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Abstract-This work concerns the development of a general framework for the analysis and output 
feedback control of open-loop stable nonminimum-phase nonlinear processes. A Smith-type abstract 
operator structure is introduced, allowing the reduction of the controller synthesis problem for non- 
minimum-phase processes to the one for minimum-phase processes. State-space methods are used to derive 
a reduced-order output feedback controller that induces a desired input/output behavior for processes with 
unstable inverse dynamics and deadtime. The underlying structure of the reduced-order controller is also 
identified and studied. Finally, an example from a class of chemical reaction systems with nonminimum- 
phase characteristics is used for evaluating the performance and robustness of the developed control 
method. 

INTRODUCTION 

The control community has witnessed a flourishing 

research activity in the area of nonlinear systems 
theory and control. Following the input/output 

approach, abstract operator methods have been em- 
ployed in the study of stability issues [e.g. Safonov 
(1980) and Desoer and Vidyasagar (1975)], coprime 

factorizations and Q-parametrization [e.g. Hammer 
(1984), Desoer and Lin (1984) and Desoer and Kabuli 

(1988)], etc. From a controller synthesis point of view, 
although the input/output perspective provides valu- 
able insights and philosophical perspective, it lacks 

the transparency and explicitness that the transfer 
function approach has in a linear control setting. On 

the other hand, the introduction of differential geo- 
metric techniques in nonlinear analysis and control 

has allowed fundamental aspects of nonlinear 
dynamics to be understood and typical theoretical 

control problems to be successfully addressed in 

a state-space framework [see e.g. the books by Isidori 
(1989) and Nijmeijer and van der Schaft (1990)]. The 

strength of these methods clearly lies in the ability to 
employ nonlinear stare feedback to modify the dy- 
namic behavior of nonlinear systems. The synthesis of 
output feedback controllers is then addressed through 
combination of state feedback laws and state ob- 
servers. Although a limited number of general results 
are available for the design of nonlinear state ob- 

fAuthor to whom correspondence should be addressed. 

servers [see e.g. Misawa and Hedrick (1989)], the use 

of the process modes for the state observation has 
been shown to lead to a comprehensive framework for 

the output feedback control of open-loop stable 

processes with stable inverse dynamics (Daoutidis 

and Kravaris, 1992). Furthermore, transparent con- 
nections of the derived controller realizations with 
input/output operator concepts have also been estab- 

lished (Daoutidis and Kravaris, 1992). 

In the case of processes with unstable inverse dy- 

namics and/or deadtime (referred to as nonminimum- 

phase processes), research is still at the early stages. In 
a linear control setting, the customary approach is to 

employ a factorization of the process transfer function 
into a minimum-phase and a nonminimum-phase 

part, with the controller synthesis based on the min- 
imum-phase part, effectively leaving the nonmini- 

mum-phase part in open loop. In a nonlinear setting, 
however, the problem of such a decomposition of the 

process operator into a minimum-phase and a non- 
minimum-phase part currently remains an open one 
[see e.g. Kravaris and Daoutidis (1990)]. Alternat- 

ively, nonminimum-phase compensation methods 
that have been developed rely on state-feedback con- 
troller synthesis based on an input/output map that is 
deadtime-free (Kravaris and Wright, 1989; Wright, 
1990) and minimum-phase (Wright and Kravaris, 

1992). Despite these results, however, the output feed- 
back control problem for nonminimum-phase pro- 
cesses has not been addressed directly in a compre- 

hensive framework. 
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This work deals with nonlinear processes with 
a state-space description of the form 

i =f(x) + g(x)u (1) 

where x E [w”, u E R denote the state variable vector 
and the manipulated input, respectively, and Sand 
g denote smooth vector fields on BB”. It is assumed 
that the dynamics of eq. (1) is locally exponentially 
stable around the nominal equilibrium point, With 
the above process description we associate an output 
map of the form y = h(x), where h is a smooth scalar 
field on R”. We also consider processes with deadtime 
8, for which y(t) = h(x(t - 0)). In the presence of 
unstable inverse dynamics [or equivalently, unstable 
zero dynamics in the sense of Byrnes and Isidori, 
(1985)] and/or deadtime we will say that the process is 
nonminimum-phase. A deadtime-free process with 
stable inverse dynamics will be called minimum- 
phase. The purpose of this work is then threefold: 

(1) To develop a unified conceptual framework for 
the control of open-loop stable nonlinear 
processes (minimum-phase or nonminimum- 
phase). 

(2) To derive reduced-order controller realizations 
for open-loop stable nonminimum-phase pro- 
cesses. 

(3) To study the underlying structure of the re- 
duced-order controller realizations. 

The first objective is motivated by the inadequacy of 
the classical error feedback control structure to pro- 
vide a transparent analysis framework in the presence 
of deadtime or unstable inverse dynamics. For this 
reason, a Smith-type abstract operator structure will 
be introduced that generalizes/unifies the available 
nonminimum-phase compensation structures in an 
abstract operator setting and systematically allows 
a reduction of the control problem for nonminimum- 
phase processes to a control problem for minimum- 
phase processes. Once this goal is accomplished, the 
controller synthesis problem will be addressed in 
a state-space framework, through combination of 
state feedback controllers and state observers. Re- 
duced-order controller realizations will be derived 
and their underlying structure will be identified and 
studied. Finally, the proposed control method will be 
applied to a chemical reaction system that exhibits 
nonminimum-phase behavior. 

THE CLASSICAL ERROR FEEDBACK STRUCTURE AND 

THE OUTPUT FEEDBACK CONTROL PROBLEM FOR 

MINIMUM-PHASE PROCESSES 

In this section, we briefly review the output feed- 
back control problem for open-loop stable minimum- 
phase processes, within the framework of the classical 
error feedback structure. Consider the classical error 
feedback control structure of Fig. 1, where P and 
C represent nonlinear input/output operators corres- 
ponding to the nonlinear process and the classical 
feedback controller, respectively. In the above setting, 
it can be easily verified that the following relations 
hold in terms of compositions of operators: 

y = PC(r + PC)_ iyEp 

u = C(I + PC)_‘y,, 
(2) 

where ysp denotes the output set point, and Z denotes 
the identity operator. Setting: 

C(Z+PC)-‘=Q (3) 

one obtains a Q-parametrization of the controller 
operator: 

C = Q(I - PQ)-1 (4) 

and the relations of eq. (2) take the form 

u = Qusp, 
Under the assumption of a stable (in an input/output 
sense) process operator P, one can then obtain 
a transparent characterization of closed-loop stabil- 
ity: the closed-loop system will be stable if and only if 
the operator Q is stable. Furthermore, imposing a de- 
sired closed-loop behavior of the form: 

Y = RY,, (6) 

yields 

Q = P-‘R (7) 

or equivalently 

C = P-‘R(I - R)-’ (8) 

for the controller operator. Clearly, if the operator 
P- ’ is also stable and causal (i.e. the process is min- 
imum-phase), R can be chosen to be any input/output 
stable operator. 

The above abstract operator treatment provides 
valuable insights but does not solve the controller 

Fig. 1. Classical errm feedback control structure. 
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synthesis problem because it does not address the 
realization problem: 

l What choice of R guarantees realizability of the 
contrcller operator? 

l If the process operator P is given in terms of 
a differential equation representation, how could 
one find a differential equation representation 
for the controller operator? 

The above realization problem can be addressed ef- 
fectively in a state-space framework. In particular, if 
R is chosen to be a linear operator, the smallest 
possible order of R that results in a realizable control- 
ler operator is equal to the relative order r between 
h(x) and u, i.e. R is of the form 

... +YI$+ 1 
> 

-L 
(9) 

where y,, . . . , yr are adjustable parameters (Daoutidis 
and Kravaris, 1992). With the above choice of R, unity 
static gain is automatically enforced in the closed- 
loop system, while input/output stability and desired 
dynamic performance can be achieved by appropriate 
choice of the adjustable parameters. Explicit realiza- 
tions of the controller operator C = PP 1 R(I - R)-l, 
when P is given in state-space form and R is given by 
eq. (9), have been derived by Daoutidis and Kravaris 
(1992) through the combination of input/output lin- 
earizing static state feedback with an open-loop state 
observer and a linear controller with integral action. 

A SMITH-TYPE ABSTRACT OPERATOR STRUCTURE AND 

THE OUTPUT FEEDBACK CONTROL PROBLEM FOR 

NONMINIMUM-PHASE PROCESSES 

Referring to the classical error feedback structure 
and the analysis of the previous section, in the case of 
nonminimum-phase processes (i.e. when P-’ is un- 
stable and/or noncausal), an arbitrary choice of a 
stable closed-loop operator R will not in general give 
rise to a stable operator Q. In order to deal with this 
case, and in analogy with the generalized Smith pre- 
dictor structure for linear nonminimum-phase pro- 
cesses (Ramanathan et al., 19X9), we propose here 
a Smith-type abstract operator structure, which is 

shown in Fig. 2. The Smith-type abstract operator 
structure provides valuable insights from an analysis 
point of view, and allows the reduction of the control 
problem for nonminimum-phase processes to the one 
for minimum-phase processes, at a conceptual level; 
state-space methods must then be used to address the 
controller realization problem. 

The basic idea behind the structure of Fig. 2 is the 
following: if P* represents a stable operator with 
stable and causal inverse, one can estimate what the 
output would have been if P* were the process op- 
erator, by adding an appropriate corrective signal 
(obtained as the difference of the responses of P* and 
P, driven by U) to the on-line measurement of y. Once 
this auxiliary output y* is estimated, the error be- 
tween y,, and y*. e* = y,, - y* can be fed to the 
controller C*, which can be synthesized on the basis 
of P*. 

More specifically, referring to the structure of 
Fig. 2, it is straightforward to verify that the following 
relations between the input and output variables hold, 
in terms of composition of operators: 

y = Pc*(I + p*c* )-I y,, 

u = c*(I + P*c*)-ly,, 00) 

y* = P*c*(I + P*C*)-‘y,. 

Assuming that the operators P* and P*-l are stable 
and causal and that C* is synthesized on the basis of 
P* ie , .. 

C* = P*-‘R*(I _ Rf)-’ (11) 
for some R*, the closed-loop input/output relations 
take the form 

y = PP*-‘R*y,, 

u = P*-lR+ 
Y.P 

y’ = R*y,, 

(W 

Closed-loop stability is then guaranteed for an arbit- 
rary choice of a stable operator R*. Recalling the 
classical error feedback structure, we can easily see 
that the same result would have been obtained by 
selecting 

C = P*-‘R*(I _ PP*-IR*)-’ (13) 

Fig. 2. Smith-type operator structure. 
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of, equivalently, 
Q = J’*-lR*. (14) 

Clearly, though, the development is more natural and 
transparent in the framework of the Smith-type struc- 
ture. An issue that cannot be addressed, however, in 
the above framework is the choice of P* and R* that 

l guarantees unity static gain in the closed-loop 
system (y = ysp at steady state), 

l optimizes dynamic performance in terms of an 
appropriate criterion. 

Characterizing and imposing the above requirements, 
as well as deriving the controller realizations, is only 
possible in a state-space framework. The above issues 
have been addressed in the context of the Minimum- 
phase Output Predictor method (Wright and Kravaris, 
1992) for deadtime-free processes with unstable 
inverse dynamics and the Nonlinear Smith Predictor 
method (Wright, 1990) for processes with deadtime 
and stable inverse dynamics. In what follows we 
briefly review the basic points from these methods, 
placing emphasis on their interpretation within the 
framework of the Smith-type abstract operator struc- 
ture. First, we review the instrumental notion of stati- 
cally equivalently outputs (Wright and Kravaris, 
1992): two outputs y, = h,(x) and y, = h2(x) are 
called statically equiualent with respect to i = 
f(x) + g(x)u if h,(x) = h,(x) Vn E E, where E is the 
equilibrium set 

E= (xEw”13uEIW:f(X)+g(X)U=o). 

Consider now a nonlinear process (P) with a state- 
space description of the form 

1 =f(x) t g(x)u 
(15) 

Y = 4-x) 

whose zero dynamics is unstable. Following the Min- 
imum-phase Output Predictor method, the following 
choices are made for P* and R*: 

(1) P* has the form 

f =f(x) + g(x)u 

y* = h*(x) 
(16) 

where h*(x) is chosen so that 

l y* = h*(x) is a minimum-phase output to the 
dynamics 1 =f(x) + g(x)u, 

l h*(x) is statically equivalent to h(x) (to guar- 
antee unity static gain in the closed-loop 
system). 

(2) R* is a linear closed-loop operator of the 
smallest order that guarantees a realizable 
P*-‘R* ie , . . 

I 

R* = yr. 5 + ... +,,;+ 1 
> 

-1 
(17) 

where r* is the relative order between h*(x) and 
u, and yl, . . , y,* are adjustable parameters. 

Based on the above choices, one can readily obtain 
a realization of the controller operator C* 
= P* ’ R*(l ~ R*) ’ using the results in Daoutidis 
and Kravaris (1992) for minimum-phase processes, 
while a realization of P* - P is readily obtained from 
the realizations of P* and P, completing the controller 
synthesis. 

Remark 1: The choices of P* and R* described above 
are in complete agreement with linear transfer func- 
tion methods that are based on the Bode factoriza- 
tions of the process transfer function. With these choices, 
instead of “tuning” the operators P* and R*, one must 
tune the output function h*(x) and the parameters 

71, ..- I Y,*. 

Remark 2: For the above choices, the operator 
P* - P becomes the Minimum-phase Output Pre- 
dictor, and the Smith-type abstract operator structure 
reduces to the Minimum-phase Output Predictor 
structure. 

Remark 3: To complete the design, an optimal choice 
of h* (in terms of some performance criterion) must be 
made from the set of minimum-phase outputs that are 
statically equivalent to h. A Lagrangian formulation 
of the ISE optimization problem as well as analytical 
expressions for the ISE-optimal h* for special cases 
are available in Wright and Kravaris (1992). 

Consider now a nonlinear process (P) with dead- 
time 0 and a state-space description of the form 

1 = f(x) + g(x)u 

y = h(x(t - 8)). 

Assume that the zero dynamics associated with h(x) is 
stable. Then, following the Nonlinear Smith Predictor 
method, the following choices are made for P* and 
R+: 

(1) 

(2) 

P* is the deadtime-free part of P: 

f =f(x) + g(x)u 

y* = h(x) 
(19) 

i.e. y* represents what the output would have 
been if there were no deadtime. 
R* is a linear closed-loop operator of the 
smallest order that guarantees a realizable 
P* 1 R*, i.e. 

> 

-1 

bw 

where r is the relative order between h(x) and U, 
and/y,, . . _ , y, are adjustable parameters. 

Similarly to the previous case, one can readily obtain 
a realization of the controller operator C* = 
P*- ‘R*(I - R*)- ’ and a realization of P* - P to 
complete the controller synthesis. 
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Remark 4: For the above choices. the operator 
P* - P becomes the Nonlinear Smith Predictor, and 
the Smith-type abstract operator structure reduces to 
the Nonlinear Smith Predictor structure. 

Remark 5: For the above choices of P* and R*, unity 
static gain is automatically enforced in the closed- 
loop system, while, in the limit as the roots of 
y,s’ + .. . + y,s + 1 tend to negative infinity, ISE- 
optimal response to step changes in y, is obtained. 

Finally, let us consider the more general case of 
a nonlinear process (P) with deadtime B and a state- 
space description of the form 

i =f(x) + g(x)u 
(21) 

y = h(x(t - 0)) 

for which the zero dynamics associated with h(x) is 
unstable. Referring to the Smith-type abstract oper- 
ator structure, the following choice of P* and R* is 
then clearly justified: 

(1) P* has the form 

i =f(x) + g(x)u 

y* = h*(x) 
(22) 

where h*(x) is chosen so that 
l y* = h*(x) is a minimum-phase output to the 

dynamics X =S(x) + g(x)u, 
l It*(x) is statically equivalent to h(x). 

(2) R’ is a linear closed-loop operator of the 
smallest order that guarantees a realizable 
P*-‘R* ie 3 ** 

R* = y,. $ + 
d 

.d. +ytz+ 1 
> 

--I (23) 

where r* is the relative order between h*(x) and 
U, and yl, . _ , yr. are tunable parameters. 

Similarly to the two previous cases, based on the 
above choices the controller synthesis problem re- 
duces to the one for a minimum-phase process (P*) 
and can be addressed in a state-space framework. 

Remark 6: In the case of a minimum-phase nonlinear 
process (P) with a state-space description of the form 

R =f(x) + g(x)u 

Y = h(x) (24) 

the natural choice of P* = P reduces the Smith-type 
abstract operator structure to the classical error feed- 
back control structure of Fig. 1. 

To conclude this section, the key advantages of the 
proposed Smith-type operator structure are: 

(1) It provides a unified conceptual framework for 
interpreting avaiiable minimum- and nonmini- 
mum-phase compensation structures, as well as 
addressing a more general nonminimum-phase 
compensation problem 

(2) It provides a transparent analysis framework 
where the issue of closed-loop stability can be 
easily characterized for nonminimum-phase 
processes. 

(3) It allows a natural reduction of the controller 
synthesis problem for nonminimum-phase 
processes to a controller synthesis problem for 
minimum-phase processes, without resorting to 
any decomposition of the process operator. 

The next section will provide an answer to the con- 
troller realization problem. 

OUTPUT FEEDBACK CONTROLLER SYNTHESIS FOR 

NONMINIMUM-PHASE NONLINEAR PROCESSES 

Once the choices described in the previous section 
have been made, one can formulate the controller 
synthesis problem and derive output feedback con- 
troller realizations on the basis of P* and R*. The 
basic controller synthesis result of the paper will be 
summarized in the theorem that follows, where a re- 
duced-order controller realization will be derived that 
induces a desired closed-loop input/output behavior 
for a process with deadtime and unstable inverse 
dynamics. Reduced-order controller realizations for 
the first two cases discussed in the previous section 
will then result naturally. 

Theorem 1: Consider a nonlinear process (P) with 
deadtime 8 and a state-space description of the form 

I2 = f(x) + g(x) u 
(25) 

y = h(x(t - g)). 

Consider, also, an output map h* which is statically 
equivalent to h and such that the zero dynamics asso- 
ciated with y* = h*(x) is locally exponentially stable 
around the equilibrium point. Denote by r* the relative 
order between h*(x) and u. Then, the dynamic system 

k =f(w) + g(w) 

X 
e + h(w(t - g)) - h*(w) - C;‘=lykL~h*(w) 

y,.L& - i h*(w) 

(26) 

u = e + h(w(t - 0)) - h*(w) - E;‘slykL$h*(w) 
y,.L,Ljr-‘h*(w) 

represents a controller realization that 

induces the input/output dynamics 

Yv’ 
d”[h*(x)J d Ch’ WI 

dtT’ 
+ ... + y1 ~ + V(x) = ysp 

dt 

(27) 

with y = ysr, at steady state, and 
guarantees internal stability of the closed-loop 
system, locally around the equilibrium point, pro- 
vided that 
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-the process dynamics is locally exponentially 
stable around the equilibrium point 

-the polynomial 1 + y,s + -.. + yrsr is Hurwitz. 

Proof: Referring to the Smith-type abstract operator 
structure of Fig. 2, and for the choice of P* and R* 
described in the previous section, the following real- 
izations for the various components of the structure 
can be easily obtained. 

P’ - P: 

II, =fW) + 57W)u 

6y = h*(+) - h(+(t - 0)). 

C* = P*-‘R*(I - R*)-‘: 

(28) 

p= 

0 1 0 .., 0 0 
0 0 1 . . . 0 0 
0 0 0 . . . 0 0 

*. 

0 0 0 I.. 0 1 
0 -- YI -- Yz “’ -- Yr’-2 -- YP-I 

%* Yr* YP Yr* 

* =f(w) + e(w) 
Cl + e* - h*(w) - x.z’= 1 y&h*(w) 

y,.L,Lj’_ ‘h*(w) 

&1+ e* - h*(w) - C*= lykL’jh*(w) 
y,*~&;=- ‘h*(w) 

where 

e* = yJp - y - 6y (30) 

and the realization of eq. (29) was obtained following 
Daoutidis and Kravaris (1992). Combining the above 
realizations, the state-space realization of the con- 
troller takes the form 

cj= 

0 1 0 . . . 0 0 

0 0 1 . . . 0 0 
0 0 0 . . . 0 0 

_. 

0 0 0 . . . 0 1 
0 -7 Yl _uz . . . -- Ye-2 -- Yr*-I 

Yr* Yr ’ Yr* Yr* 1: 5+ 

1 

_ - 

0 

0 

0 

0 
1 

G 
_ - 

0 

0 

0 

0 
1 

G 

e* 

(29) 

{e - h*W + WO - ‘3)) 

rt _f(w) + g(w) 51 + e - h*W) + NW - 0)) - h*(w) - Cr= lyAP*(w) 
y,.L,Lj’-‘h*(w) (31) 

9 =fts) + g(ll/) tl + e - h*(e) + W(t - 0)) - h*(w) - Cr= lY~LL/h+W 
+L,L;‘_‘h*(w) 

u = t1 + e - h+($) + h(+(t - 0)) - h*(w) - Cz=lyrL$h*(w) 

y,..L,L;’ - ’ h*(w) 

Clearly, if the controller states are initialized con- 
sistently [w(O) = +(O)], we will have w(t) = G(t) for all 
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t. and the above realization reduces to 

0 . . . 0 0 

1 . . 0 0 
0 . . . 0 0 
: ._ 

0 . . 0 1 
Yt YP - 2 YP- 1 -- a.. -- -- 
Y,* YP YP 

5-+ 

_ - 

0 

0 

0 

0 
1 

Y.* 
_ - 

{e - h*(w) + h(w(t - e))} 

(32) 

~ _f(w) + g(w) 51 + e - h*(w) + h(W - @I - h*(w) - E,;r’=,~kLP*tw) 
y,*L,L;‘_‘h*(w) 

u= 
rl + e - h*(w) + h(w(t - 0)) - h*(w) - EL’= ,yrL>h*(w) 

y,*LpL;‘-‘h*(w) 

Furthermore, if 

&(O) = L$-‘h*(w)(O), i = 1, . . . , r* (33) 

it follows that 

ei = L$-‘h*(w), i = 1, .._ .r* (34) 

i.e. rl = h*(w). Substituting this relation to eq. (32), we 
obtain the controller realization of eq. (26). The 
closed-loop system under the controller of eq. (26) 
takes the form 

f =f($ + &) Ys, - h(x(t - 0)) + h(wQ - 0)) - h*(w) - c;‘= 1 I&h*04 
y,.L,L;‘_‘F(w) 

3 =_f(w) + g(w) Jb 
- ht.qt - e)) + h(w(t - e)) - h*(w) - ~;x,yk~:h+(~) 

y,*L,Lj’_ ‘h+(w) 

y = hcx(t - e)). 

Under the assumptions of the theorem, Liapunov’s 
first theorem can be employed to infer local asymp- 
totic stability in the sense of Liapunov around the 
equilibrium in the unforced closed-loop system. (The 
above analysis is greatly facilitated by transforming 
the closed-loop system in normal form coordinates; 
details are omitted for brevity.) 

Furthermore, under consistent initialization of 
x and w [x(O) = w(O)], eq. (35) reduces to 

1 = f(x) + g(x) Ysp 
- F(x) - c*= l  yrLfh* (x) 

y,*L,L;‘_‘h*(x) 
(36) 

y = htx(t - e)) 

which (as can he easily verified) results in the following 
input/output dynamics: 

y, . d”[h*(x)l + . . . + y, dP*(x)l + h*(x) = y 

dt” dt “P 

(37) 

Clearly, at steady state, h*(x) = Y,,, and by the static 
equivalence of h and h*, h(r) = y,, as well, which 
concludes the proof. 

(35) 

The above theorem provides a comprehensive re- 
sult that can be applied to any open-loop stable non- 
linear process, with or without deadtime, with stable 
or unstable zero dynamics. The controller realization 
depends on the choice of an appropriate output map 
h* that optimizes a given performance criterion. 

Remark 7: In the case of a deadtime-free process with 
a state-space description of the farm of eq. (15) and 
unstable zero dynamics, the controller realization of 
eq. (26) takes the form 

t+ =f(w) + g(w) 
e + h(w) - h*(w) - C;*=lykL>h*(w) 

y,.L&-‘h*(w) 

(38) 

u= 
e + h(w) - h*(w) - C~mz’,t~rL’j-h*(w) 

y,.L,Lj’_ ‘h*(w) 

and the resulting input/output dynamics 

y, . d”[h*(x)l + . . . + yl dw*(x)l + h*(x) = 

dP’ dt 
y 
V 

. 

(39) 

CES 49-13-F 
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Remark 8: In the case of a process with deadtime and (1) It goes through the model output map to gener- 
a state-space description of the form of eq. (18) for ate the model output, which is then added to the 
which the zero dynamics associated with h(x) is stable, error signal to generate v = (set point) - (process 
and for the natural choice of h* = h, the controller output) + (model output). 
realization of eq. (26) becomes 

%+ =fW + g(w) 
e + h(w(t - 0)) - h(w) - C;=,Y&h(w) 

Y,&q ‘W) 
WI 

t4= 
e + h(w(t - S)) - h(w) - x;= lYk~:w4 

Y&y ‘h(w) 
and the induced input/output behavior 

(2) It is fed back via the static state feedback law 

y.g+ ... +y,!g+y=y&-e). (41) 

Remark 9: Finally, in the case of a minimum-phase 
nonlinear process with a state-space description of the 
form of eq. (24), and for the natural choice of h* = h, 
the controller realization of eq. (26) becomes 

++ =fW + cm9 
e - c = f Y&~(W) 

w&j- ‘W) 

e - C=,Y&h(W) 
(42) 

ll= 
YlL,Lj-1 h(w) 

which, as expected, is identical to the reduced-order 
controller realization derived in Daoutidis and 
Kravaris (1992), inducing the closed-loop input/ 
output behavior 

d’ y dy yr-+ “. +y1-+y=J& 
dt’ dt (43) 

The model state feedback controller 

The controller realization of eq. (26) as well as the 
controllers of eqs (38) (40) and (42) derived for the 
various special cases, share a common underlying 
structure which is depicted in Fig. 3. Referring to this 
structure, we observe that the process model 
ti =_f(w) + g(w)u is simulated on-line, with the model 
state w representing an on-line estimate of the true 
process state x. The model state w is then utilized in 
two ways: 

YSP 

7 

II= 
u - h*(w) - ~*xly&p*(w) 

y&&j'-'h+(w) WI 

which is an input/output linearizing feedback 
law for the output map h*. 

The controller structure of Fig. 3 and its key fea- 
tures were identified and discussed in Kravaris and 
Daoutidis (1992). The same structure was sub- 
sequently used by Coulibaly et al. (1992) in a linear 
context for the purpose of handling of input con- 
straints and was compared with standard IMC- and 
DMC-type implementations. The structure of Fig. 3 is 
also inherent in MAC-type nonlinear and model pre- 
dictive control strategies (Soroush and Kravaris, 
1992a, b). A similar structure incorporating disturb- 
ance measurements was also identified in Daoutidis 
and AIhumaizi (1993) within a feedforward/output 
feedback synthesis framework. 

In what follows, the properties of the controller 
structure of Fig. 3 will be analyzed in a more general 
setting. We will use the name “model state feedback 
controller” for the corresponding controller, as sug- 
gested by Coulibaly et al. (1992), since it captures the 
essence of the internal structure of the controller: 
instead of feeding back just the model output, the 
entire model state is fed back. 

Figure4 refers to processes with a state-space 
model of the form of eq. (1) and depicts the structure 
of a general model state feedback controller, whose 
static state feedback component has the general form 

u = PC4 f q(w)v 

Input/output Linearizing 

I__-( State Feedback for 

the Minimum-phase Output 

I l- U 

7 

output w 
Process 

Map - Dynamics 

Fig. 3. Structure of reduced-order output feedback controllers. 



Output feedback control of nonminimum-phase nonlinear processes 

I I 

2115 

Fig. 4. Structure of a general model state feedback controller. 

instead of the specific form of eq. (14). The general Therefore, under consistent initialization, w(t) = x(t) 
form of the model state feedback controller becomes for all times, and the closed-loop dynamics simplifies 
then to 

LJ =f(w) + g(w){p(w) + g(w)h(w(t - 0))) 

+ g(wMw&l - Y) (45) 

u = P(W) + q(w)h(w(t - 6) + q(w)(YS, - Y). 

Referring to Fig. 4, the key features of this controller 
can be easily identified. When the process dynamics is 
perfectly modeled and initialized, the model state w(t) 
will match the process state x(t). If in addition, the 
output map is perfectly known, the model output will 
match the process output y as well; in this case D = y,, 
and the controller action will be the same as if all the 
states were measured on-line and the static state feed- 
back 

u = P(X) + &)Y., 

were used. 

1 =f(x) + &)P(X) + S(XMX)YS~ 

which is exactly the closed-loop dynamics that would 
have been obtained if the static state feedback: 

u = P(X) + &MX)Y*, 

had been applied to the process. It is important to 
note that the reduction of the dimensionality of the 
closed-loop dynamics described above happened after 
the matching of the model states with the process 
states. Expressed in a linear control terminology, this 
reduction happened after “zero-pole cancellations at 
the process modes”. The above property justifies the 
instrumental role of the assumption of open-loop 
stability of the process in the derivation of the model 
state feedback controller. 

The same conclusion can be drawn by combining 
the controIler of eq. (45) with the process dynamics of 
eq. (25): 

1 = f(x) + g(x)u 

y = h(x(t - e)). 

The resulting closed-loop system is given by 

k =S(w) + Cl(W)(P(W) + q(w){++ - @) 

- h(x(t - @))) + g(w)q(w)JJ.p 

2 =f(x) + &J(P(W) + q(w){++ - @) 

- h(x(t - @)>) + g(wMw)YS, 

y = h(x(t - 0)). 

(4’3) 

In summary, the key property of the model state 
feedback controller is that it allows the reduction of 
a dynamic output feedback synthesis problem into 
a static state feedback synthesis problem, under the 
assumption of open-loop stability of the process. The 
presence of modeling error does not alter the synthesis 
formula for the control law, but will influence the 
choice of the tunable parameters in view of the well- 
known trade-offs between performance and robust- 
ness. 

Integral action 

We observe that both w and x follow the same dy- 
namics 3 =f(w) + g(w)u and 2 =x(x) + g(x)u, driven 
by the same input: 

u= P(W) + &J){h(w(t - 0)) 

- h(x(t - @NJ + &J)YS,. 

In this subsection, we will conclude the theoretical 
part of the paper by addressing the important issue 
of integral action of the controller realization of 
theorem 1 [and consequently the controllers of 
eqs (38), (40) and (42) derived for the various special 
cases.] To this end, an important question that arises 
is what is the precise meaning of integral action in 
a nonlinear context. Because the significance of inte- 
gral action is connected with steady-state properties 
of the closed-loop system, it seems natural to define 
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integral action on the basis of steady-state consid- 
erations. In a linear context, integral action is asso- 
ciated with infinite static gain or, equivalently, the 
inverse of the dynamic system having zero static gain. 
This observation motivates the following generaliz- 
ation of the notion of integral action in a nonlinear 
setting. 

Definition. The dynamic system 

3 = b(w) + @,b(w)e 

u = x(w) + o(w)e 
(47) 

where 4(w), +(w) are vector Jields of appropriate di- 
mension and z(w), w(w) are scalar fields, is said to 

possess integral action if its inverse: 

ti= c/J(w)- s @b(w) + &) G(w)u 

(48) 
R(W) 1 e= - --+-I4 
w(w) 03 (w) 

has zero static gain, i.e. every pair (u,, w,) that satisjes 

4(ws) - z Hws) + --& wdu, = 0 
1 

also satisjies 

- n(w,) + u, = 0. 

Considering now the controller realization of eq. (26), 
we easily obtain the following realization of its in- 
verse: 

i = f(w) + g(w)u 

e = - h(w(t - 0)) + h*(w) 

+ 5 y&h*(w) + y&L;-‘h*(w)u. 
k=l 

We observe that the dynamics of the controller in- 
verse coincide with the dynamics of the process 
model, and, therefore, their steady-states coincide as 
well. Hence, based on the previous definition of inte- 
gral action and in view of the static equivalence of 
h and h*, the controller of eq. (26) will possess integral 
action if the following relation is satisfied: 

5 yJ.;h*(w,) + Y&L;:- i h*(w,)u, = 0 (49) 
L=1 

where (u., w,) is a steady-state pair of 

* = f(w) + g(w)u. 

A straightforward argument based on the definition of 
relative order can be used to show that 

Lljh*(w,)=O, k=l,...,r*-1 

Lj’h*(w,) = - _L,L;‘-lh*(w~)u,. 

Therefore, eq. (49) indeed holds and the controller of 
eq. (26) possesses integral action. 

NONMINIMLJM-PHASE BEHAVIOR IN A CLASS OF 

CHEMICAL REACTION SYSTEMS 

The motivation for this section arises from the fact 
that quite often exothermic chemical reactors operate 
with cold feed, which can give rise to inverse response 
characteristics (and thus, nonminimum-phase behav- 
ior) in temperature control problems [e.g. Juba and 
Hamer (1986) and McLellan et al., (1990)], More 
specifically, for a continuous exothermic reactor 
where the inlet stream flowrate is used to control the 
reactor temperature, a positive step change in the inlet 
flowrate will cause an initial decrease in the reactor 
temperature; however, the reaction rate will event- 
ually increase, causing the reactor temperature to 
increase as well. Similarly, a negative step change in 
the inlet flowrate will cause an initial increase in the 
reactor temperature, but eventually the reaction ef- 
fects will dominate causing a decrease in the reactor 
temperature. Motivated by the above, in this section 
we illustrate the application of the proposed nonlinear 
control methodology to a continuous stirred tank 
reactor (CSTR) that exhibits such behavior. 

More specifically, we consider an idea1 CSTR, 
where a solution stream consisting of pure A at con- 
centration c_,,, and temperature T,, enters the reactor, 
and the exothermic reaction 

A+B 

takes place. A cooling jacket maintained at a temper- 
ature Tj is used for heat removal. The effluent stream 
leaves the reactor at concentrations cA. cs and tem- 
perature T. Under standard assumptions, the mass 
and energy balance describing the dynamic behavior 
of the process take the form 

dcA -_= 
dt 

(50) 

g= ;(To - T) + rk(T)c,, - cQT- Tj) 

where 

k(T) = kOeCEiRT 

AH y= -- 
PC, 

WA 

a=VpCD 

and the values of the various process parameters are 
shown in Table 1. Motivated by the discussion in the 
beginning of this section, we consider a temperature 
control problem for this process, using as manip- 
ulated input the inlet flowrate F. 

Equilibrium diagram 
The steady-state solutions for the above process 

can be found by setting the right-hand side of eq. (50) 
equal to 0. Eliminating the flowrate F from the result- 
ing algebraic equations, we obtain the following rela- 
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Table I. Process parameters 

k,,=7.2x106hm1 
-AH=7x104kJkmol-’ 

E = 4.1 x 10’kJ kmol-’ 
T,=3OOK 
Tj=300K 
V = 0.1 m3 

cAS = 4.29 kmol mm3 
R = 8.345 kJ kmol-’ K-’ 
p = 1 x lo3 kgmm3 

C,=4.2xlO’kJkg-‘K-’ 
cAO = 10 kmol mm3 
UA = 168OkJ h-’ K-l 

F, = 0.203 m3 h- 1 
cBs = 5.71 kmol m - 3 

tion that has to be satisfied at steady state: 

c; - 
{ 

CAO+(T-TO) CT--j) a 
[ 

-- 
(T- To)W) 

1 

II 

cA 
Y 

a (T- Tj) 

+ek(T)cCAo=o. (51) 

Equation (51) is a quadratic equation in cA. It is easily 
verified that if the following conditions are satisfied: 

T- Ti>O 

1 
>o (52) 

’ I I> 
-4k(T)y A a (T-?)c oBo 

eq. (51) will give rise to positive real roots. The 
root of the equation: 

cAo + (T- To) (T- Ti) u ’ ~-- 1 

Y CT - To) k(T) I> 

u. (T- v 
-4W-) Y 

--CA0 =o (53) 

determines a temperature T,,,.. that gives rise to 
a double root in cd: 

1 
=‘4 I T=T,.. = - 

(T- To) 
2 CA0 +- 

Y 

x 
(T- Tj) u ___ 
(T- To) k(T) ’ I> T=Tm_’ (54) 

For all Tj < T i T,,,,,, two distinct and positive real 
roots are obtained for c,,. The solid line in Fig. 8 
illustrates the equilibrium line generated by eq. (51) 
for the given process parameters, in the feasible region 
of operation. The upper branch of the equilibrium line 
corresponds to low conversion/low residence time 
steady states, whereas the lower branch to high con- 
version/high residence time ones. Furthermore, a lin- 
ear stability analysis can show that all the points of 
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this equilibrium line are locally exponentially stable 
equilibrium points. 

Analysis of the process zero dynamics 
Setting x1 = c.,. x1 = T, u = F and y = T, the dy- 

namic model of the process can be easily put in the 
standard state-spaoe form, with 

SW = 
- Mx2h 

yk(x2)xt - Q(X2 - Tj) 1 ’ 

(Cd0 - Xl) 
V 

C?(x)= (To_x2) 9 fw=xz. (55) 

L v J 
The relative order of the output y with respect to 
the manipulated input u is then found to be r = 1, 
since &h(x) = [(To - x2)/V] $0. Consider now the 
change of coordinates 

(56) 

under which the original state-space model is trans- 
formed into its Byrnes-Isidori normal form 

where 

F,(5,, 52) = - $(C,)G 

YW&“O 
(‘2 - Tj) _ k(c2) 

+ U-O-L-~(TO-~I,) [ 1 
cl 

&&,o 

+vo-C2). 
Cw 

The zero dynamics of the process is then defined as 
the dynamic system 

i = Fi(Z, y). (59) 

The stability of the zero dynamics locally around an 
equilibrium point can be easily determined using 
Liapunov’s first theorem, i.e. based on the sign of 

aF1 ykWc,o (Y - Tj) -= 
aZ (TO-Y) o- 

- 01 (T - k(y) - W(yb. 

(W 
Transforming into the original coordinates, one ob- 
tains the following characterization of the state space: 

Minimum-phase region: 

1 

(T--To)- . I> 
(61) 
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Nonminimum-phase region: 

_-l I> . 
(62) 

The dividing line in a cA vs T diagram is generated by 
the equation: 

(63) 

and is shown by the dashed line in Fig. 5. It is interest- 
ing to observe that the point of the equilibrium line 
corresponding to the transition between the min- 
imum-phase region and the nonminimum-phase re- 
gion is exactly the point of maximum temperature (or 
double root in cA ). 

The control problem 
The desired operating equilibrium point for the 

process under consideration will be chosen at some 
location of the lower branch of Fig. 5, to achieve 
a compromise between maximizing conversion and 
maximizing production rate (this is typically deter- 
mined taking into account process economics consid- 
erations). Clearly, in this region the process is non- 
minimum-phase, which makes the control problem 
especially challenging. 

The initial operating point is assumed to be at the 
steady state: xlr = 4.29 kmolmT3, and xZm = 332 K. 
Figure 6 illustrates the open-loop response of the pro- 
cess for a negative step change in F from 0.203 m3 h- 1 
to 0.02 m3 h-‘. One can observe the initial inverse 
response due to the unstable zero dynamics. Figure 10 
also illustrates the open-loop response of the reactor, 
starting from a different steady state: xls = 3.08 
kmolm- ‘, and xlr = 312 K, and for a positive step 
change in F from 0.046m3 h-’ to 0.20m3 h-l. The 
nonlinear nature of the process is clearly documented 
in the significant differences of the response character- 
istics. 

Following Wright and Kravaris, 1992 [see also 
Kravaris and Daoutidis (1990)] the ISE-optimal stati- 

i 6- ,__,_____-~-------~_--________ 

--_. 

J( a- 
+ 

NooninimUm- 

2- 

0 ,,,,,,,,,,,,,,,,,,,,,,,, 
3cd 310 320 330 340 330 

T(K) 

Fig. 5. Equilibrium line and dividing line for the CSTR. 

Fig. 6. Open-loop response of reactor temperature. 

tally equivalent output map for this process can be 
found from the equation: 

where F,([,, c2) is given in eq. (58). Clearly, the points 
in state space for which 

represent a singular line for which h* is not well- 
defined. The output map of eq. (64) can be easily 
transformed in the original coordinates and used for 
the synthesis of the dynamic output feedback con- 
troller. More specifically, based on remark 7 and for 
r = 1, the controller 

3 = f(w) + s(w) 
e + h(w) - h*(w) - y,L/h*(w) 

Y LJkJh*w 

l4= 
e + h(w) - h*(w) - yIL,h*(w) 

Yl~,ww) 
will induce the input/output dynamics: 

y, dCh*Wl ~ + h*(x) = y,, 
dt 

(65) 

with y = ylr at steady state. 
The adjustable parameter is chosen as y1 = 0.25 in 

all simulation runs that follow. Figure 7 illustrates the 
singular lines in the state space, for which h*(x) is not 
well-defined and the control law is not well-defined 
[L#(x) = 01. 

In the first run, the reactor is initially assumed to 
be at the steady state: xlr = 4.29 kmol m-3, and 
xg, = 332 K. A negative step change is imposed on the 
output set point, from 332 K to 322 K. Figure 8 illus- 
trates the profiles for the outputs y* and y, and the 
manipulated input F, under the controller of eq. (65). 
One can clearly observe the first-order response in the 
equivalent output y* according to the theoretical pre- 
diction, as well as the matching of y and y* at steady 
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Fig. 7. Singular lines in the concentration/temperature 
diagram. 

Fig. 8. Output and manipulated input profiles for set point 
change. 

Fig. 

,’ 

/ 
o,,,,,,““,““,““,“” 

300 310 320 330 340 350 

f<Kl 

9. Reactor trajectory in the concentration/temperature 
diagram for set point change. 

Fig. 10. Output and manipulated input profiles for set point 
change: effect of initialization error. 

Fig. 11. Output and manipulated input profiles for set point 
change: effect of modeling error. 

Fig. 12. Output and manipulated input profiles for rejection 
of inlet temperature disturbance. 

state. Figure 9 illustrates the reactor trajectory which 
clearly remains away from the singular lines of the outputs JJ* and y, and the manipulated input F, for 
state space. WI(O) = 0.8x1(0) and wz(O) = x2(O) + 10. Clearly, the 

In the next two simulation runs, the same change in controller performs very satisfactorily, despite the in- 
the set point is imposed, and the effect of initialization itialization error. Figure 11 illustrates the analogous 
and modeling error on the controller performance is profiles asuming an error of 10% in the model para- 
addressed. Figure 10 illustrates the profiles for the meters y and 0~. The controller is able to cope with the 
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Fig. 13. Output and manipulated input profiles for rejection 
of inlet concentration disturbance. 

Time (hr) 

Fig. 14. Output and manipulated input profiles for set point 
change in the presence of dead-time (with no error in dead- 

time). 

33.5 , , 0.3 

Fig. 15. Output and manipulated input profiles for set point 
change in the presence of dead-time (with error in deadtime). 

modeling error and control the reactor to the new set 
point. 

The next simulation runs address the disturbance 
rejection capability of the control scheme. The reactor 
is assumed to be at its nominal steady state 
( xlr = 4.29 kmolmm3, and xzr = 332 K). Initially, an 
unmeasured step increase of 5 K is assumed in the 

inlet temperature To. As can be seen in Fig. 12, the 
controller brings the system smoothly back to the set 
point. Then, an unmeasured step increase by 15% is 
assumed in the inlet concentration cAO, and the con- 

328/.,“,“‘.,““,,,“,“,,~016 
0 I 2 3 4 5 

Fig. 16. Output and manipulated input profiles for rejection 
of inlet temperature disturbance in the presence of dead- 

time (with no error in deadtime). 

Time (ix) 

Fig. 17. Output and manipulated input profiles for rejection 
of inlet temperature disturbance in the presence of dead- 

time (with error in deadtime). 

troller again brings the system successfully back to its 
set point (Fig. 13). 

The final set of simulation runs addresses the case 
where, in addition to unstable zero dynamics, a dead- 
time 6 = loo0 s is present in the output map of the 
process; the controller of eq. (26) is used in all the 
simulations. For the same set point change as pre- 
viously (from 332 to 322 K), Fig. 14 shows the profiles 
for the outputs y* and y. and the manipulated input F, 
using the actual process deadtime in the controller 
equations. As predicted by the theory, a first-order 
response can be observed for y*, while y matches y* at 
steady state, after the initial delay in the response. 
Figure 15 shows the analogous profiles using 0 = 0 s 
in the controller equations. Even in the presence of 
such a substantial error in the deadtime, the controller 
performs very satisfactorily. Figure 16 shows the in- 
put and ouput profiles for the same unmeasured dis- 
turbance in the inlet temperature as previously (step 
increase of 5 K), using the actual process deadtime in 
the controller equations. The controller successfully 
brings the system back to the set point. Figure 17 

shows the analogous profiles using 8 = 0 s in the con- 
troller, and again illustrates the very satisfactory dis- 
turbance rejection capabilities of the controller, even 
in the presence of error in the deadtime. 



Output feedback control of nonminimum-phase nonlinear processes 2121 

CONCLUSIONS 

A general framework for the control of open-loop 

stable nonminimum-phase nonlinear processes was 

developed. A Smith-type abstract operator structured 

was proposed, providing a transparent stability 
analysis framework and allowing the unification of 

existing minimum- and nonminimum-phase com- 
pensation structures. A general nonminimum-phase 

compensation problem was posed and solved in 

a state-space framework. Reduced-order controller 
realizations were derived, inducing a desired input/ 

output behavior for processes with unstable inverse 
dynamics and/or deadtime. A model state feedback 

structure was identified in the resulting controllers, 

and its key properties were studied in a general con- 

text. The developed control method was applied to 

a temperature control problem in an exothermic 

chemical reactor operating with cold feed. Extensive 

simulations were performed, demonstrating the excel- 

lent tracking and regulatory capabilities of the con- 

troller, and its robustness with respect to initialization 

errors, modeling errors and errors in deadtime. 
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NOTATION 

concentration of species A in the reactor, 

kmol mm3 

inlet concentration of species A, kmol rnw3 

classical controller operator 

controller operator in Smith-type operator 
structure 

vector field 

inlet flowrate, m3 h-’ 

vector field 

output scalar field 

auxiliary output scalar field 

identity operator 

reaction rate constant, h- 1 
process operator 

auxiliary process operator in Smith-type oper- 
ator structure 

controller operator 
relative order of process output 

relative order of auxiliary output 
closed-loop operator 

auxiliary closed-loop operator 
time 

reactor temperature, K 

inlet temperature, K 

cooling jacket temperature, K 
manipulated input variable 

volume of the reactor, m3 

vector of controller state variables 
vector of process state variables 
output variable 
output set point 

auxiliary output 

Greek letters 

Yk adjustable parameters 

r: state vector in normal form coordinates 

: 

process deadtime 
controller state variables 

* controller state variables 

Mathematical symbols 

: 
belongs to 

there exists 

L,-h Lie derivative of the scalar field h with respect 
to the vector field f 

L$-h kth order Lie derivative of scalar field h with 

respect to the vector field J 

Iw real line 

Iw” n-dimensional Euclidean space 
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