rez <@, a =2(g +1), and y(z) = ég% r(z). K(z) is analytic in

in the strip -0 < Re z < &, and the analytic continuation of ﬁ(z) defined
by (II-4) is analytic everywhere except for simple poles at z = #(im + @),
m=0,1, 2,.... Clearly ﬁ(z) is a real, even function of z.

The zeros of 1 - Co ﬁ(z) for -0 < Re z < @, and its analytic contin-
uation for |Re z| > @ are needed for inverting the transforms. These are
discussed in Appendix B and can be summarized as follows:

(a) if (oC)~t > R(0), 1 - Co K(z) has two real zeros, tz,

0<zy <0 for -2 <Re z <Q
(b) if (oC)"*<X(0), 1 - Co K(z) = O has two imaginary roots,

tz5, for -a < Re z < O



l o~ ~
(e¢) 4if (0C)™" =K(0), 1 - Co K(z) = 0 has a double root at

(d) and for any g, C +b, there are an infinite number of real
roots, *zp, n = 1,2,3,... to 1 - Co K(z) = 0, z, > 0, where
zy lies in the interval U(n-1) + 0 <z, < in + Q.
As a convenient reference point, we note that the representation of
%(z) given by (B-2) simply gives K(2) = 1/g. Therefore, if C > 1, z, < 2,
and if C <1, zy > 2.
As ﬁ(z) is analytic in the strip -0 < Re z < 0, the use of Laplace
transforms requires that we look for solutions such that

ILJ"Lm In(e)| <A eBlel (II-5)
Q|+

where B is real and less than a. Then

£u(z) = e%° 4(0)a0 (1I-6a)
J
and ©
£ (z) = "% 1(0)de (II-6D)

-0

will be analytic for Re z > B, and Re z < -B, respectively (g)u Moreover

the inversion theorem gives us:

Q-+

lim -éfv/\ f+(z) e%9dz (II-Ta)
2ni
Ao O-e-1iN

I

for & > 0, 7(8)

and for 6 <0,



-Q+e+HiN
n(6) = Lim 5%; f(z) e ¢>0 | (TI-Tb)
A0 -ote-in

B. SOLUTIONS FOR THE INFINITE MEDIUM
In the usual way (g) the homogeneous equation for the infinite medium,
Eq. (II-2), defines an analytic continuation of f+(z) and f-(z) in trans-

form space such that
£.(z)[1 - CcoR(z)) = - £_(z) [1 - CoK(z)] (11-8)

for -0 < Re z < , and both sides are analytic in this strip. Hence, in
this strip fu(z) = -f_(z) except at the zeros, *zy, of 1 - CoK(z), and

f+(z) is analytic except for possible poles at z = *z,. Using the inver-
sion theorem, (II-7), and converting back to r and p(r), we find the gen-

eral solution of the homogeneous equation is given by:

o(r) = Al(QZO/ e i-)'zo/ 1, 12 (007t 4 RO)  (I1-98)

and

o) = 2o(E) T v () mE, ar () - K(O)

(II-9p)

For the infinite medium Green's function or shell source solution we

introduce into Eq. (II-1) the source:

5(1.“ - I'o)

(—W . (II-lO)

8(r;ro)

Using the same substitutions as in the homogeneous equation, the integral



equation for the shell source solution can be written as:

(o]

n(8;8) = Co ]-; de' n(®',8,) K(|6 - 6']) +>%K(]Q - GO[)(II-ll)

ry = ae™2% s A

8ﬁVTOa In transform space, this equation again defines

an analytic continustion of fi(z), f.(z), such that

-280 K(z) (II-12)
A

v

f+(z)[l - oK(z)] = -f (z)[1 - cok(z)] + e

for -0 < Re z <, and both sides are analytic in this region. Inverting

the transform, we obtain the genersl solution to (II-ll):

:y-l-ico Z(Q'GO)
n(0;6,) = Ay e 208 . B, eZo® 4 ql, < %(z)dz (II-13)
2rin -t 1 - CoK(z)

For z, <y <@, (Co)™* + K(0). To determine A; and B; boundary conditions
must be gpplied. If we require rp(r;ro) to finite as ™0 and r+«, Eq.

(II-13) becomes (for (oC)~1 > XK(0)):

2(6-80) ~, ..
1 e K(z)dz )
) = flm — . (II-1k)

For 6 > 6, (6 < QO) the contour integral can be completed in the left

(right) half plane. In terms of the density, Eq. (IIL-14) is:

LT py 22
o(r;r.) = }; (;,, r<r (I1-15a)
7o rr(Co) 2 = K'(zy) ro) ’ ©

and



z,,/2
(fﬂ> Y for v > L (II-15b)

A S R
olr3zo) Ar(Co)? 2{1 K'(Zn) T

n=0

In (II-15) we have required (oC)~* > K(0), and used the property ¥'(z) =
X'(z), K'(z) = d/dz,ﬁ(z), The boundary condition that we have used is
that the total number of collisions per unit radial distance, lLnrZs(r)
p(r;ro), be finite at the origin and infinity. If instead of this con-
dition we had required that p(r;ro) be everywhere non-negative and van-
ish as r + o, for all C, then we would have found the same solutions as
Eg. (II-15). TFor (Co)™' < K(0) the boundary conditions that rp(r;r,) be
finite at the origin and infinity are not enough to uniquely determine
the solution. In order to specify a unique solution one would need some
kind of a '"radiation condition." However, it is evident that there are
no solutions for (oC)~! < K(0) for which the density is everywhere non-
negative. Hence, for C > Cpin = 1/0K(0) there are no physically accept-
able stationary solutions to the transport equation. This is normally re-
ferred to as the "criticality" condition. That is, if C > Cy4, the sphere
is "super-critical" and if C < Cpin the sphere is "sub-critical." 1In Table
I we have calculated Cpiy, for various values of o.

It is interesting to note that unlike the constant cross section case,
which has a spectrum consisting of two discrete eigenvalues and a continuum
on (1,o) and (-1,«), (3), the r~! transport equation has & purely discrete

unbounded spectrum,



TABLE I
Cmin
o] Cmin o Cmin
.25 2.355 2.5 1.050
.50 1.571 3.0 1.032
.75 1.328 L, o 1.02h
1 1.218 5.0 1.018
1.2 1.171 o>l 14(363) 7"
1.5 1.118
1.7 1.092
2.0 1.071

C. DIFFUSION SOLUTION FOR THE SHELL SOURCE

For most realizable systems (e.g., a reactor) the transport equation
is too complex to be solved by analytical techniques; one normally has to
resort to a diffusion calculation. It is interesting therefore to see
just how the diffusion solution approximates the transport solution for
the model that we are considering.

The diffusion equation for the r-1 cross sections with a shell source

can be derived by the usual methods. The equation is:

7 Og 8(r - ro)
Ve d+ = eplrsrg) = e (II-16a)
* . rC :
IV pp(T370) (II-16p)

and og = o(1-C). 1In spherical coordinates, and using the substitution

x = fn ry/r, Eq. (II-16a) becomes:

(g..z._ + ad _9 pD(X) = Zégmg(_x)_ (II-17)

ax®  adx HﬂCerZ
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where O = 30 oa/C'° Solving this equation by Fourier transforms, and re-

quiring that rpD(r;rQ) be finite at the origin and infinity, we find:

29 (r> b < (II-18a)
e e — r r -108
onr V1w \ 1 ’ 0

r leHi
op(rsre) = 6;;%%;:;(:;§§> , T>T, (I1-18D)

i

op(T'370)

Tt is interesting to note that the solutions given by Eq. (II-18) are

everwhere non-negstive if @ > -1. This condition is Just

1
0 € e w1+ (17-19)

‘ )
302
1. L

302

which is the "sub-criticality" condition for the transport equation when
(33;5,

For ¢ < Qmi the asymptotic transport soluticns given by Eq. (II-15)

n,

are:

—
=
AT
=
o
S—"
|

1 Cro 2/
< - r<<r II-20a)
Ar(Co)2 K'(z,) \ ¥ © (

P
2

1 To ZO/

o. (r:r) =~ e — >, II-20b)

as’ o© Ar(Co)® K'(z¢) (;1;:> © (

In the limit of no absorption, C =1, z =2, & = 0, the asymptotic trans-

0
port solutions have the same dependence on r as the diffusion solutions.

For ¢>>1 Eq. (B-2) gives that K'(2) ~ 1/303 and in this limit (C = 1) the

asymptotic solutions become exactly the diffusicn solutions. Similarly,
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if o<1, we find ﬁ'(?) , and in this 1imit we see that the diffu-

= 202
sion solution is smaller than the asymptotic scluticns by a factor of

50/2° For C = 1 we have several ratios of pD/Das listed in Table II.

TABLE II
pD/pas) C= 1
o 36° K'(2) =p—D~>c=1
Pas
<<1 30/2
1 .70
2 .86
3 .93
L .96
>>1 1.0

From Table II it is evident that the diffusion approximaticn is re-

liable for C =1, and 0 2 3. If C + 1, the root z, bzcomes approximately:

Z 30,0 7
I i A (B , (11-21)
o 20 \30° K'(2)/

if oa/202 CK'(E) <<1l. Likewise, for a<<l, the exponent of r in the diffu-

sion solution becomes approximately 1 + Bgaa/ECe Therefore, if BOrﬁ'(E) ~ 1,

) 1 ;
(i.e., 02 L), and |1 - ¢l <« 352 7 the diffusion solution gives an excel-

lent asymptotic representation to the neutron density.

D. FINITE SPHERE PROBLEM
"nan

The equation for the neutron density in a finlte sphere of radius "a

surrounded by a vecuum can be derived from (II-1). It is:



a 1
rp(r) = Co dr'p(r") dx |1 -x ° s (I1-22)
2 %? i{:r'\ X [l X J
r+r!

for r < a. Using the same substitutions as used to derive Eg. (II-2),

Eq. (II-22) becomes:
o]

n(e) = Co k/ﬂ de' n(e') k(|6 - e'|), fore >0, (II-23)
o

This equation can be solved by the Wiener-Hopf method (2). Defining an

n(6) for 6 < 0 by the right hand side of Eg. (II-23) and using ILaplace

transforms as before, we obtain:
£.(z) [1-CoK(z)] = - f£.(z2) (II-2k)

for -0 < Re z < as 1 - CoK(z) has two zeros at z = tz, in this strip,

we look for a Wiener-Hopf decomposition of the form:

(28 - 202) (I1-25)

such that X_(z) is analytic and non-zero for Re z < B, z finite, and X(z)
is analytic and non-zero for Re z > -B, z finite. For this purpose, con-

sider:

(z) = . (II-26)

We note:
(a) t(z) is analytic and non-zero for -a < Re z < Q.

(b) 7(z) is a real even function of z.
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(¢) Lim 7(z) =1 in the strip.
Z->00

Decomposing (z) = ) (II-27)

where o_(z), o0.(z) have the same properties as X_(z), X,(z) respectively,

the unique solution to Eq. (II-27) is given by Cauchy's theorem as:

o(z) = e , (II-28a)
-T
o,(2z) = e +(Z), (1I-28b)
where for -A < Re z <\
7\+ioo
1 1
r(z) = - ‘LT JF in 7(z')dz" (1I-29a)
2ni 7! - 7
A-1co
and
~A+ico
1 1
P+(z) = _ET k/h In 7(z')dz’ (II-29b)
2ni 7! - g
“A-do0

and B < A < Q. By construction /n 7(z) is single valued in the strip
-0 < Re z < 0, so the branch of In 7(z) can be chosen to be the one which
venishes as z + * iw., Therefore, I'_(z) and I'y(z) exist and go to zero
for Re z going to minus and plus infinity respectively. The unique solu-

tions for X,.(z) and X_(z) are now given by:

X (z) = , (I1-30a)

and
X+(Z) = [z +a] 0+(Z) . (II-30Db)
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It is clear fhat X4 are real functions of z. Also for z real, we
have that X_(z) <0 for z <\, and X,(z) > 0 for z > -A.

Inserting (II-30) into (II-24) we obtain:

£.(z) [2% - 2,%] £ _(z)
X2 AT (1L-31)

for -0 < Re z < Q. The left hand side of (II-31) is enalytic for Re z >
-B; the right hand side is analytic for Re z < B; they are equal in the
strip, and hence define an entire function everywhere. By the extended

Liouville theorem, we have:

£4(2) (22 - 2,2)

X4(2)

= Py(z), (II-32)

where Py (z) is a polynomial of order m. As (@) is finite for 6 + 0
(rp(r) is finite as r + a), then for Re z + + o f (z) ~ 1(0)/z + 0(z**€)

€ >0. Also X (z) ~ 2z , hence we find that B (z) = constant = 1(0). The
Re z-o0

for f£,(z) is therefore given by:

f(z) = —5—p (II-33a)

or

£4(2) = —— (I1-33b)

Using the inversion theorem, for © > 0, the contour can be deformed into
the left half plane where the only singularities of the integrend are the

zeros of 1 - CoK(z). We find the density is given by
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N W2 (e /2|
RO IO

for r € a, and (Co)~! 4 K(0). The obvious identity:

=1 (11-35)

plus the fact that X_(z) < 0, z real and less than B insure that the neu-
tron density is non-negative for r < a when C < Cpspe Similarly, for
C > Cyip the density becomes negative somewhere in the sphere. This is
the same "criticality'" condition as for the infinite medium, as of course
it must be because of the invariance of the equation under the transforma-
tion r + Qr, a > 0.

As the neutron density is non-negative for C < Cyip, for r > a, we
can ask for the distance r°® > a, where the asymptotic solution vanishes.

Agymptotically, for r =+ O the solution (II-34) becomes:

_ _2ap(a) 1/2 .. fo 1
p(r) =~ EE_ETZEEY; [X_(ZO) X_(—Zo)] sinh > In o s (II-36)
X_( ZO) l/zo
where © = a [X_(—zo) (I1-37)

and (Co)~* > K(0). 1In the "just critical" limit (C = Cpip), the extra-

. . o N .
polation radius, r-, becomes simply:

© = ge X=(0) | (11-38)

For C = Cpin = 1.218, ¢ = 1, the extrapolated radius is computed approx-



16

imately in Appendix C. We'find that r° = (1.64)a

We can also find the shell-source solution for the finite sphere.
As this problem is so similar to the previous, we will just sketch the
method and give the result. Using the same notation and substitutions as

before, we find the integral equation:

0

n(0;05) = Co \/ﬁ n(8';0,)d0" K(|6 - 6']) + % K(|e - &) , (I1-39)
(0]

for @ >0, 65 > O (i.e., shell source inside of the sphere). In transform

ispace we then have:

(1I-40)

for -0 < Re z < @. Using the decompositon of 1-Co ﬁ(z) made before, Eq.

(1I1-40) becomes:

Making another decomposition such that

fals

( Z) e-Zgo
A (z)

= Q4(z) + 0-(2z) (II-k42)

where (.(z) is analytic for Re z > -B and goes to zero as Re z =w, and

Q-(z) is analytic for Re z < B, and goes to zero Re z =+ -, we find that

f.(z) = n(0) %4(2) + K(2) e - f.(2) X.(z) (II~,1+5)
¥ 22 - 7,2 AlL - CoR(z)] 1 - coR(z)
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The unique solutions for Q,(z) and Q_(z), for -B < Re z < B are given by:

-B+ioo~ -2'0
1 (z') e 270 gz
- - , TI-Lk
Q+(2) 5t X(2) 12 - z] ( a)
-B-loo
and B+
0.(z) - & [ Kz)az e % (II-bbb)
- eri J  AX_(z') [z' - 2] ’
-io0

Now, using the inversion theorem and requiring that rp(r;ro) be fi-

nite at the origin we obtain for C < C:

[v'e]

T 7 Z’/E
o(r;ry) = }4 ;éiiﬁ%%;—; (EE) ! [ap(a) - Q-(-z,)]
-0 n
’ (II-L45a)
L _ i 1 r>zn/2 for r <r, < a
ar(Co) @ R'(z,) \r, ’ ©
n=0 0
&, X (- d Zn/2
D(T;To) = 24 -Eéﬁﬁé%l-y <:£:> [ap(a) - Q-(-2zp)]
= T z a
(II-45b)
d 2p/2
T N <_> v <r<a
wr(Co)2 L K (2p)
where
- zo/2
- 0(z) - —2 (2 , i
ap(a) = Q (z) VAT <;a:> (1I-46)

E. CONCLUSION

In conclusion it should be pointed out that the totally black sphere
problem can now be easily done. In this problem, there is a black
(0 = @, C = 0) sphere of radius "a" inbedded in a medium with r~'! cross

sections. For the homogeneous problem, the solution is simply given by
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Eq. (II-34) with r/a replaced by a/r (6 + -0). The shell source solution
can also be obtained from the previous solution by requiring now that
rp(r;r,) be finite at infinity.

We also note that for applications to electron transport in velocity
space with total cross section which vary as v™2 a class of slowing-down
problems can be solved with formally little modificstion. In particular,
problems can be solved in which o(¥' + ¥)a%V, the probability per sec
that an electron with velocity‘?' suffers a collision and has a final ve-
locity in d¥ about ¥, has the invariance property that dv'v" o(¥"' V")
= oW aF o(FT), where V" = o', ¥ = oF, 00 > 0, and this "slowing-down"
function is isotropic. This invariance requirement on 0(3’ - 3) simply
insures that the transport equation is invariant under the transformation
¥ - of. Using substitutions similar to those used in the neutron problem,
one can derive an integral equation with translational symmetry and solve
it by means of the Laplace transform. Evidently, the only significant
differences of this class of electron slowing-down problems from the r~?1

neutron problem are the properties of the transform of the kernel, K(Z),

and of course as a result, a change in the spectrum.



CHAPTER IIT
USEFUL IDENTITIES FOR HALF-SPACE PROBLEMS IN
LINEAR TRANSPORT THEORY
A. ‘PRELIMINARY REMARKS
A large clasi of problems in linear transport phenomens can be for-
mulated as boundary value problems and solved by the eigenfunction tech-
nique (7) through (12). Typically, the governing equation possesses trans-

lational invariance and can be reduced to the form:

B
(200 = 20 [ 2w voounar,  (mmr)

where -g <u < B, and f,(p) f(p) is a real even function of yu. In this
chapter we first show that with suitable restrictions on f,(p)fo(u) Ed.
(ITI-1) always generates a complete set of solutions. Using these solu-
tions, some typical half-space problems are considered and it is shown
that some identities established for the solution of the associgted homo-
geneous Hilbert problem allow the usual cumbersome integrels occurring in

half-space problems to be considerably simplified.

B. SOLUTIONS OF EQUATION (III-1)
The translational symmetry of Eq. (III-1) suggests looking for solu-

tions of the form:

o = e g ) (111-2)

19
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For v finite (III-1) becomes:

choogsing the convenient normalization of ¢V(p);

B

ffg(u) py(wldn = 1 (III-4)
-B

(Eq. III-3) can be solved by the standard procedure (8) . The usual dis-

crete eigenvalues are then given by the zeros of A(v), where

& Pt (n) £ (n)an
AMv) = 1 - £o(u) pp(p)dp = 1 +v = = .
[B = [B hoov (III-5)

We will always assume that f,(u):f,(p) belongs to the class H* (13) on
(-B,B), for g finite; and for B infinite that f,(p)-fo(u) belongs to

the class H and satisfies:

2+4Q1)

Lim £ (p) fo(u) < Clul'( , Q>0 . (II1I-6)

1
[0

Then A(v) is a real even function of v, sectionally holomorphic with

boundary (-B,B), and asymptotically,

B ;
Av) =1 - f £ () f(u)dn + 0(-@ : (III-7)

Yoo -B

Clearly, if v4 is a root of Alv) = 0, so0 is -v; and tv;*. Defining v;

= -v4, it will be assumed (only for convenience) that the v; can be la-
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beled so that Re v4 >0 1 >0, and if V§+1 * vy, then ]Re Vi, < [Re Vigple

For v not on the interval (-B,B) A(v) will in general have 2N' zeros,

where N' includes the order of the zero, That is:

ald-2) 5(y)

’ dv(j_l)

(J=1) = 0, j=1,2,-m, (111-8)

ii 1,2,“"1'1',

'Vi)

1]

'V:'Vi
n 1
)

and N' = ZJ m;. Also, A(v) will have 2L zeros for v an [-B8,B], where

i=1
A.(v) and A_(v) denote the boundary values of A(v) from above and below

respectively, Explicitly, we assume:
*-Mi) = 0 J = 1:2)'“miy 1 = 1,2,:1, (I11-9)

and L = }: m; . If we consider the function
i=1

X(v) = A(v) , (1T1-10)

J
M
(12 - v3)™

1=1

we see that A(v) has no zeros on [-B,B], is analytic, and has 2N' + 2L
zeros outside of [-B,8]. Choosing arg A.(0) = O, and using the usual

change of argument theorem, we find:
N+ L = A arg A (v) = L arg A.+(B) (III-11)
T “(O;B> + T + ‘

(A(L) = change along L). If we label the zeros of fl(p) and fz(p) such
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fl (Vi) = 0,J = 1)2;"°mi; i = l,2,o-.nl
(J-1) (III-12)
J=1 .
fa (vy) = 0,3 = 1,2,-eom, i = n +1,.-om,
oy Do
i
and 2M = ;z my + }z m;, then clearly L <M, as [fl(p) fz(“)]u=ui _ 0
i=1 i=n, +1

(1)

is a necessary condition for A}/ (u;) = 0. Also, as the In A(v) = 0,
0 <v <B, M-L times, we have by Eq. (III-11) that N'+L < M-L+l. Through-
out this chapter we will assume that N' and L are finite. A sufficient
condition for this to be true is that M is finite.

With these properties of A(v) we can now construct the solutions of

Eq. (III-l)o We will separate them into three classes.,

Class I—-Discrete Eigenvalues outside of [-B,B]
Corresponding to the 2n' eigenvalues outside of the interval [-B8,B],

one finds the 2n' solutions:

-x/v4 .
%VFO) (‘X)}J') = £ V:L 1(“') 5] ii = 1;2;'°°n‘ (111—15)
1

‘Vi'p-

where A(vi) = 0, for IVil finite, As the ith zero is m; degenerate, the

2n' eigenfunctions given by (III-13) are supplemented by:

- (3-1)
y;iJ l)(X;H) = d 9@(0) (X,“) , J o= 2,3,e00my (III—lM)

ay(d-1) y=y, #i=1,2,..-n',

The 2N' solutions given by Eas. (III-13) and (III-14) are linearly inde-

pendent and by Eq. (III-5) clearly satisfy Eq. (III-1). For x = 0, these
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eigenfunctions will be denoted by ¢£i-l)(u).

B
If /“ f1(w) fo(u)du = 1, then A(v) has a double zero at infinity
U‘;‘ﬂ

B
(assuming \/ﬁ uef(u) fo(u)dp 4 0). In this case Eg. (III-1) has the
-B
2(N'-1) solutions given by (III-13) and (III-14), and the two linearly

independent solutions:

%;(l) (x,u) = (), 91(2) (x,0) = f£(u) [x-ul.

(III-15)

Class II—Discrete Eigenvalues on [-8,B]
In our previous discussion we observed that in general we have 2}
eigenvalues on the interval [-p,B] given by A+(pi) = 0. Corresponding

to the zeros of Au(u), for u = py = vy, i = 1,2,°+-nl, n! <n we have the

n'
1

set of }jnﬁ linearly independent eigenfunctions:

i=1

(3-1) a7 (o)
W. (X:H) = T/ [e Y ¢ ° (H)] y J = 1;2)‘°‘mj_ (III'16.5-)
My dv(J-l) 14 b l,2,-v»ni
where
5
¢£?)( ) = () (III-16b)
i Hy - W

Similarly, corresponding to the zeros of Ay(p), for p = py = vy, i = n, +1,
nl
N

---né, nl+l.§ né < n2, we have the set of 2 zzj my linearly independent

. . i=n.+1
eigenfunctions: 1



2k

2(j-1) g(d-1) N
%i (X,p,) = —(—.:‘z‘)" e X/V ¢1()0)—(u) , J = 1’2,ovomi (III_l7a)
ay'? ly=yy 1=m0,#,000m]
where
u,f (w)
yﬁﬁz)i () = ;—_l:;ie—: . (ITI-17Db)
{H e-

We will show in Section ¢ that all of the solutions in Class IT are lin-
early dependent on the solutions of Class IIT and hence are never explic-

itly needed.

Class III-——Continuum Solutions
Tn addition to the solutions of Classes I and II which are associated

with the zeros of A(y), there are the continuum of solutions:

1l

e'x/y ¢V(u%all v-B<vy<B (III-18a)

%(X) u)

where

1l

vf‘l(u) p L 4 AMv)d(y - w) (III-18b)
v-u

()

corresponding to the branch cut of A(v). By Eq. (ITI-4) we find:

A(v) +4A_(v)

Ny) £5(v) = . . (III-19)

Tt should be noted that Eq. (IIT-19) defines A(v) only up to delta func-
tions in v-pg, 1 = nl+l,.o-n2. Therefore, inplicit in the solutions (III-

18) are the solutions:

G ™M gy - ) L=m +1,em, . (IIT20)
i
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These will always be explicitly factored out of the continuum solutions.

C. COMPLETENESS THEOREM
Theorem: The set of solutions of Class III for ' SV 7y 7. <7,
" -B <715 72 < B, Plus the solutions in Class I form a com-
plete set of functions on the class of linear continuous
functionals, V(p), with compact support in [y,,7,] and such
that:

, -€ )
Lim y(p) <Clp -7 | 5 e <1 (1II-21)
MYy 2

and for either (or both) 7,5 7, infinite

Lim 5 y(u) £2(u) = O (TI1-22)
7y

and/or
72-+oo
for some k to be specified later.
In the following proof we will always assume that none of the zeros
of Ay(u) coincide with y or y,. This condition and the restructions im-
plied by Egs. (III-21) and (III-22) can be relaxed within the framework
of distribution theory (14), however, for convenience and simplicity this
will not be done here.
To prove the theorem we have to show that the singular integral equa-

tion

-] 2
W =) ag by W [ ) g, (111-25)
7
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has a solution when W(pj is subject to the restrictions of the theorem.
For the present it is required that y; and ys be finite.

Letting v'(p) = v¥(u) - - 81 ¢$i—l)(p), Eq. (III-23) becomes:

h
P = e [ ) ) e Db e ). (T
7

2

clearly the bi are given by:
Mite

b; = Lim Auy(p), all 7, Sui < 75 - (111-25)
20 ui-€

Assuming that A(v) has the same properties as y(u) the function

72
1 A(v)dy
N(z) Ewry L/\ s (III-26)
71

has the properties (15):
(a) N(z) is analytic except on the interval [y.,72], and N(z) has

at most, polar behavior in this interval.

(b) ILim N(z) = 0

Zi>-00
-€
(c) Lim N(z) < clz - 9,]
Y 2
72

Multiplying Eg. (III-24) by ufa(p) and using Bg. (III-5), the expan-

sion equation becomes the boundaxy value equation:

7, SRS,
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pfo () W) = M) AW - N_(w) A(w) . (III-27)
Introducing
M(z) = 7J7Zui - 2)" N(2) (111-28)
and
A(s) - W : (111-29)

(where uj is a zero of Ay(p) of order my, and the product in (III-28) and
(III-29) are over all j such that y < py < 7o) into Eq. (III-27), the

equation can be put in the conventional form;

y() W) = w(p) X () - N_(u) X_(W)
(ITI-30)
X_(w) wf (u)
y(p) = '——];t?zj-'~“ , and X(z)

has the following properties:
(a) X(z) is sectionally holomorphic with boundary (71,72).

(b)  X(z) is non-zero in the cut plane.

= = G(p)

(d)  X(z) vanishes more slowly than ’z-yll and ]z=72| as z > 7., 7,
respectively.

(e) Lim X(z) = Class (1) const.
700

Class (2) zkl, k, positive integer.

Class (5) z“k2, k, positive integer.
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The problem of finding X(z) subject to these conditions is the "classical"

homogeneous Hilbert problem (;2), The solution is:

X(z) = (z - 7l)tl (z - yg)ta I(2) , (ITI-31)
7e
Mz - A [ Sl (117-32)
ni - VY2

(I11-33)
9(7'1)

J

1>t - >0, 6(u) = arg Xe(p)

For the entire-space and half-space problems one can easily obtain

t, and t, from Eq. (ITI-11). They are listed below.

TABLE IIT

t, and t2
71 72 t) ts T+t = -kp
-B B - (N'+L) - (N'+L) -2(N'+L)
0 B 0 -(N'+L) - (N'+L)
-B 0 -(N"+L) 0 - (N'+L)

If N'+L > 0, then X(z) for the half-space and entire-space problems

belong to Class (3). Solving Eq. (III-30) for this class, we find:

Nz) - Pr'kz'l(z) , 1 -/“%du 7wl ' () o
X(2) ffluy-2)™  2x1 X(z) Puy-2)"y p-z (TII-34)
j Jd é
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Here Pz(z) is an arbitrary polynomial of degree {, and r = 2, mj. This is
J

a solution to (III-30) only if the k,-r additional conditions:

Wy ()W (was = 0, £ = 01,00k, - -1 (III-35)

are satisfied. For the entire-space and half-space problems as r = 2L,
k, = 2(N'+L); r =L, ky = N'+L, respectively, we find that Pr-l—kz(z) =
in both cases.

To satisfy (III-35) we include ko-r discrete eigenfunctions of Class
I in the sum contained in y(u). As k-r < 2N' there are always enough
eigenfunctions to do this. Even so, it still must be shown that Eq.
(III-35) does not impose any restrictions on y(u) other than those stated
in the theorem. Using the representation of X(z) derived in Appendix D
it will be shown that (III-55) is consistent with the theorem. Before
proceeding it should be remarked that for X(z) belonging to either Class
(1) or (2), an N(z) can be found which satisfies (III-30) without re-
strictions such as (III-55)0 In these cases no discrete eigenfunctions
are needed and A(v) is easily found to satisfy the assumed conditions.

Therefore, in the following, only X's belonging to Class (3) will be con-

sidered Eq. (ITI-35) is explicitly:

7 7 -
f 2 why(w) ¥ (wap = Z a.i.f ® () ;égj 1 (1) du,
7

j
7. 1,3 ) (III-36)

£ = 0,1,s¢0k,-r-1, and the sum is over kKo-r aij'sg In order to express
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(III-36) in its simpliest form, we first consider the integral

- Yo g
{2 [ s wa, (111437)
) 71 1
which is:
- Y2 1
-1) (3-2) why(u) £, (u)dp
Ii‘jll - d T [ L (111-38)
’ @™ k? Ho V=V
1 i

Using the representation of X(z) given by (D-3), (III-33) becomes:

(3-1)  _ d(j-l) v Te uzdu§— mJ
L = 00 2 f = )g(uj-u) [%X4(n) - X_(n)] (III-39)
1
or
(3-) _ als) z+f'f( h
1 = —— - v I (-v) X() (I1I-10)
41 (3-1) ]

‘V:"Vi

If y=w is a zero of A(v) we may want or have to include ¢£l)(p) and
¢£2)(p) in the sum over the discrete solutions. In this case we have to

calculate the integrals:

I

Y | 7
I,(Z?i f " W) MW - [ Zuby(n) £(wap  (III-41a)
71 71

and

s 7
Iﬁl) ) f nm éo(oz)(u)du z- f Q“HI"/(“) £, (w)dp.

7 v
1 1 (ITI-41b)

By the same method as above we have:
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) dz, (III-42)

-
C*_
=
-
S—r
H
'_l
—
-
o
=
1l
il—‘
QQ\\j
N
c*-.
2
T
<
8
N
"
B
<
>4
P
N

where C encircles the (y,,7,) cut in the negative direction. We have

therefore:
72
i £ e = 0, <k, -z -2
71
= () ek - -1 (ITT-L3)
k - . -
= C = -Lim z[z 2 rX(z)’ﬂ(uj—z)m‘] - (_)r]
7+ 00

if t =k, - 1o

Using the representation of X(z) given by (III-31) we find:

N4
2
¢ = (')r[71t1+79t2+ Z }.lJ + —“—““l. d}.l. In G(H)] ° (III-M}-I-)
- J 2nd

(=

(J-1)

It is now evident that the integral Iz 1 is never zero for gll i
J

and all j. Therefore the conditions (III-36) can be satisfied without
further restrictions on y(u). It will be shown in Section D that in fact
the aij's can be uniquely determined.

We also note that the linear dependence of the solutions of Class II

: . . (J-1 h

on Class III is now evident. ILetting gj(u) = ¢“i %u), it is easy to show
that the integral

72 .
JP ator (1) ¢£g—l)(u)d“ = 0, £ =0,1,7 00k, - 7 - 1. (III-L5)
71
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Hence, we can choose ajj = 0, and the linear dependence follows. Further-
more it is evident from N(z) given by Eq, (III-34) that vA(v) = Ny(v)-N.(v)
has a principle value part and a delta function contribution at v = pj.
Putting this A(v) into the expansion Eq. (III-24) and factoring the delta
functions out of the integral we obtain the usual expansion expression (Z)
which from the beginning includes all of the discrete eigenvalues, and

not the continuum solutions where there is a discrete eigenvalue in the
continuum, (The principle value contribution at U= ui.)

For the entire space problem we can construct X(z) by inspection.

The solution is given, up to constant, by:

X(z) = 7 A2) . (III-L46)

= 2 Emi
7 e

1=1

It has been specified that y; and y- be finite in the above procedure.
It is clear that if B = «, the proof is still true with suitable restric-
tions on ¥ (p). For y; = -w, ys = 4w, the solution for X(z) is given by
(III-46). If only one end point is finite, say 7,, the end point condition

for X(z) is applied only to the finite end ;. X(z) is then given Dby:

t1 I(z)

X(z) = (z=791) " e (III-47)
and
r(z) = - f n 6{p)dy (1TI-18)
2nl M=z

71

where In G(u) is that branch which vanishes at infinity. It is clear
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that N(z) will exist with the correct properties if in (III-2) we choose
k>2L +2 + Kk, (kl given by Class (2)) or k > 2, if X(z) belongs to
Class (1) or (2).

Tt is now evident that A(v), given by vA(v) = N (v) - N_(v) does
satisfy the assumed conditions. Therefore, the completeness theorem has

been proven.

D. APPLICATIONS TO HALF-SPACE PROBLEMS

In this section the theorem of Section C will be used to obtain solu-
tions to Eg. (III-1) for 0 < x < ., For simplicity it is assumed that
vy %, N' =n' >0, L =0, and £ (u) 4 0 for 0 <y <B, except possibly
at p = o if B = =,

We first consider the albedo problem, where we want to find a solu-

tion to (III-1) for O < x < » subject to the boundary condition:

d(m - Ho): 0<p<p, 0<py <B (III‘L@)

1]

‘JI(OJ H)

and

Lim y(x,u) = 0 . (ITI-50)
X 00

Using the theorem of Section C we can write:

B

W(X;IJ-:H0> = Zzaj_ GU.VFO) (x,1) + f A(v) % (x,u)dv &
- + o (III-51)

The sum is over N' discrete eigenfunctions and (III-50) implies that the

sum is over i = 1,2,..-N', Condition (III-49) gives: pn >0
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N’ B
o - o) - ) a2 )+ [ A 4, (av. (rTTe)
i=1 ©

The ai's can be determined by the N' condition of Eg. (III-35). The equa-

tions are explicitly:

Nl
)/

U-o'}'<l"~0) = Z a3 IE:i » £ = 0,-N'-1. (III-53)

i=1
It is easy to show that
(O) B N' Nl Nl
Det T, - (=) T viX(vy) ZTT/ (v, - vy), (ITI-54)
i=1 I>j=1

which is clearly non-zero. Using Cramer's rule the ai‘s are found to be:

NI

_ 7 (uo)
&1 7 7 3x(vy) v

jH

vj

lJ’O
i=1,:0+N", (111-55)
i

..‘VJ

It should be mentioned that if vy is m; degenerate (N' + n') Eq.

(iII-55) becomes

4
Ho')'(llo) = Z bsusy (I11-56)

here bJj y Jo= L,2,eeem

alj

80 3.m,’ J =m+l,.vemytm , ete.,

and



35

which is never zero and therefore the aij's can be uniquely determined in
this case also.

In applications we normally want to know the discrete eigenfunction
coefficients, because they usually give the asymptotic form of y(x,u), and
"

the emerging "angular" distribution ¥(0,u), p <O. The emerging "angular

distribution for the albedo problem is:

N' B
¥(0,u5m0) = Z &y 55,(,?)(@ +f A(v) g, (W)dv, u <0, (III-53)
1
i=1 °
vE (1)
For u < 0, p,(u) = - and Eq. (III-53) becomes

vy

Wonsug) = ) oy %) () +entf () M. (II-5H)

1=1

Expressing N(p) for p < 0 by using the representation of X(z) given by

Eq. (D-3) we obtain:

")

_ 1 7(“0) \ d‘i Vi .
el e +.}J S () - )
1=

[

(III-55)

The emerging "angular" distribution now reduces to: p <O

y(p,) £ () i vy
¥(0,u500) = ;(u)l [ = Z 2 T(/E—-J- . (I11-56)

The Milne problem can be readily solved by using the formulas derived
for the albedo problem. In the Milne problem we want to find the solution

to Eq. (III-1) subject to the boundary conditions: (VN. 1 «)
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5/{(0) (x,u)  Rewy; >0 (I11-57)

X=+>c0

and

(ITII-58)

\Y}
o

W(O:H) =0, u

Using the completeness theorem we can expand y(x,p) subject to (III-57)

as .
N B
Y(x,p) = X{ii)(x,u) + Z{j 8y y4§0)(x,u) + k/w A(v) K(x,mav  (111-59)
i=1 o
and then (III-58) becomes: p >0,
X B
ﬁfii(u) = Z aj¢1(/§)(“) + [ A(v) b (w)av.  (III-60)

[

J:

In order to calculate the a;'s and the emerging "angular" distribution we

(o)

v (po) over u,. This

only need integrate the albedo solutions times ~¢

can again be done using (D-3) and we find:

Vs X(-'V ) VetV .
8, = i i 1 ] , ko= 1,2, 00N, (IT1-61)
k X(w.) -
Vk 'Vk J—Jfk Vj Vk

and the emerging "angular" distribution is: u <0

RN

_Xlwy) 1 VitV
¥(0,u) = [%-vi(u) + vifl(u) E: ;G:E'%igl Ve . (I11-62)

J=1

Before computing some of the moments of the emerging distribution for the

Milne problem we first derive some useful identities for X(z).
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E. IDENTITIES FOR X(z)

In Section D we showed that the representation (D-3) for X(z) allows
the usual combersome integrals involved in a half-space prcoblem to be re-
duced to a form which involved only X(z) and other, in principle, known
functions. In this section we will derive two more identities for X(z),
both of which may serve as a means to numerically determined X(z), Qr as
will be shown by way of an example in Section F, permit some quantities of
interest to be trivally determined.

5
Defining C = b/\ f,(n) £o(p)du, and for convenience assuming C 4 1,

-p
we want to prove:
Az)
X(z)X(-2z) = T ,(N =n', L =0) . (IIT1-63)
(1-¢) JT (v4%-23)
i=1

To prove this consider the function

R(z) = A(z) “ ©(TTI-6L)

It is clear that R(z) is analytic in the plane cut from -f to B. Across

the cut Rs#(p)/R-(u) = 1, and also Lim R(z) = 1. Therefore, R(z) =1,

700

and the identity (III-63) is proved., From (III-63) we see immediately:

X2(0) = . (IT1-65)
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The phase of X(0) is uniquely determined by the fact that Lim X(z)

7= 00

!
= ()™ 12" (2 real) and that X(z) is a non-zero, real function of z.

Therefore
NI
~ N N N o omL/2
X(0) = (-)7 [(1-0) JU %] : (IT1-66)
i=1
N',
A particularly simple result of this is that [l-C]/}[ﬁviZ must be real
i=1

and non-negative. Of course, if C = 1, an identity similar to (III-63)
can bhe derived.

The identity (III-63%) may be useful for calculations X(z) for large
z. Expanding both sides of Eq, (III-63) in powers of z~%, and equating
coefficients, one finds a set of coupled albegraic equations for the co-
efficients of z-% in X(z). In particular cases a truncated solution may
rapidly converge and thebcoefficients of low inverse powers of z be easily
obtainable.

To obtain the second useful identity for X(z), we use the represen-

tation of X(z) given by (D-3) and the identity (III-63). We find:

O pdu £ (p) £_(u)
1 d[ 1 2

N' ’

B
(e2) 100 T (9,242

i=1

-6
ool (ITI-67)

From (III-67) we first notice that if we know X(u) for -p < p <0,

we can readily determine X(z) everywhere. Such being the case, by letting

z = W, -p < u<0 in (III-67) we obtain a non-linear integral for X(u),

-B < u <0, for which an iterative solution may rapidly converge. More



39

important is the property that (III-67) allows us to express integrals
over X(u)~! (which always occur in the emerging "angular" distributions)
in terms of X(z), and it is this property that we will exploit in the next

section.

F. AN APPLICATION

To illustrate the usefulness of the identities derived in the pre-
ceding section we will calculate some moments of the emerging "angular"
distribution for the Milne problem. While moments for the general emerg-
ing "angular" distribution of Eq. (III-62) can be at least simplified by
the identities of Section E we will only consider the usual case; N' = 1.

The emerging "angular'" distribution now reduces to:

¥(O,u) = 2 BKv) 60 : (I11-68)

X() (v,2-u?)

The emerging "density'" is then given by:

(e} 0
) . £,(p) £5(p) dp
p.(0) = :éw dpf,(u) ¥(0,u) = 2v12X(—vl):£w ) (7.247) . (ITI-69)

However, the integral in (III-69) is simply X(0)[1 - C¢] (from III-67),

and so we find:

0.(0) = -2x(-v) v20 - T2, (113-70)

The emerging "current" is:
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@) ¢

j_(0) = dp pf () 0,u) = 2v,2X(-v,)
5.0 é b uE(6) WO = 29, K(-v, :!xm 2

ufy (p) fo(p)du @

(III-71)

From (III-67) we immediately see that the integral in (III-71) is:

Lim [1 -¢C)zX(z) = (L-20) . (ITI-72)
7 0

Therefore we have:
j_(0) = 2v.&(-v)(1 -¢C) . (I1I-73)

We note that the average emerging ufor the half-space problem is given by:

(IIT-7h4)

Unfortunately, EH for n > 1 is not so easily calculable, however the iden-
tities of Section E do help to simplify the integrals for these higher
moments. For a more illustrative example of the usefulness of the iden-

tities we refer to Reference (16).

G. CONCLUSION

While we have considered only the Equation (III-1) it is clear that
for any equation or system of equations which have a spectrum similar to
Eq. (III-1) and for which a completeness theorem of the form of Section
C is valid there are similar identities for the solution of the associated
homogeneous Hilbert problem for the half-space. The judicious use of these

identities will always simplify the formulas of interest.



CHAPTER IV

DENSITY IN A SIMPLE MODEL OF THE EXOSPHERE

A. DISCUSSION

We consider the following simple model of the planetary exosphere:
Exterior to a sphere of radius r, we have a gas so rarified that collisions
may be neglected. The only force acting on the particles then is the gravi-

tational force, due to the total mass M within r Within the sphere col~

o°
lisions are so frequent that particles emerging from r = r, have a Maxwell-
Boltzmann velocity distribution, The problem is to determine the particle
density in the reglon r 2z r, subject to the conditlion that there are no
particles present which heve not come from within the sphere.

Thig problem has been treated by Opik and Singer (él) and Brandt and
Cﬁmm&@rlains(iﬁ) The fifst authors find particles densitles by stralght
forward kinetic theory calculation of the numbers of partieles which resch
& given point in space. The second author start from the collisionless
Boltzmenn (il.e., Liouville) equation, Since the latter is merely a state-
ment of Newton's laws of motion the two approsches should agree, However,
there seems to be some confusion on this point.

In order to clarify the situation we congtruct a simple explieit solu-
tion of the Boltzmann equation subjest to the given boundery conditions.

From thig the particle density is trivially obtained by quadratures,
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B. CONSTRUCTION OF THE SOLUTION
The distribution function, W(¥;$); in the exosphere is to satisfy the

collisionless Boltzmann equation:

-
(vvgrs v uED - 0, (1v-1)
where
-
G Mm
7 o= - Br ) (TV-2)
T

(Here m is the mass of the gas molecules, and T is the radius vector from
the center of the sphere.) At r = ro we have the boundary condition that

the emerging distribution has the Maxwell form,

i.e, w(?6,$) = N(mﬁ/En)B/2 exp-[pmv2/2]  for ¥ - ¥y > 0. (IV-3)
(B = 1/xIT)

Further we have the condition that all particles exterior to the sphere
shall have come from within it.

Since the problem has spherical symmetry we know that

\V(?);},) :‘II(T;V;H) ) (IV-k)
where
r = 171, vV = 1V, and p = (%:¥)/rv . (IV-5)

In terms of these coordinates Eq. (IV-1) becomes

{VUQ-'%Q-'I'('K‘G—M‘ (l"‘HE) %;} W(T)V)H) =0.

dr r2 v r vr2 (1V-6)
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The method of characteristics (19) shows that the only content of

Eq. (IV-6) is that ¥ is to be an arbitrary function of E and 12, Tus

Vo= w(E,EE) where

1 > GMmn
E=_m2-___ -
FmE - ==, (Tv-7)
and
g 222 2
L= = m=vors(l - p%) . (1v-8)

i.e., | depends only on the constants of motion-——which are the energy
and the angular momentum.
We still have to fit the boundary conditions. To do this we note

there is no reason for | to be a continuous or singlevalued function of

its arguments. Consider, therefore, the function

v(r,v,u) = N(mB/Eﬂ)5/2 exp-g[GMu/r,, + E]

(1v-9)

. 8(E + GMu/ry - 12/2mre2) [1 - 6 (E) 6 (-p)]

Here

o(x) = 1 x>0 (IV-10)
0 x <0

The significance of the 6 functions is readily seen. Consider first

a particle at roy with energy E. We have

T2/omr 2 = (E + GM/ry) (1 - p2) . (IV-11)

Hence "
1%/2mr 2 < (E + GMn/ry) . (Iv-12)
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Thus, for u > O the function of Eq. (IV-9) does reduce to that of Eq.
(IV-3). Further, the factor 6(E+GMm/ro-i2/2mr02) guarantees that we have
no particles whose orbits do not intersect the sphere of radius ry. The

remaining factor

1 - 6(E) e(-p)

arises from the requirement that there be no particles incident from in-
finity. For E < O the particle orbits do not reach to infinity and the
factor is 1. However, for those orbits which reach to infinity the fac-
tor 6(-u) guarantees them to be outgoing.,

The function of Eq. (IV-9) thus satisfies all the boundary conditions.
It only remains to see whether it satisfies the Boltzmann equation. Ex-
cept for the dependence on p this is trivial (since it is a function of
the constants of motion). Thus on inserting the function of Eq. (IV-9)
into Eq. (IV-6) we need only worry about terms arising from differentiation

of ©(-u). Using the result

— 8(-p) = -5y (Iv-13)
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We note the identity

8(u) O(E) O(E + GMn/rg - 12/2mry2)

= 8(u) 6(F) ® [%(l + %Z) + %%?} [: - §é] : (17-15)

But for r > ry the argument of the second step function is negative (for
E positive). Hence the function of Eq. (IV-15) is identically zero and
the Boltzmann equation is satisfied.

We conclude that Eq. (IV-9) does indeed yield a function satisfying

all requirements.

C. PARTICLE DENSITY

The calculation of the total position density in the exosphere is

now straightforward.

1 (o)
o(r) = fdt? 1[1(?,?7) = 2n fdu fvgdv V(r,v,p) . (IV-16)
el S |

The result is:
i ) (11/2
-2
o(lr) = 21\T/(1[)]‘/2 exp ol - 1/x) fyzdy eV +f y2dy e %
o 0
(o]
1/2 a 1/2
-(l-xe)/ f dy:y‘ze'y2<l———-—}£—
S \ 1/ 2 v2 (1+x)
T+x
oi/2
) ' o X 1/2
+ dy y2 eV l'ﬂh) (IV-17)
ox 1/2 J X
T+x

where



a = BGMn/r, x = 1/t

This agrees (up to constants) with the "ballistic density" calculated by
Opik and Singer (17) in the 1961 reference (p. 226, formula 31), The ex-

pression can be considerably simplified and written in terms of Error func-

tions,
X
o(x) = <%=>l/2 / e V2 gy s (IV-18)
o
as
o) = Yexpa(l - 1/x)

{\l +o(at/3) - (1 - x?) /2 exp(-ox/1 + x) E i cb«l f x> 1/23]

¥ ? /2 El - x)t/2 . q} a (IV-19)

~

D. CONCLUSION

It has been shown, as might be expected, that there is no difficulty
in writing down the solution of the collisionless Boltzmann equstion for
our simple model of the exosphere. This method, while completely equi-
valent to any other solution of the problem based on Newtonian mechanics,

is probably the quickest and possibly most elegant approach.



APPENDIX A

DERIVATION OF THE INTEGRAL EQUATION (II-2)

To derive the integral equation given by (II-2) we start from the
FEquation (II-1) with the appropriate cross sections for the model. First

consider the integral in the exponent,

> > 5 >
|7-7 | |F-7|
=y —?q
f O'( (:i )S> ds = ¢ f = ds (A-l)
|7-7 | 5 1j_}2-2r (r-r')s+s?
|+ T
r-7' |
This integral can be done and is:
=
T VT e
u/\ o(7F - (-1)8) g5 - g 4n -~ +? | é?'i?ﬁ? ) (A-2)
|11 77| - F.(7-F'")

Substituting this back into (II-1), for the shell source, we have:

o 1
S N )
o(r) == L/ﬁr'2dr' L/ﬁdu r |7 - FEED) 101 |
2 : r[F-F] - T (F-FY) EETE
-1

0
(A-3)
Co oy , B(F'-To)
*{r' pl*) *ET—O—} o

Letting X = |F-F'|, X2 = r2+r'2 -2r r'y, and then X = (r+r')y, Eq. (A-3)

becomes :
% 1
1 r'dr' | Co . 8(r'-1q) U/“ dy Jl-y 7
r) = = — (') + —— = L A-k
o(r) 2 \/ﬁ T {}” ofr) bev r 2 vy |l4y ’ (a-4)
o) I‘—I"|
lr+r'|

bt
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'26, etc,, we find:

1
co | n(e') | @{}f—y—q ’
f ’Ea[nh[@-@'l v ]

=00

1
o)
2 f ﬂ{l_x
8nr v l+y ’
" tanh|e-0, | v

Now introducing r = a e

n(e)

+

from which Eq. (II-2) immediately follows.



APPENDIX B

PROPERTIES OF THE TRANSFORMED KERNEL, K(z)

The transform of the kernel, %(z), is explicitly:

(o]

1
: o
ﬁ(z) = fe-Z@' de! f g‘l{ﬂ} . (B_l)
Y |1+
= tenh|e' | g

Letting et = %i% , and ©' = 9/2 , one integral in (B-1) can be done, and

we find;

0

~ -t _,
R(z) - 2 L/jd.t.e sinh zt/2 o (B-2)
sinht

o}

This function can be written in terms of known functions (4), for

-0 < Re z <O

o = 2(o+l), andjp(z) = d/dz In I'(z). As ¥/ (z) is analytic except for sim-
ple poies (4) at z = 0,-1,-2,+++, K(z) is analytic in the strip -0< Re z

< Q. Defining the analytic continuation of E(z) for [Re z| >0 by the right
hand side of (B-3), we can say that §(z) is analytic except for simple

poles at z = *(km+), m = 0,1,2,+++. Using the formula (k4):
W(z) -¥(-z) = - xCtn nz - % , (B-4)

we obtain the asymptotic form of ﬁ(z):

49



50

~ . T ctn xz 1 _
K(z) = -1 u+o(). (B-5)

|z|>> 2%

The zeros of 1 - Co ?(z) are also of interest. The simpliest repre-

sentation of K(z) for determining these zeros is given by (L)

VR

. (B-6)
S (e 9% - (3
Using (B-6) it is easy to show that 1 = Co %(z) = 0 has roots only on the
real and imaginary axis. For z real and in the strip -0 <z <Q, we
know that K(z) has poles at z = 0. Also Bk(z)/az > 0 for z >0, and K(z)
is and even function of z. Hence %(z) has a relative mininum at z = 0.
Therefore, if (Co)~t > ﬁ(O), there are two real roots, #zy, in -0 < Re z
<a. If (Co)™' = K(0), there is a double root at z = *zy = 0. For z = iy;
v real, we similarly find: 6§(iy)/6y <0 for y > 0. Also K(iy) is con-
tinuous and finite for all real y. It is therefore evident that there will
be two imaginary roots, #z,, to 1 - Co K(z) = 0, if and only if (Co)~ <
K(0).

For |Re z| > @, the analytic continuation of 1 - Co K(z), defined by
(B-3) and B-6) has an infinite number of real zeros. As K(z) has poles
at z = (bm+a), m = 0,1,2,.+-, and JK(z)/dz > 0, for z > 0, z real, there
must be one and only one zero to 1 - Co K(z).in each interval L(m-1) +
a <z < bm+, and similarly for z‘negative and regl. The root in this in-
terval is labeled z,, and zp4; > zp > zp_1. It is also clear from Eq.

(B-5) that






APPENDIX C

CALCULATION OF THE EXTRAPOLATED RADIUS

An exact calculation of the extrapolated radius r® (Eq. II-37), is
clearly a computer task. However, in this appendix we exhibit two approx-
imation methods which converge very rapidly for the r~1 cross-section and
make this calculation amenable to a slide rule. For simplicity we have
taken the case 0 =1, C = Cy = 1.218 (2o = 0). The extrapolated radius

2X1(0) /X.(0)
e o

is then given by Eq. (II-38), i.e., r®/a = By examining

Egs. (II-29) and (II-30), it is easy to prove that
=1
X.(-z) = -X (z) . (c-1)

Equation (II-25) then becomes:

X_(z) X_(-2) = }_Z_Egﬁifl . (c-2)

Z

Expanding 1 - Cm?{(z)/z2 in a Taylor series about the origin, we find:

1l - CmK( Z)

72

= Qo + 022 + Qaz® + 0gz® + Q1028 +..., (c=-3)

where the 0's can be computed by using the representation (B-6) of ¥(z)

and the tables of Reference (2), They are:

o = .hl12 x 10-1
oy = L2416 x 1072
s = .1490 x 10-3

52
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1

Og .9286 x 1075
Q1o = -D799 x 10786,
Now, X-(z) is expanded in a Taylor series around the origin and coefficients
of like powers of z in Eg. (C-2) are equated. The exact value of X_(D)
=7Jd2 is found. If Xgn)(O)/nE is neglected for n > 3, we find:
X!(0) = .253, If Xgn)(O)/nf for n > 5 are neglected, a quartic equation
must be solved and in this approximation we find: X!(0) = 2.54 x 10-1.
Therefqre, this approximation method converges rapidly and we find that
the extrapolated radius is:
Ts
= = 1.64 . (c-4)
Another method of approximating X_(z) is the use of continued
fractions. This method is in genersl more useful than the previous one
as the Taylor series expansion may be slowly convergent for z = z4 % 0.
The function 1 - Co ﬁ(z) has a continued fraction representation which

converges in the entire plane (6) (except at the poles) and the Nth ap-

proximation is given by:

As K(z) ~ O(l/z,)then we must have ay = by. Using this condition and

700

calculating &, and by by an expansion around the origin, or equivalently
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by the method of Ref. (6), we may approximate 1 - Q&E(z) to any order
that we desire., Having made this approximation the Wiener-Hopf decom-
position given by (II-25) can be trivally done and X_(z) uniquely deter-

mined. Explicitly, we have in first approximation:

1 - pR(z) = 222

T A-z2

Using this approximation, we find ro/a = 1.50. Going to the next approxi-

mation, where only a quadratic equation has to be solved, i.e.,

) (c-7)

27,4
Bz+Az -1

gives ro/a = 1.64, So, this method has rapidly converged to the previous

result and is, computational wise, easier.

It should be pointed out that in the constant cross=-section case,
the convergence of the later approximation scheme is not as rapid as in
the r~1 case. The extrapolated end in this case is exactly X, = .T710k,
(3). 1In the same approximation as (C-6), we find X5 = .577. 1In the
same approximation as (C-7); we find X, = .694; and in the next approx-

imation, where a cubic equation must be solved, we obtain X, = ,706,



APPENDIX D

A USEFUL REPRESENTATION FOR X(z)

If X(z) belongs to Class (3), i.e., Lim X(z) z“k2, ks > 0, and
. Z00

integer, we have by Cauchy's theorem:
X(z) = -;—L—-f K(z')dz' (D-1)

where ¢ encircles the (y;,72) cut in the negative direction. Equation

(D-1) becomes:

vz vz
X( Z) = -—J-”— f —.(-i-li [X+(u) "X-(H)} = ._i_ f dp X_(u) [Ag&) "Ag}f)] (D-2)
e 2 S T (e ()

or

Y2
x(z) = fy au 2 T ) (p-3)

1 M2 J; My ~M

If X(z) is not in the Class (3), & similar represemtation of X(z) cen

be derived by meking suitable subtractions.
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