Hyperinsulinemia Is Associated With Menstrual Irregularity and Altered Serum Androgens in Pima Indian Women
Daniel J. Weiss, Marie Aline Charles, Andrea Dunaif, Donna E. Prior, Stephen Lillioja, William C. Knowler, and William H. Herman

To determine whether hyperinsulinemia is associated with menstrual irregularity or hyperandrogenemia among Pima Indians, a population with a high prevalence of hyperinsulinemia, we retrospectively studied 20 hyperinsulinemic [higher insulin (HI)] and 20 relatively nonhyperinsulinemic (lower insulin [LI]) nondiabetic Pima women 18 to 45 years of age. Reproductive histories were obtained by review of medical records. Stored serum samples were used for measurement of total testosterone, androstenedione, and dehydroepiandrosterone sulfate (DHEAS) levels. Fifty percent (nine of 18) of HI women had irregular menses, as compared with none of the LI women (0 of 19, \(P = .0004 \)). HI women were significantly more obese than LI women. Serum testosterone and androstenedione levels were similar in HI and LI women (median testosterone, 1.13 ± 1.13 nmol/L, \(P = .55 \); median androstenedione, 3.79 ± 3.26 nmol/L, \(P = .90 \)). Serum DHEAS was lower in HI than in LI women (median, 2.25 ± 4.55 μmol/L, \(P < .01 \)). HI women with irregular menses had significantly higher testosterone levels than HI women with regular menses (median, 1.62 ± 0.76 nmol/L, \(P = .04 \)). Androstenedione and DHEAS levels were not different between these women. In conclusion, the association of obesity, hyperinsulinemia, irregular menstruation, and high testosterone concentration described in the polycystic ovarian syndrome (PCO) also occurs in Pima Indian women. Moreover, low concentrations of DHEAS are associated with hyperinsulinemia in these women.

Copyright © 1994 by W.B. Saunders Company

Subjects and Methods

Subjects

Data were obtained from volunteers participating in a longitudinal study of risk factors for the development of non-insulin-dependent diabetes, performed in the clinical research unit of the National Institutes of Health in Phoenix, AZ. Each subject stayed in the research unit for 8 to 15 days and underwent a physical examination including measurements of height and weight. On separate days, oral and intravenous (IV) glucose tolerance tests and hyperinsulinemic-euglycemic clamp studies were performed as previously described. The women included in this study were selected through their reproductive history and androgen concentrations from stored serum samples in a group of hyperinsulinemic and relatively nonhyperinsulinemic nondiabetic Pima women of childbearing age.

Reproductive History

Each subject's medical record was reviewed, as was the detailed health questionnaire administered at the time of the clinical research unit study. The reviewer had no knowledge of the subject's insulin area. Specific information was obtained concerning gravidity, parity, menarche, menstrual history, and thyroid function. Amenorrhea was defined as an interval of 6 or more months between menses or six or fewer menses per year. Oligomenorrhea was defined as either an interval of 2 or more months between menses or six or fewer menses per year.

Biological Measurements

Samples from the IV glucose tolerance tests, stored at −20°C, were available for measurement of androgen levels. For each of

From the Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Michigan Medical Center, Ann Arbor, MI; the Diabetes and Arthritis Epidemiology Section and the Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, Pennsylvania State University, Hershey, PA.

Submitted October 5, 1992; accepted September 18, 1993.
Supported in part by US Public Health Service Grants No. RR-00073 and DK-00605. M.A.C. was the recipient of a fellowship from the American Diabetes Association.

Address reprint requests to William H. Herman, MD, Epidemiology and Statistics Branch, Division of Diabetes Translation, Centers for Disease Control and Prevention, 1600 Clifton Rd. MS K-10, Atlanta, GA 30333.

Copyright © 1994 by W.B. Saunders Company

0026-0495/94/4307-000203.00/0
the 40 subjects, we used the samples of the 8- and 10-minute aliquot post-IV glucose infusion. Samples for each individual were pooled and assayed for total testosterone, androstenedione, and dehydroepiandrosterone sulfate (DHEAS) according to published methods. Sex hormone-binding globulin, dehydroepiandrosterone, and free testosterone levels were not determined because of insufficient sample availability.

To control for possible desiccation resulting from long-term sample storage, the protein content of each pooled sample was estimated by the Lowry method. Analyses were performed using both the androgen concentrations and the ratio of androgen to dehydroepiandrosterone sulfate (DHEAS) according to published methods. Rates of glucose uptake (M values) were calculated during the hyperinsulinemic-euglycemic clamp at two different insulin infusion rates, low-dose and high-dose (0.24 and 2.4 nmol/L/m² body surface area per minute), and were adjusted for estimated metabolic body size and steady-state plasma glucose concentration during the clamp, as described previously.

Statistical Analysis

Groups were compared with the Mann-Whitney test for continuous variables and Fisher's Exact Test for categorical variables. In multivariate analyses, associations between menstrual patterns and androgen concentrations were tested by logistic regression.

RESULTS

From the chart review, menstrual histories were obtained for 37 of 40 subjects, gravidity and parity for 40, and age of menarche for 38. Thyroid functions were documented for 27 women, all of which were within normal limits.

Characterization of the study population by insulin concentration is shown in Table 1. Women with higher insulin concentrations (HI) had significantly higher body mass indexes (BMIs) and fasting and 2-hour glucose concentrations and were significantly more insulin-resistant as shown by the lower M values than women with lower insulin concentrations (LI). Age and gravidity were not significantly different between the two groups.

![Fig 1. Median serum androgen concentrations in LI and HI groups.](image)

The proportion of women with irregular menses was markedly different between HI and LI women for whom information was available (50% vs 0% respectively, \(P = .0004 \)). Five of the HI subjects with irregular menses had oligomenorrhea, whereas four had histories of both oligomenorrhea and amenorrhea.

Because the BMI was higher in the HI group than in the LI group, a subgroup comparison was performed that was restricted to HI women with a BMI less than the median and LI women with a BMI greater than the median. Median BMIs of the HI and LI subgroups were 34.2 and 37.2 kg/m², respectively (\(P = NS \)). Three of eight women with known menstrual histories in the HI subgroup had menstrual irregularities, as compared with none in the LI subgroup (Fisher's Exact Test, \(P = .08 \)).

There were no significant differences in serum testosterone and androstenedione levels between HI and LI women (medians, 1.13 vs 1.13 nmol/L, NS, and 3.79 vs 3.26 nmol/L, NS, respectively); however, DHEAS was significantly lower in HI women (median, 4.55 vs 2.85 pmol/L, \(P < .01 \); Fig 1).

Among HI women, testosterone concentrations were higher in women with irregular menses than in those with normal menses (1.62 vs 0.76, \(P = .05 \); Fig 2). In these women, a high testosterone concentration (defined as a concentration exceeding the median for the group) was associated with a 3.5-fold increased risk of having irregular menses as compared with the low-testosterone group (\(P = .03 \); Fig 3). In contrast, a high BMI (defined as a value exceeding the median for the group) was associated with only a 1.6-fold increased risk of irregular menses (\(P = .32 \)).

After adjusting for age, BMI, and M value (either from high- or low-insulin clamp) by multiple logistic regression, a high testosterone level remained associated with a higher probability of irregular menses (\(P = .04 \)). Neither androstenedione nor DHEAS was associated with irregular menses in the HI group.

DISCUSSION

Pima Indians are notable for high insulin concentrations and a high degree of insulin resistance. Among the 40 Pima women of childbearing age selected, menstrual irregu-
HYPERINSULINEMIA AND MENSTRUAL IRREGULARITY

Larities were reported only in the HI women. The HI women were also more obese. Therefore, an association between hyperinsulinemia, obesity, and menstrual irregularities, as described in women with PCO, also occurs in Pima women.

However, in this association the etiologic relationship remains unclear. Arguments supporting the hypothesis of hyperandrogenemia causing insulin resistance and hyperinsulinemia have been based on studies in hyperandrogenemic women in whom insulin resistance decreased after reduction of androgenemia by treatment with oral contraceptives or spironolactone. However, these studies were constrained by imprecise measurements of insulin action and small sample size. Studies using more precise determinations of insulin sensitivity have shown that suppressing androgen levels with a gonadotropin-releasing hormone analog had no effect on insulin resistance in women with PCO. Moreover, oophorectomy does not improve insulin sensitivity in women with PCO.

More evidence supports the hypothesis that hyperinsulinemia increases ovarian androgen production. Insulin and insulin-like growth factor I can bind to granulosa and theca cells in vitro, stimulating cell growth and androgen production. These effects may be synergistic with follicle-stimulating hormone or luteinizing hormone. Ovarian stroma isolated from women with PCO show increased basal androgen release and increased responsiveness to insulin-stimulated androgen release compared with stroma isolated from normal women. Insulin at high concentrations can bind to insulin-like growth factor I receptors and therefore still act on the ovary in the insulin-resistant state.

In vivo, prolonged insulin infusion at high concentrations performed in normal or hyperandrogenic women has led to different results depending on the androgen considered. Androstenedione concentrations increased during insulin infusion, whereas testosterone concentrations did not change or decreased in hyperandrogenic women. Insulin infusion at more physiologic concentrations showed either no response of testosterone and androstenedione or an increase in androstenedione concentrations. Stimulation of endogenous insulin by glucose or tolbutamide did not lead to an increase in androstenedione or testosterone concentrations except in one study. Using a different approach, Nestler et al have shown that decreasing insulin with diazoxide decreases the testosterone concentration, but has no effect on androstenedione concentrations. The disparity in results among studies may arise in part from the fact that circulating androstenedione in women is of both ovarian and adrenal origin. Taken together, these studies suggest that prolonged insulin infusion can increase androstenedione concentrations, whereas decreasing insulin concentrations can decrease testosterone concentrations.

In the present study, testosterone and androstenedione concentrations were similar in HI and LI women; however, women in the HI group were also more obese. Therefore, since obesity is associated with lower concentrations of sex hormone-binding globulin, it is possible that HI women had higher free-testosterone concentrations than LI women, despite comparable total testosterone concentrations. We were unable to measure sex hormone-binding globulin levels in the stored serum specimens, so we could not test this hypothesis directly.

Among HI women, higher testosterone concentrations but not obesity were significantly associated with irregular menses. The mean testosterone concentration of HI women with irregular menses was similar to the mean reported previously in obese PCO women. Thus, the high prevalence of irregular menses in obese HI Pima women may be related to hyperandrogenemia secondary to stimulation of ovarian androgen production by insulin.

Alternatively, obesity per se may have produced insulin resistance, alterations in androgen metabolism, and menstrual irregularities. Arguing against this is the fact that among subgroups of similar BMI, menstrual irregularities tended to be more frequent in HI than in LI women. In addition, in the HI group, only women with menstrual irregularities had elevated testosterone levels. Not all obese women had menstrual irregularities and high testosterone concentrations. This suggests that there are additional...
susceptibility factors, possibly genetically determined, for the development of reproductive disturbances in obese HI women.

The significantly lower DHEAS concentration in HI versus LI women is consistent with most of the results in the literature showing a decrease of DHEAS after either infusion of exogenous insulin or stimulation of endogenous insulin secretion. The mechanism of the relation between DHEAS and insulin concentrations is not yet completely understood, but recent data from in vivo studies suggest that insulin may cause decreased adrenal DHEAS production by inhibition of adrenal 17,20-lyase activity.

In summary, menstrual irregularities occur frequently among obese HI Pima women and are associated with higher concentrations of total testosterone. Hyperinsulinemia is also associated with lower concentrations of DHEAS.

ACKNOWLEDGMENT

The authors wish to thank Drs. Stefan S. Fajans, Peter H. Bennett, Clifton Bogardus, Dorothy Gohdes, and Charlotte Rich-arks for discussion and advice. Areta Dobrjansky and Teresa Licholai for performing the steroid assays, and Dr. D. Mott for supervising the insulin assays.

REFERENCES