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In 1961, P.W. Kasteleyn enumerated the domino tilings of a 2n × 2n chessboard. 
His answer was always a square or double a square (we call such a number 
"squarish"), but he did not provide a combinatorial explanation for this. In the 
present thesis, we prove by mostly combinatorial arguments that the number of 
matchings of a large class of graphs with 4-fold rotational symmetry is squarish; 
our result includes the squarishness of Kasteleyn's domino tilings as a special ease 
and provides a combinatorial interpretation for the square root. We then extend 
our result to graphs with other rotational symmetries. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

Suppose  you had  an  o rd ina ry  chessboard  and  32 indis t inguishable  
dominoes ,  and  tha t  each d o m i n o  were exact ly  big  enough  to cover  two 
squares  of the chessboard .  You  could  then use your  dominoes  to tile the 
chessboa rd  (left side of  Fig. 1). You  might  wonder  how m a n y  different 
ways you  could  do  this. This  is an example  of  a domino tiling problem: 
given a subset  of  the lat t ice squares  of  the plane,  in how m a n y  ways can  
it be t i led by  dominoes?  F o r  the 2n × 2n chessboard ,  the p rob l e m was first 
solved by  P. W. Kas te leyn  in 1961 [ K 6 1 ] ;  the answer  is 

~zl 

k = t  l = 1  

The fo rmula  (1) is a lways  a square  or  double  a square  (this la t te r  result  is 
due to E. W. Mont ra l l ;  for an exposi t ion,  see [Lo ,  P r o b l e m  4.29]);  we will 
call such a n u m b e r  squarish. There  should  be a combina to r i a l  reason why 
the fo rmula  is squarish.  However ,  Kas te leyn ' s  p r o o f  of (1) used the Pfaffian 
method, which entai ls  showing tha t  the number  of til ings is the Pfaffian 
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FIG. 1. A domino tiling of the ordinary chessboard, and the corresponding matching of 
its dual graph. 
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FIG. 2. Sample graphs G (top row), G 2 (middle row), and G 4 (bottom row). The graph 
G in the left column is the dual of the ordinary chessboard; G in the right column is a 
"general" 4-odd-symmetric graph. In each case, the dot in the center of the graph denotes the 
origin. The points where the circular parts of edges join the straight parts are not vertices, even 
when the two pieces meet at an angle. All other points where lines come together at an angle 
are vertices. 
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(i.e., the square root of the determinant) of a certain matrix A. Kasteleyn 
then computes the determinant by finding the eigenvalues of A. The argu- 
ment is highly noncombinatorial. Other proofs have been found since, 
using transfer matrices for instance ELi; $1, pp. 273-274], but none is 
combinatorial, and all depend heavily on linear algebra. 

A (perfect) matching of a graph G is a subset of the edges of G which 
includes exactly one of the edges at each vertex of G and does not include 
any loops. The above domino tiling problem is equivalent to a matching 
problem: If we let G be the dual graph of the n x n chessboard, a domino 
tiling determines a matching in a natural way--include an edge in the 
matching if its endpoints lie on the same domino in the tiling (Fig. 1). This 
is a bijection between the domino tilings of the chessboard and the 
matchings of G, so counting the domino tilings of the chessboard is 
equivalent to counting the matchings of G. Problems involving the 
matchings of some graph arise in many contexts, and matching theory is 
a thriving subject; for a good general reference, see [LP] .  

The dual graph of the chessboard is an example of a 4-odd-symmetric 
graph (defined in the next section; for an example, see Fig. 2.) Several 
people have counted the matchings of specific 4-odd-symmetric graphs 
[EKLP,  Ku, Y]; in each case, they found that the number of matchings 
is squarish. Our main result is that the number of matchings of any 4-odd- 
symmetric graph is squarish. Although our proof is not strictly bijective, we 
feel it does provide combinatorial insight. Furthermore, it provides a com- 
binatorial interpretation of the square root. We then prove some related 
results for graphs with other rotational symmetries. We conclude by men- 
tioning some related unsolved problems and possible avenues for further 
investigation. 

2. DEFINITIONS AND NOTATION 

The punctured plane is the plane with the origin removed. A plane graph 
is a graph embedded in the plane or the punctured plane whose edges do 
not intersect, except at their endpoints. Let G be a plane graph; loops and 
multiple edges are allowed. Then V(G) and E(G) denote the vertex and 
edge sets of G. We say that G is bipartite if the V(G) can be partitioned into 
two sets (the parts) such that every edge of G has one endpoint in each 
part. A k-factor of G is a multiset of edges of G which includes exactly k 
edges indicent on each vertex v of G (a loop at v counts as two edges 
incident on v). A 1-factor is the same as a matching. M(G) denotes the 
number of matchings of G. 

If G is embedded in the punctured plane, we can classify the cycles of G 
as contractible and noncontraetible cycles. Note that a 2-factor is a union of 
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disjoint cycles; we say that a 2-factor is contractible if all its cycles are con- 
tractible. We say that a cycle is trivial if it consists of two copies of the 
same edge, together with its endpoints. An alternating set of edges in a cycle 
is a subset of the edges of the cycle which includes exactly one edge 
incident on each vertex of the cycle. A cycle of odd length has no 
alternating sets of edges. A cycle of even length has one alternating set of 
edges if it is trivial and two otherwise. Given a 2-factor in a bipartite 
graph G, we can find a matching in G by arbitrarily selecting an alternating 
set of edges from each cycle. 

We say that a graph G is k-symmetric if G is a bipartite graph, embedded 
in the punctured plane with noncrossing edges, and a 360/k degree rotation 
Rk of the punctured planed about the origin maps G to itself. If G is con- 
nected, we say that the symmetry is even or odd according to whether the 
number of edges in a path between a vertex v of G and Rk(v) is even or 
odd. Given a k-symmetric graph G, we let G~ denote the graph whose 
vertices and edges are, respectively, the Rk-orbits of vertices and edges 
of G. For  instance, the vertices of G 2 are  sets {v, Rz(O)} , where v is a vertex 
of G. Note that in the 4-odd-symmetric case, G2 is bipartite but G 4 is not. 
Sample graphs G, G2, and G 4 are  shown in Fig. 2. We will always assume 
that the Gk are embedded in the punctured plane as shown (copy a 1/k pie 
piece of G, with no vertices on the boundary of the copied region, then put 
in circular arcs centered at the origin to connect up edges which were cut 
by the copying). There are natural graph maps ~k: G-~ Gk defined by 
~k(v) = w iff v ~ w, etc. If G is 4-symmetric, we also define ~ : G 2  ~ G4 by 
~ ( v )  = w iff v c w. If m is a matching (1-factor) in G, then ~2(m) is a 
2-factor in G2. ~ behaves similarly. When thinking about the Gk, it is 
helpful to think of the edges into which circular arcs were inserted as being 
in no way fundamentally different from the others; indeed, the choice of 
where to insert the arcs has no effect on the structure of the graph. 

We define the winding number w of an oriented edge e of G in the usual 
manner: w(e)=Se dO/2m However, if e is an edge of Gk, then we let 
w(e) = w(f), where f is any edge of G with ~k(f)  = e. We say that a cycle 
is oriented if its edges are assigned compatible orientations, the head of one 
serving as the tail of the next. The winding number of an oriented cycle is 
the sum of the winding numbers of its edges. Contractible cycles always 
have winding number 0; since the graphs are planar, noncontractible cycles 
always wind once around the origin, which means that noncontractible 
cycles in G and Gk have winding numbers _+ 1 and _+ 1/k, respectively. 
Lastly, we say that a 2-factor is oriented if each of its cycles is oriented 
independently, and the winding number of an oriented 2-factor is the sum 
of the winding numbers of its component cycles. 

Given a cycle c in Gk, it will be helpful to understand the structure of 
~- i (c) .  To this end, we say that a path q in G is a lift of a path p in Gk 
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if ~k(q)--P. We can cut an oriented cycle c in Gk at any vertex to obtain 
a path p; we say that a path q in G is a lift of c if q is the lift of such a 
path p. If the endpoints of the path q are the same, we say that the cycle 
d thus obtained is a lift of c. Note that a lift of a cycle e contains exactly 
one of the k inverse images (under rtk) of each edge of c, and that lift 
preserves winding number. Hence, the structure of rckl(c) is determined 
by the structure of c. That is, if c has winding number 0 (i.e., if c is 
contractible), then a lift of c also has winding number 0 and is therefore a 
contractible cycle; hence rt~-l(c) consists of k contractible cycles. However, 
if c has winding _+ l/k, a lift of c also has winding number _+ 1/k and 
cannot be a cycle. Therefore, ~-1(c)  must be a single cycle with winding 
number _+ 1, i.e., a noncontractible cycle. 

We define lifts from G 4 to G 2 similarly. A similar argument then shows 
that the same conclusions hold for re;: if e is a contractible cycle in G4, then 
7t;-1(c) consists of two contractible cycles in G2, and if c is a noncon- 
tractible cycle in G4, then rc;-l(c) is a single noncontractible cycle in G2. 

3. PERFECT M A T C H I N G S  AND PERFECT SQUARES 

We are now ready to state and prove our principal result. 

THEOREM 1. Let G be a 4-odd-symmetric graph. Then 

n 2 umber of nontrivial, contractible cycles \ 
M(G) - -  • 2 + 1/2 number of . . . . . .  tractible cycles ~ . (2) 

/ 2-factors of G4 

This is a square i f  the number of  vertices of  G 4 is even and double a square 
otherwise. 

Remark. The author has examples which show that all of the condi- 
tions in the definition of a 4-odd-symmetric graph are needed for the con- 
clusion of Theorem 1. It is conceivable, however, that a weaker result could 
be established for a larger class of graphs. 

We prove (2) by the following sequence of identities, whose proofs are 
given below: 

M(G) = y '  2number of nontrivial cycles in f ( 3 )  

contractible 2-factors of (72 

= Z e~iw(h) ( 4 )  

oriented 2-factors h of G 2 

= ~ e ~i(w(hl)+w(h2)) (5) 
ordered pairs (hl, h2) of oriented 2-factors of G4 
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( • )2 
M(G) = ~ e niw(h) (6). 

oriented 2-factors h of G 4 

= 1-[ 2 e~iW(c) (7) 
2-factors f of G4 cycles c o f f  orientations of c 

number  of nontrivial,  contractible cycles X~ 2 
= • 2 + 1/2 number  of . . . . . .  tractible cycles ) . ( 8 )  

2-factors of G4 

Proof of (3). If m is a matching (i.e., .a 1-factor) of G, then n2(m) is a 
2-factor of G2. An example is in Fig. 3. Given a 2-factor f of G2, we count 
the matchings m of G with n z ( m ) = f .  Suppose f contains a nontractible 
cycle c. The inverse image n [ l ( c )  is a single noncontractible cycle d. Any 
matching m of G with r c2 (m)=f  would have to include half of the edges of 
d, i.e., an alternating set of edges of d, but the image of such a set is two 
copies of the same alternating set of edges of e, where one copy of each 
alternating set is needed. Hence there is no such matching m. 

Now suppose f is contractible. For  each trivial cycle in f both edges in 
the inverse image must be in m; there is one way to do this. Now consider 
a nontrivial, contractible cycle c of f The inverse image of c consists of two 
disjoint cycles in G. We need to pick an alternating set of edges in each 
such that the image of the union of the alternating sets is c. There are two 
ways to do this. This choice can be made independently for each nontrivial, 
contractible cycle of f Equation (3) follows. 

Proof of (4). Equat ion(4)  is an immediate consequence of the 
following claim. 

CLAIM. Tke sum of the terms on the right-hand side for the orientations 
k of a 2-factor f is the same as tke term for f on tke LHS. 

Proof of Claim. Suppose f contains a noncontractible cycle c. Pair up 
the terms in the RHS in which all cycles except c have the same orientation 
and e has opposite orientations. The winding numbers of corresponding 
terms will differ by 1, so they will cancel in the sum; hence the terms on 

I I - -  
- - I I  - -  

i [ I  • F 

I I I I  

FIG. 3. A sample matching of the dual G of the ordinary chessboard, and the corre- 
sponding 2-factor of G 2. Again, the black dot denotes the origin. 
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the RHS for a noncontractible 2-factor add to 0. On the other hand, if f 
is contractible, then every orientation of f has winding number 0, so the 
sum of the terms for orientations of f on the RHS is just the number of 
orientations of f ,  which is 2 number of nontrivial cycles in f 

Proof of (5). We produce a bijection 7 between the set of oriented 
2-factors of G2 and the set of ordered pairs of oriented 2-factors of G 4. To 
define 7, arbitrarily pick one of the parts of G2 to be the black part; the 
other part is the white part. Since R4 reverses the parts of G, if e is an 
oriented edge of G4, o n e  of the two inverse images (under re;) of e will 
point from the white part to the black part and the other will point from 
the black part to the white part. Given an oriented 2-factor h of G2, let m I 
be the oriented matching consisting of those edges of h which point from 
the black part to the white part, and let rn2 be the oriented matching con- 
sisting of those edges which point from the white part to the black part. Let 
hi = 7c;(ml) and h2 = g~(m2).  Then hi and h 2 a re  oriented 2-factors of G 4. 

(Why? Consider any vertex v of G 4. Its inverse images are a black vertex 
and a white vertex of G2, and there is an edge of h coming into and going 
out of each. These four edges give rise to an edge coming into and going 
out of v in each of hi and h2. ) Samples h, h, ,  and h2 are shown in Fig. 4. 
Let 7(h) = (hi, h2). Inversely, given two oriented 2-factors hi and h 2 of  G4,  

let ml consist of those oriented edges in the inverse image of hi which point 
from the black part of G2 to the white part, let m 2 consist of those oriented 
edges in the inverse image of h2 which point from the white part to the 
black part, and let 7-1(hl,h2)=rnaum 2. It is easy to check that 
7-1(h1, h2) is an oriented 2-factor, 7 is a bijection, and that if 7 ( f )  = (f~, f2) 
then w(f) = w(fl) + w(f2). Equation (5) follows. 

Equations (6) and (7) are clear. 

Proof of (8). A trivial cycle has one orientation and this orientation has 
winding number 0, so trivial cycles have no effect on the product on the 
LHS. The two orientations of each noncontractible cycle in f have winding 
numbers _+ 1/4 and the two orientations o f  each contractible cycle have 
winding number 0. Hence, each noncontractible cycle contributes a factor 
of e~i/4-l-e ~i/4= 21/2 and each contractible cycle contributes a factor of 
e ° + e ° = 2. Equation (8) follows. 

To complete the proof of Theorem 1, we need to show that the RHS of 
(8) is a square when G4 has an even number of vertices and double a 
square otherwise. To check this, we recall that contractible cycles in G 4 lift 
with multiplicity 1 to cycles in G2, which is bipartite, and hence contain an 
even number of vertices. Noncontractible cycles, by contrast, lift to paths 
in G2 with winding number +_ 1/4. Since R 4 r e v e r s e s  the parts of G, the 
endpoints of such paths are in opposite parts of G2; hence noncontractible 



PERFECT MATCHINGS AND PERFECT SQUARES 107 

FIG. 4. An orientation h of the 2-factor from Fig. 3, with a selected black part (vertices 
with heavy dots), and then corresponding ordered pair 7(h) of 2-factors of G 4. The "black-to- 
white" 2-factor h 1 is at the left; h 2 is at the right. 

cycles in G 4 pass through an odd number of vertices. It follows that if f is 
a 2-factor in G4, the parity of the number of noncontractible cycles in f is 
the same as the parity of ] V(G4)]. Hence the exponent in every term of the 
sum on the RHS of (2) is an integer if IV(G4)] is even and half an odd 
integer otherwise. Theorem 1 follows. 

4. OTHER SYMMETRIES 

We now discuss the situation for k-even-symmetric graphs. We assume 
throughout this section that G is a k-even-symmetric graph. One part of G 
(and the corresponding part of Gk) has been arbitrarily chosen as the white 
part; the other part is the black part. We first show that in the case k = 2, 
M(G) is a sum of two squares. 

We will need the concept of weighted rnatchings Let A be a commutative 
ring. A weight function u for a graph G is a function u: E(G) ~ A. If e is an 
edge of G, we say that u(e) is the weight of e. The weight u of a k-factor 
is the product of the weights of its edges. Finally, the weight sum Mu(G) of 
the matchings of G is ~V'matching s m of G u(m). 

Let G be a 2-even-symmetric graph. Let B be a "branch cut" in the 
plane; that is, let B be a ray with its endpoint at the origin which does not 
pass through any vertex of G. (More generally, B can be any semi-infinite 
path which does not intersect any edge of G infinitely often and does not 
intersect itself or its 360/k degree rotation, except at the origin). Let the 
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weight u(e) of an edge e of G be i e c,, where c is the number of times the 
path traversing e from its white endpoint to its black endpoint crosses B or 
R2(B ) in the counterclockwise direction, and c' is the number of times the 
same path crosses B or R2(B) in the clockwise direction. Let the weight of 
an edge of G2 be the weight of one of its inverse images in G. We have the 
following: 

THEOREM 2. 

where 

Proof 

M(G) = Mu(G2) M,(G2), 

denotes complex conjugation. 

We have 

M(G) = ~ e ~iw(h) (9) 
oriented 2-factors h of G 2 

= 2 U(hl) u(h2) (10) 
ordered pairs (hl, h2) of matchings of G2 

= M,(G2) Mu(a2). (11) 

The proof of (9) is the same as the proof of (4). Equation (10) follows 
from the bijection between oriented 2-factors h and ordered pairs of 
matchings given by h~--~ (hi, h2), where hi consists of those edges of h 
which point from the white part to the black part, and h2 consists of those 
edges of h which point from the black part to the white part. Equation (11) 
follows from the definition of weight sum. This completes the proof. 

Upon seeing Theorem 1, Richard Stanley suggested that the determinant 
method, together with the change of basis described below, might allow 
one to obtain similar theorems for other symmetries. This has proved to be 
correct. Let G be a k-even-symmetric graph, and pick a branch cut B as 
above. Let the crossing number cr(e) of an edge e be c - c', where c and c' 
are the number of times the path traversing e from its white endpoint to 
its black endpoint crosses one of B, Rk(B) ..... R~- I(B) in the counterclock- 
wise and clockwise directions, respectively. Let the weight u(e) of an edge 
e of Gk be x or(el, where x is an indeterminate. By assigning a complex value 
to x, we obtain a complex weight function Ux on Gk. Let co = e "~/k. We have 
the following: 

THEOREM 3. 

M ( G ) =  [ I  M.x(Gk), (12) 
x ~ S  
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where 

f {1, 2, ..., 2k- 2 } i f  k odd 
S =  ((co, co3 ..... co 2k-1 } i f k  is even. 

Note that this specializes to Theorem 2 in the case k = 2. Before we can 
prove Theorem 3, we need to sketch the determinant method for finding the 
weight sum of the matchings of a bipartite plane graph. The method is 
essentially due to Kasteteyn and has been around as "folklore" for some 
time. The author is unaware of any published proof that the method works, 
although its correctness follows from that of the very similar but somewhat 
more general Pfaffian method. The first general description of the Pfaffian 
method was given by Kasteleyn [K67];  expositions of the Pfaffian method 
(with proofs) appear in [LP,  Sect. 8.3; Ku] ,  among other places. The 
determinant method has been applied to specific graphs in [ K u ]  and I-Y]. 
The reader is warned that some some authors use the name "determinant 
method" for what we and [ L P ]  call the "Pfaffian method." 

The biadjacency matrix B(G) of a graph G is a matrix with rows corre- 
sponding to vertices in one part of G, columns corresponding to vertices in 
the other part, and B(G)~, w equal to the sum of the weights of the edges 
between v and w. Note that each nonzero term in the permanent of B(G) 
corresponds to an equal term in the weight sum of the matchings of G, so 
M(G)=per(B(G)). The idea behind the determinant method is to find 
another matrix whose determinant is term-by-term the same as per(B(G)). 

We say that a cycle F of a plane graph G is a face if there is no path in 
G between two vertices of F which lies (except for its endpoints) strictly in 
the interior of F. Given a cycle C of G, we let int(C) denote the number 
of vertices in the interior of C and [CI denote the number of vertices lying 
on C. We say that C is nice if G -  C has a perfect matching. Note that if 
C is nice, then int(C) is even. Suppose that a matching m of G contains an 
alternating set of edges A in some nice cycle C. A nice cycle move on m con- 
sists of removing A from m and replacing it with C -  A. Since the union of 
any two matchings is a union of disjoint nice cycles, it is possible to turn 
any matching of G into any other by nice cycle moves. Let $1 denote the 
set of complex numbers with absolute value one. We say that a function 
d : E ( G ) ~ S  1 is a determinantal function for a bipartite plane graph G 
provided that for any face F of G and any alternating set Q of edges of F, 

[I  d ( e ) = ( - 1 )  IFI/2+int(F)+l 1-I d(e). (13) 
e~Q e ~ F - Q  

THEOREM 4. 1. Every bipartite plane graph has a determinantal funetion. 
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2. I f  d is a determinantal function for G, and C is a cycle of  G and Q 
is an alternating set of edges for C, then 

H d ( e ) = ( - l )  ICI/2+int(C)+l U d(e). ( 1 4 )  

e~C eEC--Q 

In particular, i f  C is nice, we can drop the term int(C) in the exponent. 

3. I f  d is a determinantal function for G, then for any weight function 
u on G, Mu= c det(Aa), where c~ S 1 is a constant which does not depend on 
the choice of u, and Ad is a matrix with rows corresponding to vertices in the 
black part of  G, columns corresponding to vertices in the white part of  G, and 
entries 

Aa~,= ~ u(e) d(e). 
edges e from v to w 

Proof (Sketch). 1. First pick values of d arbitrarily on a spanning tree, 
then pick values for additional edges one at a time, completing a face at 
each step, and ensuring at each step that (13) holds for the new face. 

2. By induction on ICI +int(C).  If C is a face, we are done. 
Otherwise, find a path between two vertices of C which lies strictly in the 
interior of C. We now have a figure shaped like the letter "0" with C and 
two smaller cycles; use the truth of (13) for the smaller cycles to prove (13) 
for C. 

3. We know that every matching m of G contributes a term CmU(m) 
to det(Ad), where cm ~ S 1. We need to show that cm does not depend on m. 
It is enough to show that Cm is not affected by a nice cycle move. But (14) 
ensures exactly this. Recall that a nice cycle always has an even number of 
interior vertices. When the length of the cycle is a multiple of 4, the change 
in sign coming from the parity coefficient in the determinant is cancelled by 
the factor of ( - 1 )  tcl/2+int(c)+~= - 1  multiplied into d(m) when one alter- 
nating set of edges is exchanged for the other. When the length of the cycle 
is not a multiple of 4, both the sign of the term in the determinant and 
d(m) are unchanged. 

We are now ready to prove Theorem 3. We can assume that every edge 
of G appears in some matching. (If any edge does not, then neither do any 
of its images under repeated 360/k degree rotation, nor does its image in 
Gk appear in any matching of Gk, so we can remove them all without 
affecting either side of (12).) Let dk be a determinantal function for Gk. 
Define d: E(G) ~ S 1 by 

d(e) = ~dk(nk(e)) odd k 
[CO°r~e)dk(zck(e)) even k. 
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LEMMA. The function d is a determinantal function for G. 

Proof Let F be a face of G. We consider two cases. If F is noncon- 
tractible, the fact that F is a face implies that Rk(F)= F. In particular, the 
length of F is a multiple of k. Let Fk = rck(F); then Fk is a face of Gk, and 
rc~-~(Fk) = F. We can now check directly from the definition of d that (13) 
holds for F. 

On the other hand, if F is contractible, then F does not contain both v 
and R(v) for any vertex v. To see this, assume the contrary. Then removing 
rCk(V ) from Gk would disconnect Gk. At least one component  H k of the dis- 
connected graph will have an odd number  of vertices. Therefore one part  
of Hk has one vertex more than the other; we assume without loss of 
generality that the white part  has more. Then the white part  of rc~-l(Hk) 
has k more vertices than the black part  of nk-~(Hk), so the pigeonhole prin- 
ciple ensures that in any matching of G, the vertices v, R(v) ..... R k- ~(v) are 
matched into rc~-~(Hk). Hence edges between v and components of Gk other 
than Hk cannot appear; since there is at least one such edge, this con- 
tradicts the assumption that every edge of G appears in some matching. 

Hence F is the lift of a face of F '  of Gk, and we can use the fact that (13) 
holds for F '  to check that it also holds for F. 

Proof of  Theorem 3. Put  the matrix Ad into the basis consisting of the 
vectors v+ w2JRk(V)+ w4JR~(v)+ ... + w 2(k 1)JR~ ~(v), where v ranges 
over the vertices between B and Rk(B) and j ranges from 0 to k -  1. The 
resulting matrix has k blocks along the diagonal, and each block is a 
matrix Adk for Mux(Gk), where x = c o  2j (if k is odd) or x = c ~  2i+a (if k is 
even). Hence we have 

M(G) = c det(Aa) 

k - - 1  

= c  I~ det(A4) 
j = 0  

=c' f I  M~(Gk). 
x E S  

Here c and c' are constants in S 1. To complete the proof, we note that 
c ' =  1, since M(G) and [Ix~s Mux(Gk) are both nonnegative reals-- the 
former is a combinatorial  quantity; the terms of the latter can be paired off 
into complex conjugates, and the leftover term in the odd case (corre- 
sponding to x = 1) is M(Gk), another combinatorial  quantity. 
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5. W E I G H T E D  VERSIONS 

Theorems 1-3 and their proofs all hold in the more general context of 
weighted matchings. We use Theorem 1 to illustrate. Let A be an arbitrary 
commutative ring with unity, and give the edges of G 4 weights in A. The 
weight of an edge of G o r  G 2 is defined to be the weight of its image in G 4. 

If A contains an element co with 094= -1 ,  then let B = A .  Otherwise, let 
B=A[co],  where c04=-1.  Henceforth, co plays the role of e ~i/4, and 
(co+co-1)2=co2+co-2+2=2,  so co+co-1 plays the role of 21/2. 

Theorem 1 now reads 

THEOREM 1'. Let G be a 4-odd-symmetric graph. Then 

Z u(m) = ( Z 
matchings m of G 2-factors f 

number ofnontrivial . . . .  tractiblecyeles (f)\2) 
2 + 1/2 number of noncontractible cycles U 

of G4 

This is a square in A if  the number of vertices of  G 4 is even and double a 
square otherwise. 

The only changes in the proof are that all computations are done in B, 
and that whenever we sum over the k-factors of some graph, each 
summand is multiplied by the weight of the corresponding k-factor. 

Similarly, Theorems 2 and 3 have weighted versions, which we will call 
Theorems 2' and 3'. In these cases, our graphs could now have two dif- 
ferent kinds of weights--the ones that arose in the proofs, and the ones we 
assigned to Gk. Whenever both kinds are present in a summand, we 
multiply them to find the total weight of the summand. 

The author thanks the referee for the following corollary to Theorem 3'. 
We assume that the reader is acquainted with the definitions of plane parti- 
tions and their symmetry classes, which are contained in [$2]. For a class 
C of plane partitions, Cq denotes Zep~ c q IP~°l. 

C O R O L L A R Y .  

PP(a, a, a)q3 = CSPP(a)q CSPP(a)~oq cseP(a)o~Zq. 

Proof By a bijection in [Ku], the left-hand side counts the matchings 
of the graph G in Fig. 5, with the weights shown; the weights have been 
chosen so that adding a cube to the plane partition will increase the weight 
of the corresponding matching by a factor of q3. The right-hand side is a 
product of the weight sums of matchings of G3, with three differents sets 
of weights coming from Theorem 3'. 
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1 
q2~- -~q3 

l q ~  2 

q q 2 

1\ /1 
q2 

Fie. 5. A graph whose matchings are in bijection [Ku] with the plane partitions in the 
2 x 2 x 2 box. The weights have been chosen so that the weight of any matching is q3 !Pel, 
where IPP[ is the number of cubes in the corresponding plane partition. The bijection may 
be briefly described as follows. Think of the plane partition as a collection of cubes in the first 
octant. Look at it along the line x = y = z. You will see a tiling of the hexagon. Each tile is 
the union of two equilateral triangles. The matching is the dual of this tiling. 

Remarks. 1. It is known [Ku] known that counting symmetry 
classes of size-constrained plane partitions is the same as counting sym- 
metry classes of matchings of a certain hexagonal graph. Greg Kuperberg 
has recently counted the cyclically symmetric, self-complementary plane 
partitions [Kul ,  and George Andrews recently counted the totally sym- 
metric, self-complementary plane partitions l-A]; they found that the 
number of the former is the square of the number of the latter. Currently, 
no combinatorial explanation of this is known. 

2. Here are some possible extensions of the present work: 

• Can we find analogous of Theorems 1-3 for k-factors of a graph, 
where k > i? 

• Is there an analogue of Theorem 1 for 2k-odd-symmetric graphs, 
k > 2? What if the graph also has reflective symmetry? (The case k = 1 
seems unpromising as here the author has examples of such graphs with 
any arbitrary number of matchings. These graphs also have lines of reflec- 
tive symmetry.) 

• What about graphs on manifolds other than the punctured plane, 
e.g., the torus? The combinatorial methods of Theorems 1 and 2 do not 
seem to work because it is possible to have cycles with winding number 
other than 0 or _+ 1. Kasteleyn gives (without proof) a way to write the 
number of matchings of a torus graph as the sum of four Pfaffians 
[K61, K67]. Does this help? 
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• A combinatorial proof of Theorem 3 in the spirit of the proofs of 
Theorems 1 and 2 would be interesting. The referee points out that in the 
case where k is a power of 2, Theorem 3 can be proved by induction, where 
each step is essentially the same as the proof of Theorem 2; the only dif- 
ference is that we introduce all 2 k copies of the branch cut right from the 
start. The author's attempts to find such a proof in other cases have been 
stymied by the fact that in contrast to 2-factors, which decompose into a 
union of disjoint cycles, k-factors with k > 2 do not seem to have a nice 
structure. Even if no such combinatorial proof exists, the author feels that 
there should be a simpler proof than the one given here. In particular, we 
should not need to assume that each edge of G appears in at least one 
matching. 

• We still seek a bijective explanation of the mystery cited at the 
beginning of the Introduction. That is, is there a natural bijection between 
the domino tilings of the 4n x 4n chessboard and S(n) × S(n), where S(n) is 
some set? What about a bijection between the domino tilings of the 
(4n + 2) x (4n + 2) chessboard and {0, 1 } × T(n) x T(n), where T(n) is some 
set? Is it possible to do this for other 4-odd-symmetric graphs? The 
problem seems to be difficult; the factor of 2 is especially troublesome. 
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