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Abstract

We consider the problem of assigning optimal due dates and optimal starting
times to a set of identical jobs on a single machine when processing time on the
machine is random. There are N identical jobs ready to be scheduled on the machine
and processing time on the machine is random with known distribution. We assume
that the same raw material is required for all jobs to start and that it is available at
no additional cost. There is an earliness/tardiness cost for finishing a job one unit
of time past/prior to its due date . There is also a cost for quoting an uncompetitive
due date for each job in the set, this cost being zero if the quoted due date does not
exceed a certain ”acceptable” value A. The objective is to minimize the expected
total cost of quoting the due dates and scheduling the jobs in the set. The optimal

due dates and the optimal starting times are determined analytically. They are



the unique solutions to a set of first order conditions. We show that there exists
an optimal solution where the due date of the last job to be processed is at least
equal to A. We also show that the optimal starting time for a particular job in
the set 1s described by a simple wazt-until policy. This optimal policy is completely
determined by a single critical number, which represents the optimal planned lead
time for that job. We also show that the optimal planned lead times are non-
increasing with the position of the job in the sequence, with the exception of the
planned lead time of the first job to be processed being the smallest. Finally we
show that adding a job to a preexisting set of jobs results in quoting earlier (or the

same) due dates to the jobs in the former set.

1 The Problem

1.1 Introduction

A set of N identical jobs are ready to be scheduled for processing on a machine. The
optimal due dates for these identical jobs need to be quoted before any processing occurs
on the machine. We assume that the same raw material is required for all jobs to start
and that it is available at no additional cost. The machine cannot process more than one
job at a time. The jobs consist of projects that must be completed once started in order
to be delivered to different customers, hence preemption is not allowed. Since all jobs are
identical with the same cost structure, they will be scheduled in an Earliest Due Date
(EDD) sequence. Denote by job N the job with the earliest due date, hence the job to be
started first. The processing time 7 at the machine is random with known distribution
F. Once the due dates d¥, i = 1,.., N of the jobs are quoted, it is required to determine
the optimal starting policy y7 (L, di-1,...,d1), 1.e. the optimal waiting time before starting
job ¢, 4 =1,...,N, given that d; is [; units of time away and given the quoted due dates

di—1,...,d1. Obviously, yx (IN,dn-1,...,d1) = 0. This observation stems from the fact that



having assumed job .V is ready to be processed, we would like to quote its due date as
early as possible, hence Iy = dy. The objective is to minimize the cost of quoting the
due dates and scheduling ‘jobs N through 1. A holding cost A per unit time is incurred
if a job is completed before its quoted due date and a shortage cost p per unit time is
incurred otherwise. The cost of quoting an uncompetitive due date is C (.), assumed to
be a strictly increasing function of the due date, convex, continuous, twice differentiable,
and zero for a due date no greater than the acceptable limit A (Jones [10]). A is a value
determined by the market and by the customer conception of how long is he or she willing

to wait before her order is delivered.

1.2 Background

Considerable research has been done on assigning optimal due-dates for the single machine
scheduling problem with earliness/tardiness penalties. In their surveys, Baker [1] and
Cheng [3] report of no analytical work done with the machine having random processing
time. Further work with deterministic processing time have been done by De, assuming
a given common due date in 7] and assigning distinct due dates in [8], and by Cheng [4]
assigning the same time window (flow allowance) to all jobs. Random machine processing
time has been considered in conjunction with random due dates as in De [6] and Emmons
[9] with the objective of minimizing the weighted number of tardy jobs. We are not
aware of any past research that considers random processing time and assigns distinct
optimal due dates with earliness and tardiness penalties. Cheng [5] considers a model
with random due dates and tardiness/earliness penalties. However, the model does not
assign optimal due dates and neither does it determine optimal starting times on the
machine for the different jobs in the set. The objective of our paper is to develop a
methodology for determining optimal starting times and optimal due dates for a set of
jobs ready to be processed on a single machine, in order to minimize the total production

and due dates quoting costs in a random processing time environment. This paper is



organized as follows. In section 2, we analyze the case when N = 2. We determine the
optimal due dates dj and dj and the optimal starting policy y; ({;) for job 1. We show in
this section that for N = 2, there exists an optimal solution where the due date of the
second job to be processed is at least equal to A and that it is bounded by the sum of the
highest realization of the processing time on the machine and the optimal planned lead
time of the second job to be processed. In section 3, we analyze the case when N =3 to
illustrate the derivation of the optimal starting policy whenever there is more than one
remaining job to be processed, a situation that does not occur when N = 2. Hence for
N =3, we determine y; (l2,d), y3 (L), d3, d5 and di. We show in this section that the
optimal planned lead time of the second job to be processed, which completely determines
the optimal starting policy of that job, is at least equal to the optimal planned lead time
of the third job to be processed. We also discuss the effect of adding a third job on the
optimal due date of the second job to be processed and show that it decreases (or stays the
same). In section 4, we discuss the economic interpretation of the first order conditions
that give rise to the optimal due dates and to the optimal starting policy and we discuss
in section 5 the managerial insights provided by the practical results obtained in sections
2 and 3. We generalize in section 6 for N > 3. Section 6 may be skipped if the reader is
not interested in the mathematics. We conclude in section 7 by suggesting some further

directions in research.

2 Two-Jobs Model

Suppose that N = 2. We use backward stochastic dynamic programming to determine d3,
d; and yj (I1). The first stage is triggered when job 2 is done processing. Figure 1 depicts

the time advances in a two-jobs model. The first stage problem is defined as following:

hi-wn
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where the first term is the expected holding cost and the second term is the expected
shortage cost. It can be easily checked that J; (/1) is convex in y; by differentiating it
twice. Therefore, the optimal solution y; (/1) to the first stage problem is obtained by
differentiating equation (1) with respect to y; and setting to zero. Doing this we get the
following wast-until policy, where we wait l; — X units of time before processing the job

if {; > X7, and process immediately otherwise.

. L-Xr ifly > X!
yi () = 1 ' (2)
0 otherwise

where X; = F{'[p/ (p+ h)] is called the optimal planned lead time for job 1. Figure 1

shows that [, = d; — 7,. Hence the second stage problem is defined as following:

Min J; (dy,dy) = C(d2)+0(d1)+h/0d’ (dy — ) fo (u) du +

p [ (u=d) folu)dut BLJ; (dr =) )

s.t. dl zdg 20

Our goal is to show that the Hessian of J; (d2,dy) is non-negative. The Hessian of the
first four terms is non-negative by assumption and from the first stage analysis. Suppose
that J; (I;) is convex in I3, then we are done. Our goal is to show that Ji (i) is convex

in ;. Substituting (2) in (1), we get

B (Xp—0) i) dt+p S (t= X)) fi(t)dt b > X]

(4)
RfE (=t ) dt+p [P (t—h) ilt)dt  Xi>h

Ji(h) =

It is easy to see that (4) is continuous and differentiable at [y = X}. Finally, differen-
tiating J; (k) twice shows that it is convex in /; and hence the Hessian of J, (dz, d1) is
non-negative. To determine dj and dj, we substitute l; by (d; — 7;) in (4), apply the

expectation operator, differentiate (3) with respect to d; and d; and set to zero. Doing



this we get
dy di—u
ElJ(d—7) = h /0 (dy—u—1t) fy () fo (u) dtdu + (5)
di 0
P Joxs /dl_u (t+u—d)fi(t) f(u)dtdu +
P/Oo(ﬂ1+u—d1)f2(u)du+

H[T s [T e a0 a] [ pwa

and hence
Shldnd) C'(d) + E'[J; (d1 — 7))
5d1
X! 00
= C,(d1)+[h/(; (X{ =t A t)dt-i-P/X‘ (t“X;)fl(t)dt} fa(di = XT) +
/dl /d‘—” u) dtdu — hf, (d )/X;(X*—t)f(t)dt_
d1 2\%1 — 0 1 1
Pl i A0 o) didut oo () [, 01~
phd=X) [ (=X fi®dt—p [ hr(wdu-pufi(d)=0 (6)
6J2 /d,dl , da © -
ESdZ ) - C(d2)+h/0 fz(u)du—p[iz fa(u)du=0 (7)

which reduce to

hldnd) _ o4y +E [J" (dy - )]
7
= d1 +h /dl‘“ dtdu_
. dl_ufl ) fa () dtdu—p/dl frw)du=0  (8)
6.3 (da, d i = ”
22;2 o= Ok [ i [ fu)du=0 )

dy > 0 can be determined easily from (9). d; satisfies

p—C'(d3)

d*=F—l
2 [ p+h

] <X (10)
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Proposition 1 d} > d;

Proof: To show that d} > dj, we substitute d; by d; in (8). Doing this we get
0Jy (dy, d 4 u
82 (dr, ) = ¢ d*+h/ / w) dtdu —

5d, =
p / (0 () didu—p / fa () du

- h-I—p/ / () fo () dtdu — p

! * 5] d ,d
< O+t [ (u)du—p=—2§—2—ﬁ|d2=d; _
0 5d2

Proposition 2 There exists an optimal solution with dj > A.

Proof: E'[J; (d; — 73)] is non-decreasing in d and E' [J} (dy — )] = 0 for dy > 7 + X;
where 7 is the largest realization of the machine processing time. This can be shown by
differentiating E [J; (dy — 2)] twice with respect to d;. Doing this we get

§’E [J5 (d1 — )]

d1 X;
= b7 Rld-wfdu=h [T h(d - X)) A d

5d? dy- X}
dq o)
b [ Al = fawdup [ fa(d - X5) S (6)d
40 [ (s = X0) (0 dt + pfady — X)
dy
= (h+p) [ il () du20

Hence E' [J; (dy — 73)] < 0. Note also that C'(d;) =0 for d; < A. Therefore
{r,zce [T+ XA} HT+XI<A

di = (11)
> A otherwise

3 Three-Jobs Model

Before extending the problem to N jobs, it is necessary to analyze the case when there

are three jobs in order to illustrate the derivation of y3 (I2,d;) . In a three jobs problem,

7



the starting time of job 2 depends on the optimal planned lead time of job 1. Figure 2
depicts the time advances in a three jobs problem. In a three jobs problem. the decision
variables are ds, d, and d; at stage 3, y, at stage 2 and y, at stage 1. y; is given by the

optimal starting policy defined in (2). To determine y;, we solve

l2—y2
J3 (l,di) =Mingo h [(l2 —y2) = t] fa(t) dt +
0

o0

p t—(L—y)] fa(t)dt + E[J] (L) (12)

la—y2

To solve (12), we substitute l; by (l; =y, + d; —dy — 73) in (4), substitute (I, —y;) by
X, in (12), differentiate (12) with respect to X; and set it to zero. Note that convexity
in X, is conserved since J; (I;) was shown to be convex in /; in a two jobs problem and
the first two terms are convex. Doing this, we obtain a first order condition containing
all the integral terms in (9) and (8), but with X; and (X + d; — d;) instead of d; and d;

respectively. That is

%;;dl) — h/(;X’fz(U)du—P/):fz(U)du+El[Jf(X2+d1—dz—Tz)] (13)

- hLbeMdu—pL:ﬁAMdu+
Y S AU

Xo+dy—d; —X;

p/X’+d“d’ /°° f1(t) fa (u) dtdu —

X2+d1—d2—X1‘ X2+di—do—u
o0

p/ fo(w)du =0 (14)
Xa+di—d2

and hence y; is given by the following wast-until starting policy:

l— Xz ifl,> X2
vy (hyd)={ * 7 ’ (15)
0 otherwise

where X, the optimal planned lead time of job 2, satisfies (14).

8



Proposition 3 X7 < X; <7+ X7

Proof: This proposition is true since substituting X, by X7 in (13) gives

dJy (ly,dy) X; % o
2d;2 1 X,=X; = h/o fa (u)du-—p/X‘ folw)du+ E [J; (X] +di — dy — 1))

= E'[JF(X;+d—dy—m)] <0

Hence X; > X;. Also, X; < 7+ X7 since substituting X, by (7 + X7) in (14)gives h 2> 0.

To determine d3, d} and d}, we solve

Min J3 (d3,d2,d1) = C (d3) + C (dz) + C (dl) +
[ =) oo bp [ (0= do) o)+
E[J; (dy — 73,d1))] (16)

s.t. d1_>_d22d320

Our goal is to show that the Hessian of J3(ds,dy,d1) is non-negative. To show that,
we substitute dy by (d3 +r2) and dy by (ds+r2 +7;) and show that the Hessian of
Js (d3,r2,m1) is non-negative. This implies that the Hessian of J3 (d3, d3, d1) is non-negative
by Theorem 3.4 in Rockafellar [12]. After making the abovementionned substitutions the

problem becomes

Min Js (dg,r2,m) = C(d3)+C(ds+7r2) +C(ds+ra+mi)+
da 0
B[ =) fa)dotp [ (0= do) fo () vt
E[J; (d3 41y — 73,71)] (17)

s.t. d3,7‘2,7‘1 2 0

Our goal now becomes to show that the Hessian of J3(d3, 72, ry) is non-negative. Clearly



the Hessian of the first five terms is non-negative. Suppose that the Hessian of J; (I3,7;)
is non-negative, then we are done. To show that the Hessian of J; (I5,7) is non-negative

we substitute (15) in (12) and get

B Sy (X5 = u) fo(u) du+ p [ (u = X3) fo (u) dut

ElJ (X5 +r -1 2 > X5
J;(l%rl): [11( 2+ )] l > X2 (18)

BE (=) fo (w)du+p fi° (u = ) fo (u) dut

E[J; (47— )] X; >

Using (14), it is easy to see that (18) is continuous and differentiable at l; = X;. Since
J; (1) is convex, then the Hessian of J; (I3, 71) is non-negative and therefore the Hessian
of J3(d3,ry,71) is non-negative. As a result, the Hessian of J;3 (d3,d,,d;) is non-negative
using Theorem 3.4 in Rockafellar [12]. To determine d}, d5 and d;, we substitute [, by
(dy — 73), apply the expectation operator, differentiate (16) with respect to ds, d; and d;

and set to zero. Doing this we get

E [J; (d2 — T3, dl Xg - u f2 )f3 (’U) d'LLdU +

=

/ / (u=Xy) fo () fo (v) dufdv +
/ / (dy — v — u) fo (u) f3 (v) dudv +
/ / (utv—dy) fo (u) fs (v) dudv +
/ (2 +v — dy) fo (v) dv +

E[J: (X +dy — dy — 7)) /0 S o) dv+
/;XQ E(J: (dy = v — 1) f3 (v) dv

and hence

6‘]3 (d37 d27 dl)

do— X2
= _ C’(d1)+E’[J*(X2+d1—d2—rz]/ (v) dv +

[ B == f (o) de (19)

10



Substituting we get

. Xo+di1—-do Xo+di—dy—u
M = Cl(d1) + l:h/ . / * fl (t)fz (u) dtdu—
0

6dy Xa+di—dz—X}

p/X2+dl—d2 /°° fi(t) f2 (u) dtdu—

X2‘+-d]—d2—X1‘l Xo+di—d2—u

> d2—X>
’ X2+d1 fQ( )d ]/0 f3(v)dv +
. / fi(t) f2(u) fa (v) dtdudv +
U/dl - (u) f5 (v) dtdudv —

- /f
/dl
/d . /f“ /d,” () 1 1) f (v) decdud —

f2 u f3 (U) dudv —

h tdudv —
p/d T 000 o) dtduds
P di—X{ Jdi~v f2( )fS( dUdv B P/ f3 <20)
We also have
5J3 (dg,dg,dl) , dg—v
0J3\%3, %2, %1 _ do —
5d, C'(dy) +h/ / v) dudv

o[ R dud - /d ()~
E'[J] (Xy +di — dy — 7)) /0 e f3(v)dv

= C'(dy) + h /ddx /Od fo (u) fo (v) dudv —
o[* g ) fo o) dudv—p [ fo(0)dv -

dp—X2 Jdo—v

2(
X2+d1—ds Xo4di—dz—u
[h '/Xz-*-:l—dg—x- /0 fi(t) fo (u) dtdu—
p/X”dl—dz /°° f1(t) fa (u) dtdu—

Xo+d1~dp =X} J Xo+dy—d2—u

0 d2—X>
o[ o, hldy [ =0 (21)

11



and finally

§Jo(ds,drnd) i .
L;df_l)w(ds)m/o filo)do=p [~ frlo)do =0 ’

(SN
S
~—

d; 1s obtained from (22). Clearly dj is equal to the due date of the first job to be processed
in a two-jobs problem, hence d < X7 < XJ. d5, dj and X are determined by solving
simultaneously (14), (20) and (21).

Proposition 4 d5 < d5 <7+ X;

Proof: To show that d5 < d5, we substitute d, by d3 in (21) and use the fact that
d3 < X;. Doing this we get

5J3(d3ad21d1) _ I [ J* d‘ —_
g, s = O +h/ T B s
p / [ fa) fo(v) dudo —p / fa(v)do
d3—v
= (&) + h+p/ / v) dudv — p
— 6']3 (d3,7‘2,7'1)

< C@)Fhp) [ H)d-p iyt = 0

6ds

To show that dj <7+ X;, we substitute d; by (74 X3) in (21). Doing this we get

6*]3 (d3’ d2’ dl)

5d l=r4x, = C'(F+Xy)—E'[Jf (dh =T —7)] 20
2

Proposition 5 d; < dj <27+ X7

Proof: To show that d] > dj, we substitute d; by d5 in (20), d; by d5 in (21) and
substitute C' (d3) in (20) from (21). Doing this we get

6*]3 (d37d27d1)

d -X2
sy = C(&) 4 E (X —Tz]/ (v) dv +

12



d3—u- v
- X, /‘—X-u/ (t) f2 (u) f5 (v) dtdudv +
ds-

h/, e T R0 ) fo (o) didud -
/—X2 /—_U _U/d ey f1(t) f2(u) f3(v) dtdudv —
/ u) f3 (v) dudv —

p/d _xs / w) f (v) dtdudv —
p

/ A
/' x'/*_va(u f3(v) d“d”—P/:fs(v)dv=o

d3-X;
= 2E’[.]1(X2—T2]/ )dv+

dj-X{ d3—u-v

d3 xg/d X_v/ fi1(t) f2 (u) f3 (v) dtdudv +

h/d X'/ —U/ —uv )fs()dtdudv—

/d /d X—v/—u ~ fi(t) f2 () f3(v) dtdudv —
d3 x~
-, __Ufz u) f3(v) dudv —

p/d X./ -u/_u B u) f5 (v) dtdudv —

P o WA dudv—p/:fs(v)dv—

/, X2/d B v) dudv +

p /d . /d;_u o (u) f (v) dudv + | °° fyd ()

We have shown that E' [J* (X; — )] < 0 in proposition 2. Furthermore, comparing the

holding cost coefficients in (23) we get
/ /d X‘—u/ fi(t) f2 (v) f3 (v) dtdudv +

/‘ X‘/ '”/d “” (u) f3 (v) dtdudv <

13
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/d(j; /OdE—v /Od;—u—v f1(t) f2(u) f3 (v) dtdudv <
/::Q /Od5‘” fa(u) f3(v) dudv

Comparing the shortage cost coefficients in (23), the terms with single and double integrals
cancel and only the non-positive triple integrals terms remain, resulting in d} > d5. To
show dj < 27 4+ X7, we substitute d; by (27 + X}) in (19). Doing this we get

§Js (ds, dy, d o
*‘3—(;{—21—)|d1=ﬁ+xl' = C'(27+ X))+
1
da—X>

E'[J; (Xy + 27 + X} — d —72)]/0 fs(v) dv +

/ E'[J: (27 + X =1 — )| fo (v) dv

dy—-Xo

= C'(27+X1) >0

since E'[Jf (dy — 73)] = 0 for d; > 7+ X} from proposition 2 and d§ < 7 + X, from

proposition 4.

Before leaving the three jobs problem we want to compare the optimal due date of the
second job to be processed in a two jobs problem to the optimal due date of the second
job to be processed in a three jobs problem to study the effect of adding a third job on

the optimal due date of the second job to be processed.

Proposition 6 Adding a third job results in quoting earlier (or the same) due dates to

the two preexisting jobs in the set.

Proof: In a two-jobs problems, d7 is given by (8) rewritten as
C'(dr) = —E'[J} (dy = m2)] (24)

14



where

S2E[J7(dy — 7 4
| 6(d‘{ I (h +p) /dl—X; fi(di—u) f(u)du 20 (25)

as was shown in proposition 2. In a three jobs problem, dj satisfies equation (21) rewritten

as
dy— v
C'(dy) = —h X/ v) dudv +
d2 ’
I dmfz( W) falo )dudv+p/ fo(o)dv+
, da— X2
E [ (Xy + dy — dy — 72)] /0 f (v) dv (26)

Differentiating the right-hand side of (26) with respect to dy we get

da X2
[ fld=v) ) ot b [ fo(dr = Xa) fo () du

d2—X2

o % faldam o) fo(o)dotp [ fsd= Xa) fow) =

dy—Xo
[ folds = Xo) fo(w) s = pfalda = Xa) +
fo(ds — X2) E'[J5 (Xa + dy — da = 7))

d
=~ [ b= fs(e)do

2"2

f3(dy = X2) [h/O fa(u) du —P/XO: fo(u)du—E [J (Xo+di—da— 72)]
d2

= —(h+p)/ fa(dz = v) fs(v)dv <0 (27)

d2—X2

The right-hand sides of (24) and (26) are equal at di = 0 and d; = 0 respectively.
Furthermore, the derivative of the right-hand side of equation (26) given by (27), s
steeper than the derivative of the right-hand side of equation (24) given by the negative

of (25), that is

dy

d2
[* flb-0fE 2 [ Alh- kb

' di-X;

15



since X7 < X3. As a result, the right-hand side of (26) intersects C’(d;) at a smaller
value than the one at which the right-hand side of (24) intersects €’ (d;), i.e. dj < d}
and hence the optimal due date of the second job to be processed in a two jobs problem
is at least equal to the optimal due date of the second job to be processed in a three jobs

problem.

4 Economic Interpretation

In this problem, the due dates must be quoted before any processing occurs on the ma-
chine. However, due to the randomness in the processing times, once the due dates have
been quoted and processing has started, then the starting time of the next job in the se-
quence must be determined givén the quoted optimal due dates and the optimal planned
lead times of the jobs remaining to be processed. In this section we shall provide an eco-
nomic interpretation to the first-order conditions that give rise to the optimal due dates
(equations (21), (20) and (8)) and the optimal planned lead times (equation (14)), in the

two-jobs and three-jobs problems analyzed in the previous sections.

4.1 Optimal Starting Times

Consider the three jobs problem. Suppose that there remains one job that has not been
processed yet and whose due date have been already set. Then its starting time is deter-
mined by (2), determined completely by the solution of the classical Newsvendor problem
which balances the tardiness cost p and the earliness cost h to find the optimal start-
ing time X;. The problem is more complicated when there remains two unprocessed
jobs whose due dates have already been set. As in the previous case, the starting time

for the next job is determined by (15), determined completely by the solution to (14).

16



Equation (14) has a very appealing economic interpretation. It can be rewritten as

hPr{n<Xo}+Prin>Xo-X{+r,n+n < Xo+r}]

—pPr{n>Xo}+Pr{in>Xo—X{+r,n+n2>2Xs+m} =0 (28)

where 7 is defined as in figure 2. Equation (28) illustrates the combined impact of the
marginal holding and shortage costs associated with each of the two jobs, on the optimal
planned lead time decision X3, i.e. the time window comprising the next job (job 2
in our case). The effect of job 2 is the one of the Newsvendor problem, indicated by
the first probability term inside the marginal holding and shortages cost brackets in the
left-hand side of (28). The effect of the second job (job 1) on the current decision is
less myopic in nature. Marginal savings in holding cost due to waiting an extra unit of
time before starting job 2 are achieved only if the processing time of job 2 continues past
the predetermined starting time of the next job and job 1 processing time does not end
past its due date. While the second condition is a reminder of the savings achieved in
the Newsvendor problem, the first condition stresses the non-myopicity of the decision
process, in the sense that no marginal savings in holding cost of job 1 due to waiting an
extra unit of time before starting job 2 are achieved if some slack time is realized between
the completion of job 2 and the start of job 1. Similarly, the marginal increases in shortage
cost of job 1 due to waiting an extra unit of time before starting job 2 occur only if the
processing time of job 2 continues past the predetermined starting time of the next job
and job 1 processing time does end past its due date. Equivalently, no marginal increases
in shortage cost of job 1 due to waiting an extra unit of time before starting job 2 are
incurred if some slack time is realized between the completion of job 2 and the start of
job 1. This information agrees with the intuition that job 1 has no impact on the starting
time of job 2 if it is certain that some slack time will be realized after the completion of
job 2. In other words, if X; < X7 —ry, then it is predetermined a priori that no slack is

allowed between the two jobs and job 1 is rushed immediately after the completion of job
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2. In that case

Priy; <0} =Prin2X; - (X[ -r)} =1

For a three jobs problem, we have shown that X; > X} > X7 — r] hence we never
decide a priori to rush the next job and X is indeed determined by (28). This property
can be generalized for larger number of jobs. We prove it for any number of jobs in the
next section. There exist scenarios in production where the manager must plan for the
processing of two jobs in series and must decide a priori to rush immediately the second

job independently of the realization of the first job.

4.1.1 A Serial Production System Revisited

Consider for example a serial production line consisitng of two stages, where the process-
ing time at stage 2 and 1 (stage 2 is the upstream stage), m, and 7, are random with
distribution F; and F;. Suppose that an order has been placed and a due date has been
set at some point in the future. Assume that the order consists of a project and that once
production is started at a stage, it must be completed. Assume also that raw material
is available at no additional cost, there is a cost hy and h; for holding an extra unit of
time the semi-finished product at stage 2 and the finished product at stage 1 respectively,
there is a penalty p for finishing production one unit of time beyond the quoted due date
d and naturally h; < hy < p. Yano [11] considers this problem and solves the two-stage
problem. However, the mathematical approach that Yano adopted renders the analysis
of three-stage problem and larger extremely difficult. By formulating the problem using
backwards dynamic programming we are able to provide additional insight into the op-
timal solution of larger problems. What is required to be determined in this problem is
y3 (I2) and y} (I;), the optimal starting time at stage 2 and 1 with the due date being [,

and [; units of time away respectively. To determine y; (I;) we solve

h-un

JF(h) = Minso ha(h=yn)+h [ (h=v) =1 fi(t)de+
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p[ (-l fi(e)d (29)

1=Y%

The objective function is clearly convex in y; and therefore yj ({;) is given by (2) where
X; = F7Y[(hy 4+ p)/ (hy + p)] is the optimal planned lead time for job 1. To determine
y; (l3) we solve

J5 (la) = Miny,»E [J5 (I = y2 — 72)] (30)

J7 (1) is convex in [; using the same arguments as in (4), hence J; (/) is convex in y;. We
substitute (I, — y2) by Xo, differentiate with respect to X,; and set to zero (note that
convexity in X, is conserved). The result is that y3 (/2) is given by (15), where X3, the

optimal cumulative planned lead time for jobs 2 and 1, satisfies

dJy (X3) X2 X;l—u Xa1-X?
[ [ R [

(/X):l /xm_u t) fa(u dtd“/ fa (u )—0 (31)

which may be interpreted as

dJy (Xa21)

IX = hPr{n>Xy—-X;,2+n < Xa}+hsPri{n>Xy- X}
21

—pPr{n > Xn - X{,p+7n > Xn}=0 (32)

The obective of this paper is not to analyze the single period serial production system,
but we have carried this analysis of the serial production system to illustrate a situation
when it is decided a priori to rush the processing at stage 1 immedialtely after processing
is done at stage 2, i.e. when no slack is allowed between two successive jobs independently
of the processing time realization of the first job to have been processed. In this serial

production system, the slack time between job 2 and job 1 is y; and no slack is achieved
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with certainty by having Pr {y; <0} = 1. Equivalently
Pr{y; <0} =Pr{n>X;-X;}=1

which does occur, but only whenever X3, < X7. This result is counter intuitive since it
means that the presence of job 2 has resulted in the allocation of a smaller safety time
for both jobs 2 and 1 than the safety time that was originally allocated to job 1 alone.

Mathematically, evaluating the first-order derivative at X, = X} gives

dJy (X
2 21)|xn=x; =(hi+p) Prin+n < X7} -p (33)

dXn

which may be either positive or negative. Hence there may be instances when h,, the
holding cost at stage 2, is so high (with respect to the holding cost of raw materials
assumed zero here) that it becomes more economical to wait long enough before releasing
job 2 so as to ensure with certainty that when the processing at stage 2 is completed, the
semi-finished product is not held at stage 2 but rather rushed immediately because the
time remaining till the due date is less than its allocated planned lead time. It turns out
that to ensure no waiting at stage 2, we must not release job 2 before we are X units
of time away from the due date, hence the cumulative planned lead time of job 2 and 1
being smaller than the planned lead time that was originally allocated to job 1 alone. In

this case, X3; < X7 is determined by solving

dJy (Xa1)

X - (hi+p)Pr{n+n <Xn}-p=0

since (33) is non-negative and J; (X;) is convex. Here X3, is simply Fi;' [p/ (hy + p)] and
the two stages are pooled into a single stage whose processing time distribution is the
convolution of the individual processing time distributions at stage 2 and 1, as Yano indi-
cated in [11]. The problem becomes significantly more complicated for serial production

systems with more than two stages. Consider for instance a three stage problem with
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hs < hy. Using the same arguments as in a two-stage problem, the first order condition
in a 3-stage problem can take one of the two forms, depending on whether or not stages
2 and 1 were pooled. If they were not pooled and X3, is indeed determined by (32), i.e.

X3, > X7, then the first order condition is given by

dJsz (X
;E{ a) _ hiPrirs> X = X5, s+ 1> Xa1 — X5 s+ 1o+ 1 < X} +
A3t
hoPrims > X3 — X5, 73+ 70 < Xy — X7} +
haPr{r3 < Xa1 — X5,} —

pPrim > Xy - X5, m+n>Xag - X, s+n+1>Xa} (34

If they were pooled, then the 3-stage problem is treated as a 2-stage problem where
lead time 75 at the new stage 21 has a distribution Fj;, the convolution of F; and Fj,
and lead time 73 at stage 3 has a distribution F3. We also have if stages 2 and 1 are
pooled that X3 = Fy' [(p+ ha) / (p+ h1)] < FTH[(p+ ha) / (p+ h1)] = X7 and in (34),
73 > X3 — X, = 73+ 72 > X3 — X;. Thus the first-order condition becomes

dJS (X31) — hlpr {T3 2 X31 —X;l,T3+T21 S X31} +
dXBl
hsPr{r3 < Xa1 — X5} -

pPr{m > X3 — X5, 73+ 1 > Xa1} (35)

In this latter case, it should be clear by now that due to convexity, stage 3 is pooled with
the new stage 21 if and only if (35) is nonnegative at X3, = X3,. If this is the case, we
pool stages 1,2,3 and set X3 = F'[p/ (p+ k)] < X5 < X7, Otherwise, X5 > X5
and X3, is the unique solution to (35) set to zero. The case when stage 1 and 2 are not
pooled is more complicated. Here, one of the three things can happen: a) Pool 3, 2 and
1, b) Pool 3 and 2, c) do not pool. We present the algorithm that determines the optimal
configuration and hence X3,. The algorithm is based on the convexity of J3(X3;) in X,

and the fact that stage 1 and 2 are not pooled i.e. X5 > X7 where X3, solves (32) and
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Xi=Fp+ha)/ (p+ k)]

Algorithm

1) If (34) is nonnegative at X3; = X7, then a) is optimal and X3, = F5;' [p/ (p + h1)] <
X

2) Otherwise, if (34) is negative at X3 = X;,, then b) is optimal, X7 < X3, < X3, and
we set X3, at the unique root of

d
____J3 (Xgl) = hy{Pr {Tg 12Xy - X[, 3+7+7 < X31} t
dX3
hoPri{ms+ 7 < Xz — X{} +

pPri{m+n>Xyg - X \m+n+n>Xy}=0

3) Otherwise, ¢) is optimal, X7 < X3, < X3, and X3, is the unique solution to (34) set

to zero.

In contrast, the solution to the problem considered in this paper is never such that we
decide a priori to rush the second job immediately after the completion of the first job
and independently of the realization of the processing time. However, X5 > X7 —r} and
X, satisfies (28) indeed. The reason why it is never economical to pool the two jobs
into a single job whose processing time distribution is the convolution of the individual
processing time distributions is the following. Assume that the same due date has been

quoted for both jobs, i.e. rf = 0. Then (28) becomes

h[Pr{n < Xo} +Prin > Xy = Xj,n +7 < X

—p[PT'{T22X2}+PT{T22X2—X;,T1+T22Xg}] =0 (36)

and X, can be seen now as the cumulative planned lead time for both jobs. Compar-

ing (36) with (32), one can see from the joint events terms that the impact of job 1 on
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the starting time of job 2 is the same. However, while in (36) h, may be so high that it
becomes more economical to start the processing of job 2 together with having less than
X* remaining till the due date, it is never the case in (32) since no matter how high is h.
the holding cost of job 2, the shortage cost guarantees that safety time must be increased
when a second job is added. It is the shortage cost that forces us to have safety time
in the Newsvendor problem, and it is the shortage cost that guarantees that safety time
must be increased when a second job with the same cost structure is added at the same
due date. As a result, X; > X7 —r;, X3, satisfles (28) indeed and hence computations
of optimal planned lead times when the due dates have been set in advance for problems

with more than two jobs are significantly simplified, knowing that X; > X7 for j > ¢

4.2 Optimal Due Dates

Equations (21), (20) and (8) also have an appealing economic interpretation. They can

be rewritten respectively as

C'(dy) = —hPr{rs>d;— Xa,m2 < 3} +

pPr {13 > & — X, > d3} (37)
C'(d) = —hPri{m>d;— Xo,1m < df — Xj, 70 < &} +

pPr{ry > dj — Xy, 732 > d} — X{, 731 > d}} (38)
C'(d}) = —hPr{r>di—X],m <di}+

pPr{r, > d} — X{, 71 > di} (39)

The marginal costs associated with the first job to be processed are obvious as illustrated
in (9) and (22) for a two and three jobs problem respectively. Determining the optimal
due date for the next job in the sequence is slightly more complicated. Consider (37).

For a three jobs problem, the marginal increases in holding cost associated with job 2
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due to quoting a due date one unit of time longer are incurred only if job 3 is completed
past the predetermined starting time of job 2 and job 3 is completed before its quoted
due date. In other words, no marginal costs in holding cost are incurred due to delaying
delivery one unit of time if some slack is realized after the completion of job 3. On
the other hand, marginal savings in shortage cost associated with job 2 due to quoting
a due date one unit of time longer are acheived only if job 3 is completed past the
predetermined starting time of job 2 and job 3 is completed after its due date. For each
job, the combined marginal effects of increases in holding cost and savings in shortage
cost is negatively decreasing with increasing values for the quoted due date of that job,
as the positively decreasing right-hand side of equations (37) and (38) indicate. In other
words, the tardiness argument is stronger than the earliness argument for job 2 and 1.
Consider job 2 and equation (37). This is due to the fact that marginal savings and
marginal increases occur jointly, only when there is no slack after the completion of job
3. Moreover, savings occur only if the processing time of job 2 exceeds its due date, while
increases occur only if it does not. As a result, the rate of the marginal savings is positive
and the rate of marginal increases is negative because the higher the due date of job 2, the
more likely the processing time of job 2 will exceeds it if no slack is going to be realized
after the completion of job 3. Equation (37) and (38) illustrate the intuitive fact that
if there was no cost for quoting an uncompetitive due date, then one would quote due
date values at least equal to 7 + X3 for job 2 and 27 + X7 for job 1. However if that
cost exists and A > 27 + X, then 7+ X < dj < Aand 7+ X; - X, +d; <dj < A
as shown by the shaded area in figure 3a. In figure 3a, the shaded area represents the
set of multiple optima (dj,d5) when the first order conditions of the unrealistic problem
corresponding to the case of A — oo are set to zero. This area of multiple optimal
due date values represents the set of slacks s; = d5 — (F+ X;) < A — (F+ X;) and
sy =dj—(T+X] - X5 +d5) <A—(T+ X7 — X, + d;) that the manager will have with
probability 1 after the completion of job 3 and after the completion of job 2 respectively

under the optimal starting policy. Figures 3b, c and d show how the feasible region varies
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with A. Note that we cannot have d} > d3+7+ X7 — X and d; < 74 X in figure 3b, i.e.
when 74+ X; < A <27+ X7 I df > d3+7+ X7 - X5, then E' [J; (Xo+dy —dy — 7)) =0
in (21) and hence d; = {z,z € [T + X;, A]}. As a result, we have that if A <27+ X7,
then Max{A,d5} < dj <27+ X7 and d5 < d; <7+ X;. Otherwise, the darkened area
in figure 3a represents the set of multiple optima (dj, d;) where there exists an optimal
solution dj < d} = A. Therefore there exists an optimal solution where dj > A. For all
due dates to be less than A, we must have that dj < A, hence 27 + X7 < A. For all
due dates to be more than A we must have dj > A, hence X7 > A. X7 <A< 27+ X7
implies merely that dj < A and dj > A and does not provide additional information
about d. 7+ X; < A < 27 + X7 implies naturally that dj < A since we have shown
that dj <7+ X;, but A <7+ X can result in d; < A as well as d; > A as can be
seen in figure 3c and d. As a result, if the cost of quoting an uncompetitive the due
date is linear to the right of A with slope ¢, it is more likely to quote A for the last
job to be processed when c is high. Several additional observations can be made from
equations (37) and (38). The higher is p and the smaller is A, the slower is the rate of
negatively decreasing combined marginal effects of savings in holding cost and increases
in shortage cost, hence the more likely that it is higher in abslolute value than C’(A4) and
the further is the due date. Furthermore, the larger is the processing time variance, the
higher is the term containing p and the less likely is that the due date is A. Therefore, the
tradeoffs are that high p/low A and high variance increase the quoted due date, force us to
produce early and keep a high chance of introducing slack time between t‘he processing of
consecutive jobs, while the cost of quoting an uncompetitive due date have the opposite
effect and ensures that jobs are rushed without any slack in between. Finally, the analysis
presented shows that rf > 0,7 = 1,...,N — 1 and hence quoting a common due date for
all the jobs is suboptimal in single machine problems with random processing time and

earliness/tardiness costs.
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5 Managerial Insights

In this section, we discuss the managerial insights provided by the two main practical
results obtained in sections 2 and 3, namely a) the optimal planned lead times are non-
increasing with the position of the job in the sequence, with the exception of the planned
lead time of the first job to be processed being the smallest and b) adding a job to a
preexisting set of jobs results in quoting earlier (or the same) due dates to the jobs in the

former set.

5.1 Effect of Additional Job on Optimal Planned Lead Times

The optimal planned lead times are non-increasing with the position of the job in the
sequence, with the exception of the planned lead time of the first job to be processed
being the smallest. This agrees with the intuition that jobs are processed earlier as their
number increase. For instance, the second job is processed earlier if it is not the last one
in line. This increase in planned lead time represents the added protection required due
to the presence of a third job down the line, and the uncertainty induced with it. The
planned lead times of the first and the last job would be the same if we would know the
starting time of the last job with certainty. Intuititvely the first job to be processed has
the smallest planned lead time because the starting time of the last job to be processed

is uncertain whereas the starting time of the first job to be processed is immediate.

5.2 Effect of Additional Job on Optimal Due Dates

Adding a job to a preexisting set of jobs results in quoting earlier (or the same) due dates
to the jobs in the former set. For instance, the due date of the second job to be processed
was shown to decrease when a third job is added. This agrees with the intuition that

due dates need to be quoted the earliest possible to avoid the due date cost. Hence if
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a job is added at the last minute, the manager ought to revise the quoted due dates for

the preexisting jobs and reduce them since more jobs now are sharing time, the single

resource in this problem.

6 Extension to N-Jobs

Extending the problem to N > 3 jobs, the problem becomes for 1 <1 < N —1:

Ji (lyricas i) = Mingo h/ol‘_y‘ (= yi) — 8] fi (1) dt+P/l_:} [t = (ki—y)l fi(t)dt +

E [J;‘_1 (li =y +ric1 = TiyTica, ---,7"1)] (40)

and for ¢+ = NV:

Min Jy (dy,7n1y.ym1) = C(dn)+C(dv+rnoa) + . +C(dy +rn-1+ .+ 1) +
dn 00
b [y =t I @ dtp [ (= dy) S () di+
0 dN
E [JX/_I (dy +rN-1— TN, TN=2, ---,7“1)] (41)

s.t. dy,TN-1ysT1 20

where r; = dipy —diy1=1,..,N - 1.

Proposition 7 y7 (li,di_1, ., d1) = ¥ (liyricyy-ym1), the optimal waiting time before
processing of job 1 is started, given that d; is l; units of time away and given the quoted

due dates di_q, ...,dy, 1s expressed by

=X ofl; > X
y: (liﬁri—l)“‘ﬂrl) = (42)
0 otherwise

where X7, the optimal planned lead time of job ¢, solves dJ; (i, Tiz1y 1) [dX; =0 (after
subtituting l; — y; by X;).



[tistruefor: =1 and 2. To prove this for 3 <1 < N, we assume that J=_ | (l;_1,ri_9,....71)
is convex in /;_1, hence (42) is true for job ¢, and show that this implies J= ({;,7i—1,....71)
is convex in [;, hence (42) is true for job 1 + 1. In fact, substituting y* (L;,r;—y,....7{) in

Ji(liyrizy, .oy T1), We get

hlo (X7 = 1) fi(£) dt +p J35 (t = X7) fi (1) de+
E {J;-_l (XX +ricy — 7, Tia, ...,rl)] > X;
Jo (B ricts e m1) = 8 T (X 4 Yis Timty oo T1) gm0 o=t} = (43)
By (=) fi(t)dt +p [ (t = ) fi(t) di+
E [Ji*_l (l; + 7oy — 70,2, ...,rl)] L < Xr

It is clearly convex in [; for [; < X since the first 2 terms are convex in /; and we
assumed that J* | (li-1,7i=2,...,71) is convex in [;_;, hence convex in /;. Furthermore
dJ: (l,rizqy..,m) /dl; = 0 at [; = X since we assumed that X solves the equation
dJ; (liyric1y...ym1) [dX; = 0 (after subtituting l; — y; by X;), hence solves the equation
dJi (Xi + ¥i, Tiz1y oy T1) {gi=o,x,=1,3/dli = 0.

Proposition 8 X, 1 <i < N —1 solves the following equation (after subtituting l; — y;

dJ (l ;zXla 7'1 — hZPr{ZTk<ZTk+Xn Z Tk>zrk+X X;,
1 =2

k=j+1

ZTkZZrk-{-X Xiiqy e }—

=j+2 k=j+1

PEPT{ZTk>Zrk+Xn Z Tk>Z'f'k+X X7,

k=j k=j k=j3+1

Z Tk> Z 'I‘k+X J+1’ ..... }=0 (44)

k=3+2 k=j+1

It is true for : = 1 and 2. To prove this for 3 < ¢ < N — 1, assume that it is true for

i. J7(liyric1y-.,71) is given by (43) and Jiq (li41, 75, ..., 71) is given by (40). Substituting
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l; by lig1 = yig1 + 10 — 7ig1 0 (40), letting L41 — yiy1 = Xiyq, differentiating (40) with

respect to X[ ;. setting it to zero, and after doing further manipulations we get

d']i+1 (lH-l» Tiyeens 7'1)

= hPr{rig < Xipn} —pPr{npg > Xin} +

dXis1
dJ? (Xipr + 10 = Tig1s Ticy s
E (X +15Ti-1 r) ) (43)
dXip
but from (43), we have that
dJl* (;‘XH'l + Ty — Tit1sTi=1, ...,7'1) _ 0 lf Ti+1 S XH-I +r - X:
dXi-H dJ; li,n—i1,...,r1 ll.-:X-‘+1+7'i“""+1 otherwise

(46)

For 7,41 > Xi41 + 4 — X, it is given by the middle side of (44) evaluated at X; =

X1 4 i — 7ip1. Substituting this latter in (45) gives the following first order condition:

1+1
PT{Tz+1<Xz+1}+Z / Pr ZTk<Zrk+Xz+1a
X|+l+rx—x. k_] k_J
141 1+1
Z Tk 2 Zrk + Xip1 — X7, Z Tk 2 Z e+ Xipn — Xjpq) e firr (u)du| | -
k=j+1 k=j k=j+2 k=3+1
i+1
PT{T,+1>X,+1}+Z / Pr Z'rk>2rk+X,+1,
J =1 X,+1+7“—X k=j k= J
+1 [ i+1
S >+ XX ), w2 Z re+ Xipn = Xy o fin (w)du| | =0
k=j+1 k=3 k=342 k=j+1

which reduces to

dJis1 (lig1,Tiy ey T1)
dXin1

= hPr{rg < Xip} —pPrimiq 2 Xip} +

i+1 141 1
hZPT {ZTk < Zrk+Xz+11 Yo T2 ) et Xip — X,

J=1 k=j k=3 k=j+1 k=j

i+1
Y, w> Z e+ Xip1 — ;+1,....}—

k=5+2 k=j+1
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141 i+1 i
hZPr{ZTk 2 Zrk + Xit1, Z Tk 2 Zrk“}'XiH —X;.
k=j k=j+1 k=j
1+1 :
DL T2 Z Pkt Xigt = Xy p =0
k=342 k=j+1
and finally to
dJ; Lig1,Tie.,m i+l vl i+1 ;
+1(d§, 1) - hZPr{ZTk < Zrk + Xit1s Z T > Z"H'Xm - X
i+1 k=j+1 k=j
1+1
Z Tk 2 Z ret Xign = XJpqyp —
k=j+2 k=j+1
1+1 1+1 i+1
hZPr ZTk>Zrk+X,+1, Z Tk>z7“k+Xz+1 X,
=1 k=j k=j+1 k=j
1+1
Z T 2 Z re+ X — Xty g =0 (47)
k=j+2 k=j+1

and we are done.
Proposition 9 X > X* ,,i1=2,..,N -1

Proposition 10 r*, i = 1,.., N — 1 satisfy the following set of first-order conditions:

C’( R,+r(N_1)+...+r,-) = —hPT{ZTk < Z e + dy, Z Tk 2> Z re+dy—X
k=1+1
E Te 2> Z Tk+dN—X,'+1, ..... }
k=i+2 k=it1
N N-1 N N-1
+PP7"{ZTk > retdy, D w2 D rit+dv— X,
k=1 k=1 k=1+1 k=1
N N-1
Z Te 2> Z T‘k+dN—X,'+1, ..... }——‘O (48)
k=142 k=i+1

The proof is by differentiating (41) with respect to r; and noting that the expression
6Jn (dNyTN=1,-.-y71) [ 6r; 1s nOthing but the due date cost terms plus the terms containing

r;in (44),fort =1,...,N — 1.
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Proposition 11 dy is given by:

C'(dN)z—hPr {TNSdN}-’erT‘ {TN Zdz\/} (49)

The proof is by differentiating (41) with respect to dy and noting that the expression
§Jy (dN,TN-1,---,71) /6dy is nothing but the due date cost terms plus the terms containing

XVN in (44)

Proposition 12 Let d¥* be the quoted due date for job i in an N jobs problem.

dhE <dNi=1,.,N. (50)

7 Conclusion

We have considered the problem of assigning optimal due dates and starting times to a
set of identical jobs ready to be processed. We have shown that optimal quoted due dates
and optimal planned lead times can be obtained analytically by balancing the marginal
effects of holding cost, shortage cost and cost of quoting an uncompetitive due date for
each job, due to quoting a due date one unit of time longer. We have also shown that
once the optimal due dates have been quoted and the optimal planned lead times have
been determined, the optimal starting time for each job is described by a simple wait-until
policy. Finally we have shown that the effect of an additional job is to increase the planned
lead times and decrease the quoted due dates of the preexisting jobs, except for the first
job to be proceesed. The first job to be processed, which is to be started immediately,
is not affected by the addition of job to the set, and hence its quoted due date remains
the same. The issue of sequencing the jobs was not raised because we assumed the jobs
to be identical with same processing time distribution on the machine and same cost
structure. However, a future direction on research could be one in which this assumption

is relaxed. Hence it would be required to find the optimal sequence in which the jobs must
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be processed on the machine, their quoted due dates and the optimal starting time policy
once processing has started. It would be interesting to determine necessary conditions
on the cost structure and/or processing time distributions and parameters that will allow
for some specific sequences to be optimal and to question whether these conditions are
reasonable. Another direction in research may be the generalization of this model to serial

production lines and flow shops.
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