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Abstract

We consider the retailer’s problem of ordering quantities of a variety of style
products of the same family from a manufacturer. The demand for each product is
random and occurs at the beginnin‘g of the season, which is well ahead in the future.
The manufacturer has a limited capacity but places no limit on the quantities it is
willing to accept since the final delivery date of these quantities lies well ahead in
the future. Orders are placed to the manufacturer with the final delivery date set
well ahead in the future, yet before the start of the season so that when these orders
are delivered, more accurate information about the demand for each product type is
available. Once the final delivery of these orders is made, the retailer places a second
order to the manufacturer to make up for the various types of products of which it
believes it is still short. This time, more accurate information about the demand
for the various products is available but the manufacturer’s capacity is limited since
little time is left before the start of the season. The retailer’s problem becomes
to determine the various quantities that must be ordered the first time around, in

order to allocate the manufacturer’s capacity more effectively as the start of the



season draws near and more accurate information about the demand for the various

products becomes available.

1 Introduction

Consider a retailer that sells a variety of style products of the same familty and the
manufacturer that produces them. Management at the retail store is planning for the
purchase of these products well in advance to meet the demand that occurs at the start
of the season. The manufacturer has a limited production capacity but will accept any
order quantities that the retailer will place, as long as the final delivery date of these
quantities lies well ahead in the future. Currently, with the start of the season being well
ahead in the future, very little information is available about the demand for each type of
product. Therefore, the demand for each type of product is considered uncertain, possibly
dependent on the demand of other products of the same family under consideration as

well.

However, Marketing at the retail store believes that it would have a very accurate
estimate of the demand for each product as the start of the season draws near. Once
this information is passed onto Management, this latter is required to allocate the manu-
facturer production capacity to the various products, so that the ordered quantities will
meet the demand for the various types of products in a most efficient manner. However,
due to the limited manufacturer’s production capacity, many products may not have any
of their demand satisfied when demand occurs at the start of the season, resulting in huge

profit losses.

Therefore, Management decides not to let the season draw hazardously near without
placing any order, waiting for Marketing to provide it with accurate information about
the demand for the various types of products. Instead, it would place an order for the

production of some quantities in spite of the high risk associated with the demand un-
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certainty. These orders would be delivered at the time accurate information about the

demand of the various types of products would be available.

In doing this, the retailer would overcome the manufacturer’s capacity problem
and order "off-season” unlimited quantities way before the start of the season, at the
price of having inaccurate information about the demand for each product. Whenever
these quantities are delivered, Management will allocate the limited production capacity
of the manufacturer to the various types of products and order ”in-season” quantities,
only to make up for quantities of the various products of which it is still short at the
light of accurate information about the demand for each type of product. The challenge
that Management faces is to determine the off-season order quantities while assuming
the demand for each type of product to be uncertain. As a result, capacity allocation
decisions are made only when Marketing is able to provide accurate information about
the demand for all types of products, at the time when Management has set the delivery

of the off-season order quantities to take place.

Ordering very large off-season quantities may result in overage when more accurate
information about the demand is known just before the start of the season. In this case,
disposal costs are incurred because it is customary that the price of an excess style pfoduct
is reduced until it is eventually sold. Ordering very small in-season quantities may result
in a lack of capacity to make up for quantities of the various types of products of which the
retailer is still short. However the crucial issue that this paper considers is the dependence
of the off-season order quantities of each product on the cost structure of the various
types of products and the limited production capacity of the manufacturer. For instance,
suppose that demand for the various types of products is known with certainty and the
off-season order quantities have been delivered. Furthermore, suppose that the available
limited capacity is not sufficient to make up for all types of products of which the retailer
is still short. In this case, the shortage cost of a particular type of product among those

latter may be so high compared to the rest that it may be more economical to allocate



the entire in-season capacity to the production of the short quantities of that particular
type of product. Therefore, since the off-season order quantities must be decided upon
before the demand for the various types of products is known with certainty, these order
quantities depend on the capacity allocation policy that is going to be applied after the
demand for the various types of products is known with certainty. If the available limited
capacity is not sufficient to make up for all products still short of, the capacity allocation
policy will depend on the cost structure of these latter products, hence the impact of

these latter on the off-season order quantities.

Another factor that will heavily impact on the off-season order quantities is the ratio
of the in-season to the off-season unit acquisition cost. A higher in-season unit acquisition
cost of a certain type of product will encourage ordering large off-season quantities of that
type of product, particularly if that type of product is highly profitable. However, the
opposite is not necessarily true for lower in-season unit acquisition cost due to the limited
in-season capacity and hence is dependent on the demand distribution of that particular
type of product and on the in-season capacity allocation policy. It is quite realistic to
assume that for each of the various types of products, the unit off-season purchase cost is
less than the unit in-season purchase cost. This is true since the manufacturer is benefiting
from the fact that the season is far ahead in the future and hence has enough time to
plan the production of these orders efficiently. On the other hand, in-season orders must
be produced and delivered in a very short time and as a result, the manufacturer might
impose a higher price to the retailer for the purchase of in-season products. However,
since off-season are produced way before the season starts, the retailer incurs a holding
cost due to the long duration of the off-season period. This cost is added to the unit
off-season purchase cost to obtain the unit off-season acquisition, which becomes difficult
to compare with the unit in-season acquisition cost since this latter is the same as the

unit in-season purchase cost due to the short duration of the in-season period.



2 Literature Review

Production and Inventory problems for style products have been analyzed, among others,
by Murray and Silver (1966), Hausman and Peterson (1972), Bradford and Sugrue (1990)
and Fisher and Raman (1992).

Murray and Silver (1966) consider a multiple production periods, single product
bayesian model with limited production capacity in each period. The demand distribution
is updated in each period, based on the demand realization in the previous period. Their
model assumes that the numbers of customers in each period is known. The conditional
probability that exactly j customers out of N customers will buy the product in the next
period given the probability of a customer buying this product is binomial with parameters
N and p, the probability of a customer buying this product. Furthermore, they assume
that p is Beta distributed with parameters: The total number of customers who bought
the product in the previous periods and the total number of customers in the previous
periods (these parameters are chosen arbitrarily for the first production period). They
decide in each period on the order quantity based on: Initial inventory in that period and
the total number of customers who bought the product in the previous periods. This latter
state variable, along with the total number of customers in the previous periods are the
parameters of the revised Beta distribution . Their cost function includes a unit purchase
cost incurred in each buying period, a unit shortage and a unit disposal cost incurred
when demand is realized at the end of the last period. They recognize the prohibitive
computational cost of the model and they illustrate their analysis by solving for some

simple examples.

Hausman and Peterson (1972) consider the same problem, but they generalize it
for multiple products. In this model, the ratio of demand forecast in a period relative to
the previous period is a Lognormal random variable. They assume a perfect forecast in

the period following the last period, hence production in the last period does not occur



under a perfect forecast. Ratios are independent across periods and products, but there
is no word on how to get the distributions parameters i.e. the means and variances of
the Lognormal distributions in each production period. They decide in each period on
the production quantity based on: Initial inventory in that period and demand forecast
for that period. The cost function includes only a shortage and a disposal costs, incurred
when the demand is realized at the end of last period. They recognize the prohibitive
computational cost of the model, they propose 3 heuristics which they illustrate using few

examples.

Bradford and Sugrue (1990) propose the classical multiple periods inventory problem
with random demand. The new assumption is that it is a bayesian model. Their model
is a 2 production periods model, single product, where delivery occurs in both periods,
with unlimited production capacity in each period. The demand is revised in the second
period in the following manner. The conditional demand given the mean is heterogenous
Poisson with mean Gamma distributed, hence demand in first period is Negative Binomial.
From bayes rule, conditional distribution of mean demand in the second period given first
period demand is Gamma, hence the demand in second period is Negative Binomial (since
conditional demand in the second period is also assumed heterogenous Poisson with mean
Gamma distributed). They decide in each period on the production quantity based on
the initial inventory in that period and the revised Negative Binomial distribution. Their
cost function includes a purchase, a shortage cost and a selling price in the first period,
a purchase, a shortage, a disposal cost, a selling price and a salvage value in the second

period. They illustrate their analysis using some examples.

Fisher and Raman (1992) consider a 2 production periods model with n products,
an unlimited capacity in the first period, a limited capacity in second period and where
delivery occurs only at the end of the second period. They consider the case of Sport
Obermayer, a skiwear manufacturer. They treat the demand forecast in the first period

and the total demand forecast in both periods as dependent random variables distributed



according to a bivariate normal distribution. The means, the variances and the covariance
are estimated from historical data and expert opinion. Their cost function includes only a
unit shortage and a unit disposal cost incurred at the end of the last period, after demand
is realized. They recognize that it is the second period capacity that makes the problem
intractable and they use an approximation scheme to solve it. The approximation scheme
consists of throwing away the capacity constraint in the second period and replacing it
by a minimum production requirement in the first period. The minimum production
level is considered a decision variable along with the production quantities for the various
types of products, with no word on how good is this approximation. They test the model
succesfully for the 92/93 season at Sport Obermayer and they report a 50% increase in
profit compared with what is actually done and 400% increase compared with producing
only during the off-season and not allowing in-season production when more accurate

information about the demand is available.

Our work is different from the studies listed above in the sense that it provides an
explanation on the impact of the off-season and in-season costs, in-season production ca-
pacity and demand variability on the optimal off-season order quantities. The model used
in this paper is simpler than the ones used in the above listed papers, but still captures
the effect of a long off-season and a short in-season period, profitability among products,
demand variability during a long off-season period and the trade-off between imperfect in-
formation/unlimited capacity and perfect information/limited capacity, all issues that are
proper to style products inventory problems. In all the work cited above, none attempts
to penalize early off-season acquisitions while they all recognize that the off-season period
is much longer than the in-season period. It is different from Murray and Silver (1966)
and Hausman and Peterson (1972) in the sense that these two papers describe a complex
model that include forecasts revisions and excess [shortage inventory costs after demand
realization, without being able to make any statement about the issues that govern style

products inventory problems. Bradford and Sugrue (1990) consider a production system



with unlimited capacity in both periods, hence the problem reduces to the classical multi-
ple production periods problem with random demand with the exception that demand in
the second period is revised in light of the demand realization in the first period. Finally
in Fisher and Raman (1992), the treatment of the demand is narrowly focused on the
case of skiwear manufacturing and hence the model does not provide insights to optimal
ordering policies for other types of style products. Furthermore, they formulate a model
to which they derive an aproximation and solve computationally, without saying how close
is this solution to the optimal solution. Their optimal off-season ordering quantities is
insensitive to the production capacity available in the second period. It can be inferred
from their discussion of the approximation scheme that the larger the production capac-
ity, the further is their solution from the optimal solution. In fact, the approximation
leads to the optimal solution for a zero production capacity. On the other hand the op-
timal solution of the model improves as the production capacity increases. At the limit,
assuming an infinite production capacity, the optimal off-season ordering quantities are
zeros and the optimal in-season ordering quantity for each product is the corresponding
Newsboy solution. Although one does not expect (relative to the forecasted demand)
large production capacities in the various style products industries, this approximation
encourages implicitly ordering large off-season quantities. However, by assuming a much
longer off-season period than the in-season period, there are instances when high holding
costs are incurred off-season if acquisition occurs early during the off-season period, hence
discouraging ordering large off-season quantities, particularly if the production capacity is
sufficiently large to protect against off-season demand varié.bility. This latter issue is not
addressed by the model since costs are incurred in the model only at the end of the second
period and include only shortage/disposal costs. Our model addresses this issue because
off-season and in-season acquisitions costs are incorporated in it, in addition to shortage
and diposal costs incurred after demand realization. We are ready now to formulate the

model.



3 The Model

Let p; be the unit shortage cost, T; be the unit in-season production cost, h; be the unit
disposal cost, & be the unit off-season production cost and k; be the average holding
rate for each unit of product : ordered off-season, for 7 = 1,.., N. Let ¢; = ¢ + iL,‘ be
the total unit off-season ordering cost. It is reasonable to assume that ¢ < €. This is
true because off-season orders are placed well ahead the start of the season, and so the
manufacturer benefits from the long off-season period to plan efficiently for the production
of these orders, hence the resulting low unit production cost relatively to the in-season
unit production cost where units must be produced and delivered in a very short period.
However, it is not clear how ¢; and G; compare. We also assume quite realistically p; >
Maz{c;,¢;} and Min{c;, ¢} > h;. Let D; be the demand for product ¢ and f(z;,..,z;)
be the joint mass probability distribution of products z through j, 1 <: < j < N. Let
Q; be the off-season order quantity of product : and I; be the initial on-hand inventory
of product ¢. Let d; be the realization of D;, I; be the on-hand inventory of product :
after Q; is delivered and Q; be the in-season order quantity of product ¢, i.e. after Q; is
delivered and d; is realized. Clearly I; = I; + Q;. Let J (71, ..,TN> be the cost of ordering
(@1,..,61\,—) given (71,:.,71\;). Let J (L, .., In) be the cost of ordering (Q1,..,@n) given
(Ii, .., In) and assuming that (@:, ,m) are produced. Finally let K be the available
production capacity of the manufacturer. To determine QF, : = 1,..,N we solve the

following non-linear programming problem denoted by P(1):

J* (I, In) = Min f:c,-Q,- +E[T (T, Ty)]
1=1
s.t. Q,‘ Z O,i = 1,..,N

where T, = [, + Q;, ¢t = 1,..,N. To determine J (71,..,71\;) we solve the following



non-linear programming problem:

N
T(Th..,TN): Min Z[ ;

N —
s.t. ZQ:SK
2

which can formulated as a dynamic programming problem. For: = NN - 1,..,1:

Y

7:'h+1 (7i+1, K; - @1)

J; (7i, Ki) = Miny g g, Qi+ Hh (Ti +Q; - di)+ + pi (di -I,- @i)+ +

with 7;V+1 (TN+1,KN —-Q—N) =0, K, = K and J] (Tl,K) =7 (71, ..,TN). Denote the

dynamic programming formulation by P(2).

4 Single Product Case

The solution to P(2) is clearly

0 I1>d
T(T)={d-T d-K<T<d
K TI<d-K
hence
h(I+Q-D) 0<D<I+Q
T(I+Q) =3 ¢(D-1-Q) [+Q<D<I+Q+K

eK+p(D-1-Q-K) D>I+Q+K
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Substituting in P(1) we get

I+Q _ [+Q+K
J(I) = c62+h/0 (I+Q—w)f(x)dw+c/l+q (2-1-Q)f(z)de+
/I+Q+K[EK+p(x—I—Q—k)]f(w)dw (3)
dJ () +Q o [THerK N A N
o = cth] f@da-zf T f@de—p[ [l (4)
T = R+ Q - 1 +Q+K) 5)

Since p > €, then J (I) is convex in @ and hence Q* is obtained by setting (4) to zero and
solving for @*. Doing this we get that Q* (I) is described by the following order-up-to
policy:

Q" (I) = (6)

0 otherwise

{X*—I [<Xx*

where after substituting (I + @) by X in (4), X* satisfies the following first-order condi-
tion:
dJ (I)

— = (=D F (X + K]+ @+ h) FIX]~(p~c) =0 (7)

An intuitive result that falls from the analysis of the single product case is that the
optimal off-season order quantity in the event that Management wants only to order off-
season, without choosing to use the manufacturer’s limited capacity after the demand
becomes known, must be at least @*. In this latter case the problem reduces to the
classical Newsvendor problem, with an underage cost of (p — ¢) and an overage cost of
(c+h). The optimal off-season ordering policy is similar to (6) and the order point
X™ = F1[(p—c)/(p+h)]. This result is intuitive since the extra capacity K repre-
sents potential inventory that can be used in the event that demand is greater than Q*,

while ordering off-season 6nly is equivalent to the manufacturer having a zero production
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capacity. Hence the order quantity for K = 0 must be at least equal to Q* to account
for any shortages since there is no opportunity to make up for short quantitiés after the

demand is known. The proof follows by substituting X by X’ in (7). Doing this we get:

YD re = (o )(F[X'*+K1 =)

i)

hence X* < X™ since J (I) is convex in (). Another intuitive result is that X* > X™* — K.

The proof follows by substituting X by X™ — K in (7). Doing this we get:

o lx=xe = (€ h) (F[X’* K]- [ +;D

< oo (- [257]) -

A practical interpretation of this result is the following. If the entire production capacity
K must be allocated a priori towards meeting the demand, hence no unused capacity
remains as a second chance for production after the demand is known, then the optimal
off-season order quantity is nothing but the Newsvendor solution less the entire manufac-
turer’s production capacity, i.e. X”*—K. As a result, the optimal off-season order quantity
must be at least that amount since not all the production capacity will necessarily be used

after the demand is realized, hence more should have been ordered off-season.

4.1 Effect of Capacity

We show the rather intuitive result that the optimal order point decreases with capacity.
This is intuitive because the larger is the manufacturer’s production capacity, the higher

the chance that demand will be met after it is known, hence the smaller the off-season
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order quantity. We show this by differentiating (7) with respect to K. Doing this we get

o [dX _ dX
=3 G +1] 10 B+ e ] 100 = ®
and hence
X _ —(p-9)f(X+K)
W‘(p—z)f(X+K)+(a+h)F(X)SO (9)

Denote by 7 the fraction of off-season to in-season ordered quantities, a random variable.

n is then defined as

Q*
n= — 10)
T @) (
Q" is given by (1), which can be rewritten as
0 D<I+Q*
T@)={D-1-Q I+Q <D<I+Q +K (11)
K D>I+Q@Q*+K
We differentiate between two cases: X* > [ and X* < I. If X* > I, then 5 becomes
1 D< X*
n=9 &=L X*<D<X*'+K (12)
Yonr D2X"+K
If X* < I, then @* = 0. Therefore
X* X*-1 00 )
Bl = [ /)4 g [ S+ (13)
X*+K * _
. [)i-ll]f(m)dm
Differentiating (13) with respect to K, we get
dE [n] aXx* [ X*-1 ] dX*
- * _ * K
aK w! )  eorrl e Y/ XK 1)
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'K%)%—(X*—I) 0 X*+K [ 4X*
d dK
X 14KV }/X‘H(f(:v) 2t /.. [——w_[]f(z)dw
X =1 1/({dx* ) daX* . .
.X*—I+K] (dK “)”X TK) -G/ (X0 +
(K — (X~ 1)] o XK [ 4K
= —_— <
X1+ K }A.+Kf(x)dx+ . [w_[}f(x)dx_O

since X* > [ and dX*/dK <0.

4.2 Effect of Demand Variance

In this section, we study the effect of the demand variance on X*. To do this, we will use
a simple mean-preserving transformation of a random variable. This transformation was
first used by Baron (1970), Rothschild and Stiglitz (1970) and Sandmo (1971) in Economic
Theory, and was first used by Gerchak and Mossman (1991) in Iventory Theory to show
the effect of the demand variance on the optimal solution to the classical Newsvendor

problem. With D as the demand, the transformation is

Dy=a(D—-p)+p ~ (15)

where 4 is the demand mean. It is clear that (15) implies £ [D,] = E [D] and Var [D,] =
a?Var [D]. Hence we increase or decrease the demand variance by assigning values for «

larger or smaller than 1 respectively. Substituting back in (7), the first-order condition

becomes
dj‘;g) =(p-7 /o_f-aﬁrﬁﬂf(z)dw +(c+h) /()—%:-“uf(:c)dx —-(p—c¢) (16)

We want to study the variation of X, with . Intuitively, X, = p and X, = p — K at
a =0, for € > ¢ and ¢ < c respectively. In the rest of this section, we will differentiate

between these two cases and study the variation of X, for these two cases separately.
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4.2.1 Case Ofc>c¢

We will first prove that X, = p at & = 0. Suppose that X, # u at & = 0. Then from (16),

Xo > p gives

47 (I)
%l%»t =ct+h20

For p — K < Xo < u, (16) gives

dJ (I
%a)b—f«xo@ =c—-c<0

For Xo = p — K, (16) gives

dX
S |a=0+u

A ek = (0-9)

0

f(z)dz —(p—¢c) <0

Finally, for Xo < p — K, (16) gives

dJ (1
B sk == (p= ) <0

(17)

(19)

(20)

As a result, it must be that X, = p. Having shown this intuitive fact, note that the

first integral in (16) is equal to one whenever its upper limit is larger than D, the largest

demand realization, that is for

XaZa(ﬁ“#)"H‘—K

(21)

This condition is satisfied at « = 0. Moreover, since X, is continuous in e, then from (16)

we have
dJ(I) Xazkyy ~ ~
=@ [T f@)de- (6= =0

0
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and hence

Xa=a<F‘1 [E—c] —u>+u (22)

to the right of & = 0. Since F~'[(€—c¢)/(¢+ k)] < D, then (22) is true for 0 < o < ar,

where a,, is the intersection point of (22) and (21) and is given by

(23)

Qe =

|
b
—
—
ol
| i
o
Rl

Finally, X, is indeed given by (16) set to zero for a > «.,, and is a nonlinear function of
« in that range. Using the same arguments as when we showed that X™* — K < X* < X*
in equation (7) and where X" = F~1[(p —¢) / (p + k)], we can show that

a(F'l[;);Z]—u)+u—K£XaSa(F'l[§;Z}—ﬂ>+u (24)

The lower and upper bounds represent the solution to the Newsvendor when the mean pre-
serving transformation defined in (15) is applied to the Demand. The intuitive interpreta-
tion of these bounds is similar to the interpretation provided for X*— K < X* < X™, how-
ever here it is true Vo > 0 and not just for o = 1. (16) gives limy—00dX,/da = X™ — p.

Differentating (16) with respect to a we get

(”;f) [ad(i" ~ (Xa—p+ K)] f (X"a_ £y % + u) +
(E;h) [ad;i"‘ — (X4 - u)] f (X"a— £ u) =0 (25)

For equation (25) to be true, we must have

Xo—p _dXa _ Xa—ptK

a ~ da ~ o
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Therefore, if there exists « such that dX,/da =0, then p < X, < u— K. As a result,
once X, hits X, = g at a* > 0, there does not exist a > o* for which dX,/da = 0,
and hence X, is strictly increasing in that range. Similarly, once X, hits X, = p — K
at @* > 0, there does not exist @ > & for which dX,/da = 0, and hence X, is strictly

decreasing in that range. Differentiating (25) with respect to a we get

+(@+h) [a%’g_f"_“)} CZ[((.')) +

+§+u)+(a+h)f(X“a_“+u>]=o

(27)

(-2 aa — (X, —u+K)r df ()

d(.)
on"_P‘

o [o-01

If the demand density function is non-increasing (non-decreasing), then X, is convex
(concave) in . The shape of X, is far less obvious when the demand density function
has modes. If it is unimodal, then if there exists o such that d*X,/da? = 0, then
the inflection point must occur in the region bounded by X, > a(Z — ) + ¢ — K and
Xo < a(T — p)+p, T being the mode of the demand density function. Figure 1 shows X,
versus a when F~!'[(p—c)/(p+h)] > p and F~1[(c—c)/(c+ h)] < u, figure 2 shows
X, versus a when F™'[(p—c¢)/(p+h)] > g and F~1[(E—¢)/(c+ h)] > p and figure
3 shows X, versus « when F-1[(p—c)/(p+h)] <pand F'{(c=c)/(c+h)] < p. In
all three figures, X, is bounded from above by X, = a(X™ — 4) + , the a-dependent
Newsvendor solution, and by X, — K from below. To show that X, < « (_ﬁ - ,u) +up—K
for a > a.,, we substitute X, by a (ﬁ - y) + ¢ — K in (16) and get

dJ (I)
X,

D-%
Xuma(Bosyuk = EFH) [ F (@) da+(c=7) 20 (28)
To show that X, > a(F~'{(c—c)/(€+h)] = p) + p for @ > a., we substitute X, by
a(F[(E—c)/(E+h)]—p)+pin (16) and get

dJ (I)

[P ERE
Elxﬁa(}r-l[gﬁ]_u)ﬂ_x =(p-7) [/0

U f@)de -1 <0 (29)
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For nonmonotonous density functions, extremums in figure 1 occur only in the region

bounded by

Xo = p

e ] e
4fc—c

%o = a(r ] -u)

Xy = a(_D_—u)-l-;z

No extremums occur in figure 2 because of (26), and extremums in figure 3 in the region

bounded by

-c
o)
Xoa = p—K

4 fc—c¢
= o] )
Xo = a(—D-—,u +p

Computational experience suggests that X, is convex for @ > a. when the demand

distribution is assumed unimodal.

4.2.2 Case Ofc<c

We will first prove that X, = u — K at o = 0. Suppose that X, # p— K at « = 0. Then
from (16), Xo < p — K gives

dJ (I)

iX. IXo<u-xk = —=(p—¢) <0 (30)
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For p — K < Xo < p, (16) gives

dJ ()
X,

lu-K<Xocpy =¢—=C2>0 (31)

For Xy = p, (16) gives

dJ (I) _ G lazotu _
T = @40 [T (@) de 4 (e -2) 20 (32)
Finally, for Xy > p, (16) gives
dJ (I
S = et 20 (33)

As a result, it must be that Xy = y — K. Having shown this intuitive fact, note that
the first integral in (16) is equal to zero whenever its upper limit is smaller than 0, the

smallest demand realization, that is for

Xa S —ap + H (34)

This condition is satisfied at & = 0. Moreover, since X, is continuous in «, then from (16)

we have
dJ (I Tt
D -9 f(@)dz—(p-c) =0
and hence
X —a(F"l[p_c}— )+ ~K (35)
o= o 7| A TH

to the right of @ = 0. Since F~![(p—c)/(p—7¢)] > 0, then (35) is true for 0 < @ < @,
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where &, is the intersection point of (35) and (34) and is given by

Qo = ——— 36
F (36)

Finally, X, is indeed given by (16) set to zero for a > &,,, and is a nonlinear function of «
in that range. Equation (24) still holds, as well as (25), (26) and (27). Figure 4 shows X,
versus a when F-[(p— )/ (p+ h)] < 4 and F-'[(p— )/ (p—2)] > s, figure 5 shows
X, versus o when F='[(p—c)/(p+h)] < 4 and F-'[(p—c)/ (p~7)] <  and fRgure
6 shows X versus a when F~[(p—c) / (p+ )] >  and F~'[(p=¢) [ (p—7)] > . In
all three figures, X, is bounded from above by X, = o (X™ — 1) + p, the a-dependent
Newsvendor solution, and by X, — K from below. To show that X, > —au + u for
a > o, we substitute X, by —ap + 4 in (16) and get

%?l&.:—a;&u =(p-70) /0? f(z)dz—(p—¢c) <0 (37)

since @ > ag. To show that X, < a(F'[(p—c)/(p—7)] —p) + u for a > a, we
substitute X, by a(F~'{(p—c)/(p—7¢)] — ) + p in (16) and get

B¢

sy =C R [T f@az0 6

dX,

For nonmonotonous density functions, extremums in figure 4 occur only in the region

bounded by

Xo = p—K

- o[-
= o)
Xo = —ap+p
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No extremums occur in figure 5 because of (26), and extremums in figure 6 occur in the

region bounded by

Xo = oz(F'1 ;);Z]—p)—i—u—f(
Xo = 4

Xo = a<F'1 z:;]“ﬂ>+ﬂ—K
Xo = —oaptp

Computational experience suggests that X, is convex for o > &, when the demand

distribution is assumed unimodal.

5 Single product Case: Practical Interpretation

We provide in this section a practical interpretation to the behavior of the optimal sub-

contracted amount as a function of demand variance.

5.1 Case Ofc>c

The variation of X, versus a whenever ¢ > ¢ can be interpreted as follows. For simplicity,
assume the initial stock is zero. We order u off-season if there is no uncertainty about
the demand to take advantage of two things: the unlimited manufacturer’s production
capacity and the fact that the unit off-season ordering cost ¢ is less than the unit in-
season ordering cost €. As the demand becomes uncertain, the marginal underage cost
is the difference between the unit in-season and the unit off-season ordering cost and
the marginal overage cost is the unit off-season ordering cost, as long as the demand

variance does not exceed o, Var (D). For a < a, it is guaranteed that the demand be
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smaller than the optimal off-season order quantity plus the in-season production capacity.
However, there is still the chance that demand might be on eifher side of the optimal
off-season order quantity. As a result, if the off-season order quantity is short in one
unit of demand, it can always be made up from the manufacturer’s in-season production
capacity, hence the underlined marginal underage cost ¢ — . On the other hand, if the
off-season order quantity is over in one unit of demand, then an unnecessary order has
been placed off-season and must be disposed, hence the underlined marginal overage cost
c+h. Asin the Newsvendor problem, the off-season order quantity varies linearly with «,
with the understanding that it may either be decreasing or increasing, depending on how
the critical ratio compares with p. In other words, the less attractive is the unit off-season
ordering cost compared to the unit in-season ordering cost as in figures 1 and 3, the more
likely it is that we order less off-season as demand becomes increasingly uncertain and rely
on the in-season production capacity to make up for shortages, assuming of course that
shortages will not exceed the in-season production capacity. If on the other hand, it is
much cheaper to order off-season than to order in-season as in figure 2, then it is profitable
to order more off-season as demand becomes increasingly uncertain. «.. represents that
level of demand variance for which there is a chance that the demand be larger than the
optimal off-season order quantity plus the in-season production capacity. As expected,
the larger the in-season production capacity, the wider is the range of a over which X,
is linear. Beyond a.,, there is a chance that the demand be larger than the optimal.
off-season order quantity plus the in-season production capacity. In figure 1, depending
on the demand density function, the in-season production capacity can still continue to
protect against growing demand uncertainty up to certain extent, as in density functions
with f <T7) = 0, or it can increase abruptly to the right of ., as in density functions
with f (5) > 0. We showed that the former case applies to decreasing densities where
X, is convex, and the latter case applies to increasing densities where X, is concave.
As more uncertainty in the demand is introduced, the need for ordering large quantities

off-season grows stronger because the fixed in-season capacity is not large enough to
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protect against growing uncertainty, i.e. the increasing risk of lost demand beyond the
in-season production capacity forces us to order large quantities off-season. The larger is
the in-season production capacity, the more uncertainty is required for the off-season order
quantity to start increasing with more uncertainty. In figure 2, even with a nonexistant
chance of shortages, would they occur, exceeding the in-season production capacity, the
off-season order quantity is increased just as demand becomes uncertain. It follows that
with a nonzero chance of that occurring, there is more reason to keep increasing the
off-season order quantity as demand becomes increasingly uncertain. Finally, figure 3
assumes that if no in-season capacity is available for production after the demand is
known, the product is so little profitable that the off-season order quantity decreases
with increasing demand variance. Hence some capacity will only encourage ordering a
smaller off-season quantity. However, there are instances when the chance of shortages,
would they occur, exceeding the in-season production capacity is so high, as in density
functions with f (ﬁ) > 0, that X, increases at the right of ., only to level off and to
decrease eventually as the demand becomes more variable due to the low profitability of

the product.

5.2 Case Ofc<c

The variation of X, versus @ whenever ¢ < ¢ can be interpreted as follows. For simplic-
ity, assume the initial stock is zero. We order y — K if there is no uncertainty about
the demand to take advantage of two things: the unlimited off-season manufacturer’s
production capacity and the fact that the unit in-season ordering cost € is less than the
unit off-season ordering cost ¢. As the demand becomes uncertain, the marginal underage
cost is p — ¢, the product profitability, and the marginal overage cost is the difference
between the unit off-season ordering cost and the unit in-season ordering cost, as long as
the demand variance does not exceed &2 Var (D). For a < &,, it is guaranteed that the

demand be larger than the optimal off-season order quantity. However, there is still the

23



chance that demand might be on either side of the optimal off-season order quantity plus
the production capacity. As a result, if the off-season order quantity plus the in-season
production capacity are short in one unit of demand, it must be that the in-season capac-
ity is depleted and that one additional unit should have been ordered off-season, hence the
underlined marginal underage cost p — ¢, the product profitability. On the other hand, if
the off-season order quantity plus the in-season production capacity are over in one unit of
demand, then an additional unit should not have been ordered off-season but should have
been ordered in-season instead at a lower cost, hence the underlined marginal overage cost
¢ —C. As in the Newsvendor problem, the off-season order quantity varies linearly with
a, with the understanding that it may either be decreasing or increasing, depending on
how the critical ratio compares with x. In other words, the more profitable is the prod-
uct as in figures 4 and 6, the more likely it is that we order more off-season as demand
becomes increasingly uncertain while allocating the entire in-season production capacity
to satisfy K units of demand, given of course that demand variance is small enough such
that demand will always exceed the off-season order quantity. If on the other hand, prod-
uct profitability is low as in figure 5, then it is more profitable to order less off-season
as demand becomes increasingly uncertain. & represents that level of demand variance
for which there is a chance that the demand be smaller than the optimal off-season order
quantity. As expected, the larger the in-season production capacity, the wider is the range
of a over which X, is linear since a larger fraction of the demand would be absorbed by
the in-season production capacity and hence keeping a zero chance that demand less K
be smaller than the off-season order quantity. Beyond «.,, there is a chance that the de-
mand be smaller than the optimal off-season order quantity. In figure 4, depending on the
demand density function, the in-season production capacity can still continue to protect
against growing demand uncertainty and absorb K units, as in density functions with
f(0) =0, up to certain extent. After that, demand stands a high chance of being smaller
than the off-season order quantity and it becomes more profitable to order a smaller off-

season quantity. The second alternative is that it can decrease abruptly to the right of
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@, as in density functions with f(0) > 0. We showed that the former case applies to
increasing densities where X, is convex, and the latter case applies to decreasing densi-
ties where X, is concave. As more uncertainty in the demand is introduced, the need for
ordering large off-season quantities grows weaker because the fixed in-season production
capacity is not large enough to protect against growing uncertainty, i.e. the increasing
risk of having demand below the off-season order quantity forces us to order a smaller
off-season quantity. The larger is the fixed in-season capacity, the more uncertainty is
required for the off-season order quantity to start decreasing with more uncertainty. In
figure 5, even with a zero chance of demand being smaller than the off-season order quan-
tity, the product is so little profitable that the off-season order quantity is increased just
as demand becomes uncertain. It follows that with a nonzero chance of that occurring,
there is more reason to keep decreasing the off-season order quantity as demand becomes
increasingly uncertain. Finally, figure 6 assumes that if no in-season capacity is available
for production after the demand is known and shifted by K units, the product is so highly
profitable that the off-season order quantity increases with increasing demand variance.
Hence some in-season capacity at a cheaper price will decrease the marginal overage cost
and hence encourage ordering a larger off-season quantity. However, there are instances
when the demand has high chances of being smaller than the off-season order quantity,
as in density functions with f(0) > 0, that X, decreases at the right of a.,, only to
level off and to increase eventually as the demand becomes more variable due to the high

profitability of the product.

6 Two-Product Case
It is easy to see that the solution to P(2) is Q; = Q, = 0if I; > d; and T, > dy.
Also obvious is the case when I; < dy, I, < dy and K > (d1 - 71) + (d2 - 72), which

results in @: =d; — 1, and @; =dy—1,. f T, < d; and T; > d,, then the problem
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reduces to the single product case with Q; = 0 and Q; = Min {dl -1, K } Similarly,
if [, <dy and T; > dy, then @{ =0 and @ = Min {d2 -1, K}. The most iﬁteresting
case occurs whenever I; < dy, I, < d; but K < (d1 - 71) + (d2 - 72). It can be shown
that —QT < d; - 1T;,1 = 1,2. To show that, suppose that @I > dy — I;. Then there is
some extra capacity that is held as finished inventory of product 1. We also have that
@-; < dy — 1, otherwise K > Zf{ + @; (dl - Tl) + (d2 - 72>: contradiction. Therefore,
some extra capacity is needed to make up for the shortage in product 2. As a result,
the total cost strictly decreases if the extra capacity invested in holding product 1 were
to be used to makeup for shortages in product 2 and hence Q; < d; — I;. Similar
arguments can be used to show that Q-; < dy — I,. Hence the problem is reduced to a
simple linear programming problem whose optimal solution depend on the products cost
structure: If p; — ¢ > p; — ¢, then @1{ = Min {dl -1, K} and Q; = K—_Q:. Otherwise,
Q;=Min{d,~Tp,K} and Q; = K - ;.

Substituting in J* (L + @1, I + Q2) we get for py — T > py — Gy

(

hy 0<Di<h+@

-0 L+ D <L+ + K

. Dy >0,D1+ D, <K+ hL+Qi+L+Q,
dJ (h+ Q1,1+ Q2)

Qs

= 9

G —-(p2—-%C) L+ <D <h+h+K
Di+D;>2K+5L+@1+L+Q,

[ —P Di2hL+i+K
(39)
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and

hy 0<D;<L+@Q2

dT (I + Q1, I + Q3) ) @ L+@Q: <D SL+Q:+K
42 Di>20,D1+ D, <K+L+Q1+L+Q,

(40)

—py otherwise

After making the substitutions X; = I; + Q; and X, = I, + Q,, we differentiate J (I, I)
with respect to X; and X, using (39) and (40) and get

§J (I, I
%_2) = Cl+h1Fl [Xl]—ElFl [X1+K]+61F1 [Xl] (41)
1
X1+4K oo —_—
—(p2— ) / /K+X1+Xz—x1 f(z1,25) dzadzy — pr Fy [ Xy + K]
and
§J (I, I Xo+K K+X14+Xo-z
§(b) o / / T (@1, 3) doday +
56X,
(p2 + ha) F5 [ Xs] — (p2 — ¢2)
X1+K K+X1+X2—x1
= - 62 / / IIJl, $2) d$2di1:1 + (4—2)

X X2+K
(p2 — ) / / f(z1,%2) dzodzy +

(p2 + h2) F2[X3] = (p2 — c2)

To show convexity, we take the second derivatives and get

§2J (I, I oo
DD @b n ) +oi-) [ fmdnt 0
X14+K
(=) [ flon K+ Xi+ Xy —ai)dar +
(p1—) (X1 + K) —(P2—52)/X f(Xi+ K, z3)dz,
2
8%J (11,12) _ X1+K
—xa = (=) [ [ (o0 K + X+ Xa =) doy (44)
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and

§2J (I, L)

X1+K
§X2 = (p2_62)/)(1 flen, K+ X+ Xp — 1) day + (45)

X1+K
(p2 + ko) f2 (X2) = (p2 — @) /0 f (21, Xy) doy +

X1
(p2 — E2)/0 f(z1, Xz + K) dz,

The only term in (44) is present in (43) and (45). Furthermore, in (43) we have

(m =) fi (X1 +K)
> (¢ —51)/):f(X1 + K, z,) dz,

2 (Pz“ﬁz)/x f(Xi+ K, z2) dz,

and in (45) we have

X1+K

X1+K
(p2+ h2) f2(X2) > (p2 + hz)fo f(z1,X32) dzy > (p2 —52)/0 f(z1, X3) dz,

Therefore, the Hessian matrix of J (I, I;) is positive definite and hence the optimal off-

season order quantities are described by the following order-up-to policy for ¢ =1, 2.

(46)

. Xr—-I L <X}
Qe (Ii) =

0 otherwise

where X7, ¢ = 1,2 are the unique solutions to the set of first-order conditions expressed
in (41) and (42), and rewritten as
6J (I, I2)

5X1 = (pl_‘El)Fl [X1+K]+(El+h1) Fl [Xl]_(pl"'cl)“ (47)
X1+K oo
(p2 —2) ¥, /K+X1+X2—z1 f(z1,22) dzodzy =0
§J (I, I
g)l( 2) = (P2 —62) F2 [X2 + K] + (EZ + h2) F2 [X2] —_ (p2 —_ 02) — (48)
2

A doydzy = 0
—C T1,T9) AT1dTy =
(Pz 2) % -/K+X1+X2—zzf( 1) 2) 14T
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If the in-season capacity was zero, the optimal off-season order quantities would be the
solution to the classical Newsvendor problem, that is X/* = F™'[(p; — c) / (pi + k)],
i = 1,2. To show that X < X*, i = 1,2, we substitute X; by X/*, ¢ = 1,2, in (47)

] T

and (48). Doing this we get

8J (I, I _ " _ 1
%lxlﬂ{‘ = (m-a) AXT+ K]+ @+ ) R[XT] = (1 —a) -
_ X{'+K 1) dond
(P2 — ) o /K+X{‘+X2—m2 f (21, 22) dzydzy
(M=) (p—ca) _\ [KTHK
= +(py —¢ z1)dzy +
(p1+h1) (pl 1)/X{' fl( 1) 1
(€ +h1)(p1— 1)
-— -— c ——
thy P

X[*+K foo
(pz - Eg) / " A{+X"+X f (.'Ifl,ZEz) d$2d.’1)1
1 1 2—7T2

X[*+K
= (n—-7) /X,, fi (@) dzy —

X*+K
(p2 — 52)/

o0
1 / f (101, 1'2) dzydz,
{' K+X{'+X2 -T2

v

X*+K
(m—7¢1) / fi(z1) dzy—
X
XI*+K

f (.’El, .’132) dIBzd.’IJ] 2 0

/00
Jx! K+X/*+X;-2

and

X*+K (pK+X14+X*-o
8J (N, I3) 2 / 2 2f(a:1,z2)dw1dx2 >0
0

5X, =xp = (p2—70) i

Therefore X < X/, i = 1,2. Denote by X, the optimal off-season order quantity of
product 1 in the absence of product 2, i.e. the solution to (7). Define X, similarly. We
want to show that X7 > X}, i = 1,2. Rewrite (7), (47) and (48) respectively as

9(X) = p-c (49)
a(X1) = p-a _ (50)
92(X2) = p2—c (51)



Note that dg(X)/dX > 0, dg; (X1)/dX; > 0 and dg; (X3) /dX, > 0 as a result of
convexity. Therefore if the single product in (49) was product 1, then clearly ¢, (X;) <
g (X1), which implies that g, (X;) intersects p; —¢; in (50) at a value at least equal to the
value at which g (X;) intersects it in (49), hence X} > X;. Suppose the single product
in (49) is product 2 and rewrite (49) as

Xo+K
(P? + hZ) Fy [XZ] + (P2 - E2) fh f2 ($2) dry =g (Xz) =p2—C (52)

Thus g2 (X2) < g(X3), which implies that g, (X3) intersects p; — ¢ in (50) at a value at
least equal to the value at which g (X;) intersects it in (52), hence X; > Xj.

6.1 Effect of Demand Variance

In this section, we shall study the effect of product 1 demand variance and product
2 demand variance on the optimal off-season order points X7 and X;. Beginning by

product 1 demand variance, we use the same transformation defined in (15), that is

Dyoy = oy (Dy — 1) + 11 (53)

Equations (47) and (48) can be written as

870, h) = (m—-a)PriD:<Xi+ K|+ (54)
0X;
(@ +h)Pr(Dy < Xy)=(pr—c1) -
(pp=C) PrXi <D <Xi+ K, D1+ Dy 2 X1 + X, + K] =0
WULE) (o, 2 PriDy< X, + K]+ (55)
60X,
(€2 + ha) Pr[D; < X3] — (p2 — ¢2) —
(pg—Eg)Pr[X2§D2§X2+K,D1+D22X1+X2+K]=O
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Using (53), we substitute Dy,, in (54) and (55) and get

oJ (I, I _ Xigy =1+ K
T&é:‘zl = (pm—-a)hk [ - 0:1 +m| + (56)
Xiay —
(G + M) [—171—& + ,Ul] —(pp—a)-—
( _) X1a1;1“1+K+u1 /oo f( )d q 0
—C - T1,T3) dTo04T) =

P2 ? iia;‘lﬁﬂu K+X1a; +X2a; —a1(z1—11) =1 b i

oJ (I, I

TFXL“Q = (p—C) [, [Xoa, + K] + (57)

2011

(T + ha) Fy [Xoo,] = (P2 — €2) —

X2dl +K oo
(p2 — cz)/ /K+X1a1+x2a1 cegeny, S (21,25) d2rdzy =0
X244 " +u1

We have already shown that X* > X7 > X;,: = 1,2 for all distributions F;,s = 1,2.
Therefore, Xj,, is bounded from above by X;al = o (X7* — p1) + g1, the ay-dependent
Newsvendor solution, and from below by X,,, the a;-dependent single product solution.
It can be shown that Xi4, = g1 at @y = 0for ¢, > ¢1. Xio, = 1 — K at &g = 0 for
¢ < ¢. As aresult, dXyq,/day > F7l(ei—¢1)/ (G + M) — i1 at oy = 0. Similarly,
it can be shown that Xj,, = p — K at a; = 0 for ¢, < ¢ and hence dXi,,/da; >
F~'(p1 —c1)/(pr—©1)] — p1 at &g = 0. In both cases, lim,, o dX14,/da; is nothing
but the slope of the a;-dependent Newsvendor solution. The shape of X4, is more
interesting. We have XJ* > Xj,, > -X_;,Val > 0 and X5, = 7; at a; = 0. Denote the

limit of X5, as a; approaches oo by X,. Rewriting (57), we get

K+X1a1 +X2ay =241 "

§J (I, L) Xaay +K - i
—g% = (m-2) [ | f (21, 22) dzrday +
X201
(atha) [ foe0)da = (pa = 1) =0 (58)

Taking the limit in (58) as a; approaches oo, X, satisfies
X2+K

Xz X2
(p2 — ) /0 f(z1,22) daydzy + (o + h2)/0 fa(zs)dzy = (py—c2)  (59)

X
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<7 v . . . . .
We have X;* > X; > X,. Computational experience with unimodal demand density
functions suggests that X,,, increases as «; increases, overshoots X, reaches a maximum

and approaches X, as a; approaches infinity.

6.2 Approximation for the Case of Highly Variable Hot Prod-

uct

If the demand variance of the hot product is much higher than the demand variance of
the other product, then an approximation for X; is given by X,, which is in turn given
by (59), and an approximation for X7 is given by substituting X, in (47) and solving for
X;. Computational experience shows that this approximation is very close to the optimal

solution, even for small diference in the variances of the two products.

6.3 Case of p1—C =py—Cy

Suppose that both products have equal priority but their demand distribution is different.
Equations (47) and (48) become respectively
(pr—%1) Pr(Xs € D1 < Xy + K]+ (p1 + h1) Pr{Dy < Xi] - (60)
(p—C)PriXi SDi<SXi+K,Di+ D 2 X1+ o+ K] = (p1—a1)
(p2 —C2) Pr(Xa < Dy < Xo + K|+ (pa + hg) Pr Dy < Xao] - (61)

(pr=) PriXa <Dy < Xao4+ K,Di14+ D, >2 X1+ Xo+ K| = (p2—c2)

and hence assuming p; — ¢, = p, — G we get
(p+h)PT[D1 SXl]—(p—E)PT'[Dl SXl,D1+D2 SX1+X2+K]+ (62)
(p=0)Pr(D< X1+ K,Di+ D, < X1+ Xa+ K] = (p—¢)
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(p+h)PT[D2SXQ]—(p‘——é)P’I'[D2SXQ,D1+D2SX1+X2+K]+ (63)

(p=0)PriDy< Xy + K, D1+ Dy S X1+ X5, + K] = (p—¢

The left-hand side of (62) is non-decreasing in X, since (43) is non-negative, and the
left-hand side of (63) is non-decreasing in X, since (45) is non-negative. Moreover, the
sum of the first two terms in the left-hand sides of both (62) and (63) is non-negative.
As a result, if product 1 demand is stochastically larger than product 2 demand, then
the left-hand side of (62) is at most equal to the left hand of (62), V (X, X;). Hence the
left-hand side of (62) intersects the line (p — ¢) at a point X7 at least equal to X3, the
point of intersection of the left-hand side of (63) with the line (p — ¢). Therefore if D; is

stochastically larger than D,, then X7 > X, which is a fairly intuitive result.

6.4 Two-Product Case: Practical Interpretation

We provide in this section a practical interpretation to the results obtained in the previous
section on the behavior of the optimal off-season order quantities of both products as a

function of the more profitable demand variance.

For both products, the optimal off-season order quantities are larger than in the
single product case. In other words, the effect of adding another product increases the
optimal off-season order quantities. This is an intuitive result since the two products
will be competing for in-season capacity if a second product is added and hence the
increase in off-season order quantltles This fact is evidently true for the less profitable
product since it must yield for the hot product shortages first before using the in-season
production capacity. Product 1 off-season order quantities increase because of product 2
shortage cost. It is this latter cost that forces the hot product off-season order quantities
to increase in spite of the fact that this latter has priority to the in-season production

capacity. Another intuitive result is that for both products, the optimal off-season order
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quantities are smaller than in the Newsvendor solution, i.e. assuming a zero in-season

production capacity.

Therefore, as the hot product demand variance increases, the off-season production
quantities fall between the newsvendor solution and the single product case solution as
described in figures 1 through 6. If the demand for product 1 is known with certainty,
then the off-season production quantity for product 2 is the same as in the single product
case if ¢, > ¢y, and the same as in the Newsvendor problem otherwise. As uncertainty
is introduced in the product 1 demand, the off-season production quantity for product
2 increases if ¢; > ¢; and decreases otherwise. As the demand variance of product 1 is
increased further, the off-season production quantity for product 2 approaches a limit and
the dependence of this latter on the demand variance of product 1 becomes very weak
for larger product 1 demand variance. In essence, there is so much uncertainty in the hot
product demand that the optimal off-season order quantity for product 2 is determined
independently of product 1, using only a fraction of the in-season production capacity to
make up for shortages of product 2 when demand is known. This fraction is determined
by the limit that the optimal off-season order quantity approaches as product 1 demand
variance approaches infinity, and lies somewhere between the Newsvendor solution, which
assumes zero in-season production capacity, and the single product solution, which uses
the entire production capacity to make up for shortages of product 2 when demand is

known.

7 Extension to N > 2 Products

The first-order conditions for the case of three products can be written as:

6J (L, I, I3)

6X1 = (pl—El)PT'[X1SD1SX1+K]—

(p2 =) {Pr[Dy, > X1,D; > X3, D5 > X,
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(D1 —X1) <K <(Dy—=Xy)+ (D, - X,)] +

Pr{Dy > Xq,D; > X3, D5 < X,

(D1 = X1) SK < (D= X1)+ (D2 = Xo)]} -

(ps —T3) {Pr[D1 > X1,Dy > X3,D3 > X3,

(D1 = X1) + (D — X3) S K < (D1~ X1) + (D2 — Xa) +
(D3 — X3)]+ Pr (D, > X1,D; < X3,D3 > X,

(D, = X,) <K L<(Dy—-X1)+(D;— X3)]} +

(pr+h1) Pr(Dy < Xq] = (1 — 1) (64)

6J (Ils 123 13)

5X2 = (p2 —-6-2) {PT [Dl 2 XlaD2 > X27K > (Dl - X1) + (D2 —'Xz)] +

Pr[D, £ X1,D; £ X3,K > (D, - X3)]} -

(p3 =) {Pr[D1 £ X1,D; > X3, D3 > X,

(D2 — X2) S K < (Dy— X3) + (D3 — X3)] +

Pr[Dy > X1,Dy > Xy, D5 > X3,(Dy — Xq) +

(D2 = X3) S K < (D1 = X1) + (D2 — Xs) + (D3 = X3)]} +

(p2 + h2) Pr[Dy < X5] — (p2 — ¢2) (65)

6’] (117127 13)

65X, = (p3—3C3){Pr(D1 < X1,D; £ X3,D3> X3,K > (D3 — X3)] +

Pr(Dy 2 X1,D; £ X3,D3 > X35,K > (Dy — X1) + (D3 — X3)] +
Pr(Dy £ X1,D; > X3,D3 > X35, K > (Dy — Xa) + (D3 — X3)] +
Pr(Dy > X1,D, > X3,D3 > X5, K > (Dy - Xy) +

(D3 — X3) + (D3 — X5)]} + (ps + ha) Pr[D3 < X3] — (p3 — c3) (66)

To interpret this set of first-order conditions, we compare it to the first-order condition
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of the single product case, i.e. equation (7) rewritten as

ig}-fl:(p-E)Pr[XgD§X+K]+(p+h)Pr[D_<_X]—(p—c) (67)
If the in-season capacity is zero, then (67) would reduce to the Newsvendor problem first-
order condition, where there is only one production opportunity to meet the demand.
With a non-zero in-season capacity, the model assumes that another production oppor-
tunity occurs after demand is known. Therefore if demand exceeds the off-season order
quantity, but is less than the off-season order quantity plus the in-season capacity, then

a profit (p —¢) per unit is made by ordering in-season, hence the first probability term

in (67).

For the case of two products, the first-order condition corresponding to the hot
product, given by equation (60), is similar to the single product case except for the last
probability term of the left-hand side. This term represents the dependence of the hot
product optimal off-season quantity on the second product. This term can be interpreted
as the lost profit for missing one unit of product 2 due to assigning a higher priority to
product 1. This lost profit occurs whenever the demands for both products exceed their
respective off-season order quantity, in-season production capacity is higher than the
shortage amount of the hot product, but less than the sum of both products shortages.
As a result, a lost profit per unit of product 2 (p; —¢3) is incurred by satisfying the
demand for product 1 first, leaving some demand units of product 2 unsatisfied because

of its lower priority.

The first-order condition corresponding to the second product, given by equation (61)

can be written as

§J (I, I)

5% (ps =) {Pr[D1 > X1,D; > Xa, K > (D1 — X1) + (D; — Xo)] +
2

Pr(Di £ X1,D; < X3, K > (D2 — X5)|} +
(p2 + h2) Pr[D; < Xa] — (p2 — c2) (68)
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The first probability term in (68) represents the added profit from having a second pro-
duction opportunity after demand is known. This term is interpreted as the unit profit
(p2 — ;) made whenever in-season capacity is enough to cover for short units of product
2 as in the single product case. The difference here is that since product 2 does not have
first priority in the capacity allocation policy, then this term must account for both cases:
Demand for product 1 being more than its off-season order quantity where product 2
would benefit only from the remaining in-season capacity that has not been allocated to

product 1, and vice-versa where product 2 may benefit from the entire in-season capacity.

For the three products case, the first-order condition corresponding to the hottest
product, given by equation (64), is similar to the single product case except for the second
and third cost terms. As in the two products case, the second cost term represents the lost
profit for missing one unit of product 2 due to assigning a higher priority to product 1.
This lost profit occurs whenever the demands for both products exceed their respective off-
season order quantity, in-season production capacity is higher than the shortage amount
of the hot product, but less than the sum of both products shortages. As a result, a lost
profit per unit of product 2 (p, —¢;) is incurred by satisfying the demand for product
1 first, leaving some demand units of product 2 unsatisfied because of its lower priority.
Similarly, the third cost term represents the lost profit for missing one unit of product
3 due to assigning a higher priority to product 1. However, since product 2 has a lower
priority than product 1 but a higher priority than product 3, then both cases must be
considered: Havihg shortages of product 2 and not having shortages of product 2. If
there are no shortages in the demand of product 2, this lost profit occurs whenever the
demands for products 1 and 3 exceed their respective off-season order quantity, in-season
production capacity is higher than the shortage amount of the hot product, but less than
the sum of both products shortages. As a result, a lost profit per unit of product 3

(ps — C3) is incurred by satisfying the demand for product 1 first, leaving some demand
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units of product 3 unsatisfied because of its lower priority. If there are shortages in the
demand of product 2, this lost profit occurs whenever the demands for the three products
exceed their respective off-season order quantity, in-season production capacity is higher
than the shortage amount of products 1 and 2, but less than the sum of the three products
shortages. As a result, a lost profit per unit of product 3 (p; — &) is incurred by satisfying
the demand for product 1 first, the demand for product 2 second and leaving some demand

units of product 3 unsatisfied because of its lowest priority.

In the first-order condition corresponding to product 2, given by equation (65),
the second cost term represents the lost profit for missing one unit of product 3 due to
assigning a higher priority to product 2. This lost profit occurs whenever the demands
for both products exceed their respective off-season order quantity, in-season production
capacity is higher than the shortage amount of product 2, but less than the sum of both
products shortages. As a result, a lost profit per unit of product 3 (p3 — T3) is incurred
by satisfying the demand for product 2 first, leaving some demand units of product 3
unsatisfied because of its lower priority. However, since shortages for product 2 cannot
be satisfied from the in-season production capacity before satisfying shortages of product
1, then both cases must be considered: Having shortages of product 1 and not having
shortages of product 1. The first cost term in (65) represents the added profit from having
a second production opportunity after demand is known. This term is interpreted as the
unit profit (p; — ¢;) made whenever in-season capacity is enough to cover for short units
of product 2 as in the single product case. The difference here is that since product 2
does not have first priority in the capacity allocation policy, then this term must account
for both cases: Demand for product 1 being more than its off-season order quantity
where product 2 would benefit only from the remaining in-season capacity that has not
been allocated to product 1, and vice-versa where product 2 may benefit from the entire

in-season capacity.

In the first-order condition corresponding to product 3, given by equation (66), the
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first cost term represents the added profit from having a second production opportunity
after demand is known. This term is interpreted as the unit profit (p; — ¢3) made whenever
in-season capacity is enough to cover for short units of product 3 as in the single product
case. The added difference between this case and the two products case is that since
product 3 has the least priority among the three products in the capacity allocation
policy, then this term must account for all four cases: Shortages for products 1 and 2,
shortages for product 1 only, shortages for product 2 only and finally no shortages for

both products.

8 Conclusion

The purpose of this paper was to analyze the problem of determining optimal ordering
quantities for style products. A two periods production model was built with off-season
and in-season production costs, and disposal and shortage costs for each product type
incurred at the end of the season. The demand in the second period was assumed to be
known with certainty and the problem was to determine the optimal off-season ordering
quantities that minimize the total expected costs of off-season and in-season production,

and the disposal and shortage costsincurred at the end of the season.

The single product case was analyzed and the behavior of the optimal off-season
order quantity was studied as a function of the product demand variance. The two
products case was analyzed and the optimal off-season order quantities of both products
determined analytically, along with the optimal in-season production capacity allocation
policy that was shown to give, after the demand for each product is known, priority to the
product with the highest profitability. It was shown that the addition of a new product
increases the optimal off-season order quantity of the previously existing product, and
that the Newsvendor solution for each product is an upper bound on the optimal off-

season order quantity of that product. An approximation was provided that decouples
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the set of first-order conditions used to deterimine the optimal off-season order quantities.
This approximation is based on the variation of the optimal off-season order quantity of
product 2 with product 1 demand variance. Finally, the set of first-order conditions for
more than two products was given and we provided a practical interpretation for it in
terms of marginal profit for each product for having the opportunity to produce in-season,
and the marginal costs of missing one unit of a certain product due to the production of

an extra unit of another product, for all products.
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