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Abstract

We consider the problem of quoting delivery due dates to various suppliers in an
assembly system with random processing times. Assume that an order for a project
has been accepted and a due date for the completion of the project has been set
in advance. Furthermore assume that the suppliers are perfectly reliable and that
the suppliers delivery due dates must be quoted before any processing occurs in the
system. Once the delivery due dates have been quoted and processing has begun in
the system, it becomes necessary to determine the optimal starting time at every
stage in the assembly system, due to the randomness in the processing times at
the various stages. We show that the optimal starting policy at each stage calls for
no intentional delay whenever outside supply parts arrive at that stage and that
the optimal delivery due dates can be determined analytically. If the outside parts
delivery dates were preset, the optimal starting time at each stage is described by a

simple wazt-until policy, where the manager waits until the greatest of the delivery



date and the beginning of the optimal cumulative planned processing time of all
downstreams stages to begin processing. Thus the optimal starting policy at each
stage is completely determined by a critical number, the optimal cumulative planned
processing time of all downstream stages, showed to be the minimum of a convex
function. We also consider the particular case when the ouside supply parts at each
stage are available at no additional cost and characterize the wast-until policy that
completely determines the optimal starting time at each stage. Finally we generalize

by considering the case of unreliable outside suppliers.

1 The Model

Consider an assembly system with stochastic processing times as the one depicted in figure
1. The system consists of N production stages in series where outside supply parts are
needed at each stage in order for processing to start at the following stage. Let stage 1 be
the most downstream stage and let 7; be the processing time at stage ¢ with distribution
function F;, 2 = 1,..., N. Assume that an order for a certain project has been accepted
and a due date for the completion time of this project has been set at {y time units
from now. Naturally, }the processing at each stage cannot start unless supply parts are
delivered and processing at the prior stage is completed. There is a penalty p per unit of
time for missing the project due date and a holding cost h; per unit of time for holding
the semi-finished project at the outlet of stage :. Outside supply parts needed for stage
(1 —1) are held at cost h; per unit of time at the outlet of stage i, ¢ = 2,..,N + 1.
We assume quite realistically that h; + h; < h(i-1), with A(y;q) and E(N+1) > 0. We
also assume that the suppliers are perfectly reliable, that the delivery due dates must be
quoted before any processing occurs and that once processing occurs at a stage, it must be
completed. However, due to the randomness in the processing time at the various stages in
the system, once d?, the optimal delivery due dates at stage ¢ = 1, ..., N have been quoted

and processing has started in the system, it becomes necessary at the time processing is



completed at each stage to determine the optimal starting time at the next stage, given
the remaining time till the delivery due dates at the downstream stages and the project
completion due date. Let y* ([;, Xy, ..., X1) beythe optimal waiting time between the time
stage 1 is ready to be processed and its actual starting time, given that the project due
date is [; units of time away from now, X;; units of time away from the delivery date of the
outside supply parts needed for stage 7, X(;_1)1 units of time away from the delivery date
of the outside supply parts needed for stage (¢ — 1) and so forth. Let J* (L, Xi1, ..., X1)
be the minimum cost of scheduling the processing at stages ¢ through 1, given similar
data as in y* (;, Xi1, ..., X1). Also let yy be the waiting time between the time stage NV
is ready to be processed and its actual starting time. Finally let J¥ (yn, Xn1,..., X1) be
the minimum cost of scheduling the processing and quoting the delivery due dates of the
outside supply parts at stages N through 1, given that the project completion due date

is [y time units away from now.

2 Two-Stage Model for Determining Delivery Dates

and Starting Times

Suppose that N = 2. We will use backward stochastic dynamic programming (SDP) to
determine y; ({1, X1) in the first SDP stage, and y3, X3; and X7 in the second SDP stage.
The first SDP stage is triggered when job 2 is done processing. Figure 2 depicts the time

advances in a two-job model. The first SDP stage problem is defined as following:

Ji(l,X1) =Min hy(h — X0)* + (ha+Bo) 1 +
hl /(;lx—(l1—X1)+—y1 [(ll 3 (ll _ X1)+ _ yl) ~ t] fl (t) it +

p/:ul—xm-y, t- (== X)" )| fi () et (1)
st. 320



It can be easily checked that J; (/1, X1) is convex in y; by differentiating it twice. There-
fore, the optimal solution yj (I1, X7) to the first stage problem is obtained by differentiating
equation (1) with respect to y; and setting to zero. Doing this we get the following wast-
until policy, where we wait l; — (I; — X1)+ - Tl units of time before processing the job if
L—(hL-X)t - _X: > 0, and process immediately otherwise:

iy = BT A TG TR @)

0 otherwise

where X = F}! [(p +hy + Ez) / (p+ hl)] is called the optimal planned processing time
for stage 1 given [; and X;. Figure 2 shows that [; = X5 — yo — 2. Hence the second
stage problem is defined as following;:

o0

Min J, (yz,Xn,Xl) = 7;2/)( ¥ [u - (X21 — Y2 — Xl)] f2 (U) du + (3)
21—Y2—A1
hs (lo — Xo1) + (ha +7;3) Y2 + E [J] (X1 — y2 — 72, X1)]

st Y220, X0 2>2X,20

Where the first term represents the cost of holding the outside supply parts needed at stage
1, given that they have arrived before processing at stage 2 has been completed. To find
the optimal solution to the 2-stage problem, we will show that the point X, = (y3, X5, X7)
that satisfies the necessary condition VJ (X,) = 0 is feasible, satisfies X; < X, and
that the Hessian of J, (y3, Xo1, X1) is positive-definite for X; < 7; As a result, Xj is
the optimal solution to the 2-stage problem. To solve the set of first-order conditions, we

substitute {; by X1 —y2—7 in J} (I, X1), apply the expectation operator, differentiate (3)



with respect to yz, X5, and X and set to zero. Substituting (2) in (1), we get

(h2+E2)(11-X) B (ly = X)* +

bt (X = 1) fu (t) di+

Pl (t-X )f1<> t X <h-(h-X)
Jr(h, Xy) =
ha(lh = X)F +

b g = (4~ X0t~ 4] fi (1) de+

A (P XN AWd X 2h-(h- X))

—_—%

We differentiate between two cases: 1) X; > X, 2) X; < X;.

Case 1: X; > X

In this case, for 7, < X3, — yo — X, the value function becomes
J(Xn—y2—1,X1) = hy (le —Y2— T2 —7:) + ko (X1 “YI) +
X <% o —* )
hl/o (X -1) fl(t)dt+p/T (t-X7) A (1) dt
1
for Xog =y — X1 <7y _<_X21—y2—-)—(: we get
S (X —y2—7,X1) = (h2 +Ez) (le —Yp— Ty — X—;)
X ©
b (K =) fiOditp [ (-X5) A d
for Xy = — X7 <1 < X1 — ya we get
. X21~y2—72
R(Xn-pn-mX) = h [ (Xa —y2 =72 — 1) fi (£)dt +

(e <]

p t = (Xor —y2 — 1)) fu (t) dt

X21—y2—T2

and finally for 7, > Xy — yo we get
Jf (X21 — Y2 — Tz,Xl) = P[ﬁh - (X21 — Y2 — Tz)]

5



hence in case 1, the 2-stage problem becomes:

MinJ; (yo, Xo1, X1) = 52/ [u— (X5 —yo — X1)] fo (u) du +

X21-y2—-X1

hs (I — Xo1) + (he, +F3) Yy +

b h X21 — Y2 — T2 — X +h2 X1 7(:; +
0

h1/ (X dt+pj£ dt]g ) du +

Afjiyji;fl [(hz + 7;2) (X21 ~ Yy — U — 7”;) +

-—-‘

fn/ (X7~ 1) fi(t)dt+p ;(t~7’{)f1(t)dt}fz(u)du+
X21-v2 le—yQ—u
/ - [hl /0 (Xar —y2 —u—1t) fi (t) di+

Xa1-y2-X,

P [t~ (Xo1 — 2 — w)] i (8) dt]fQ( ) du +
Xa1-y2-u

p (1 = Xo1 + y2 + u) f2 (u) du (5)
X21-y2

st y220,b2>2Xy2>2X,20

Case 2: X; < X,

In this case, for 73 < Xy — y, — X1, the value function becomes

S (X —y2—7,X1) = ha(Xnn—y2—m—X1)+

—

b (K-t A@deep [ (1-X0) Ao i

for Xo1 —ya — Xy <12 < X1 — y2 we get

. Xo1=y2—72
J1 (XZI_y2—7'27X1) = hl/O (X21—y2—7-2—t)f1 (t)dt+
P It —(Xa—y2— 7)) f1(t)dt

X21-y2—72

and finally for 7, > Xy — y, we get

S (Xa—ya—7,X1) = plw— (Xox — 92 — )
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hence in case 2 the 2-stage problem becomes:

o0

Mind; (ys, Xor, X1) = 52/ [u— (X1 = y2 = X1)) fo (u) du +

Xo1-y2—-X1

hs (I — X21) +'(h3 + 71—3) Yo +

X21-y2—-X1
/0 [hz(le—yz—Xl_u)+

X1

b (X1—t)f1(t)dt+p/:(t—X1)f1(t)dt]fz(U)du+

X21-y2 X21-y2—u
/ [hl /0 (Xo1 — 2 —u—t) fy () dt+

Xa-v—-Xi
p ;_w_u [t — (X1 —y2 —u)] fi (t)dt] fo(u) du +
P Xj—yz (1 —Xa+y2 +u) fg (u) du (6)

s.t. y2_>_0,l2 >Xn2>2X120

Differentiating with respect to y, we get V Xj:

0J, (yz, X1, Xl) - _ 6J; (y2, X1, Xl)
0y, 0 X1

+hy=h3 >0 (7)

hence y5 = 0 provided 6J; (y2, Xa21,X1)/6X21 = 0 at Xon = X3,. Differentiating with
respect to X; we get for X; > YI:

6J; (y2,X21aX1)
06X,

_ o — [Xa-Xi

=h2/ fg(u)du+h2/ hWdu=F>0  (8)
Xau—-Xi 0

and for X; < X;:

6J (3/2, X21,X1)
X,

=Ty — L(X)) F3 [ X1 — X4 (9)

where L (X;) = [(32 + hy +p) —(hi+p) Fy [Xl]] > 0 for X; < X;. Therefore if X5, >

X7, then X must be at most equal to X;. Differentiating with respect to Xy, we get for

7



Xl S—X’;

h1+p

6Ja (y2, X1, X1) Ko /X21 v
= dtd
60X X21-X1 ) v

(h2+h2+p)/oxn fa (u )du—(h3+ﬁz+p) (10)

Suppose X3 < X;. Then (9) implies X5 = X7 = 0 and (10) implies X3, = X} = ly:

contradiction, hence X3 > X}. Similarly, suppose X} < 0, then it must be from (9) that
(B2 + hatp) Fa[X3] < Py (11)
However, substituting X; by zero in (10) gives
(he + b2 +p) P2 [X3,] = (2 + hs + p)

contradicting (11), hence X7 > 0. It remains to show that the Hessian is positive-definite

for X; < X, and we are done. It fact, differentiating (9) and (10) we get

§%J , Xo1, X Xa-Xi
2(?/;X1221 1) = (l+p)fi (X1)/0 f2 (u)du+ L (Xq) (12)
52J2 (yz,le,Xﬂ
§X16Xq1 =L (X1) fo (Xa1 — Xy) (13)
6* X X21
Ja (3/;;(3121,)(1) = (h1+p) /sz—Xl fo(u) fr (Xo1 —w)du+ L(X1) fo (Xa — X{14)

where L(X;) > 0 for X; < 7(7 Therefore the minor determinants are non-negative and
thus the Hessian is positive-definite for X; < X;. As a result (y3, X5, X}), where X3
vanishes (10), X; vanishes (9) and 0 < X} < Min {X;‘DYI}, is the optimal solution
to the 2-stage problem. Since X; < X, then y; = 0 w.p. 1 and the optimal policy
calls for immediate processing whenever the outside supply parts needed at stage 2 are
delivered, and for no intentional delay whenever the outside supply parts needed at stage 1
are delivered. To conclude this section, we must mention that the analysis presented here

assumes that the project due date is sufficiently far in the future that there is enough time

8



to plan for delivery of outside supply parts. However, there may be instances when the
supplier at stage 1 requires that the order for the ouside parts be placed at least A; units
of time in advance. In such situations, schedule the delivery date for the outside supply
parts needed at stage 1 at X7 if X7 < ly— A;, and at [, — Ay otherwise. Similarly, schedule
the delivery date for the outside supply parts needed at stage 2 at X3, if X5 < lp — Ay,
and at /;— A; otherwise. However, we showed that X3; > X7. As a result, if X] > 5 — A,
then schedule the delivery date for the outside supply parts needed at stage 2 at [, — A,

since in this case X3, > 5 — A,.

2.1 Effect of the Processing Time Variance at Stage 1

In this section, we study the effect of the processing time variance at stage 1 on X3,
and X7, the optimal delivery dates of the outside supply parts needed at stage 2 and
1 respectively. To do this, we will use a simple mean-preserving transformation of a
random variable. This transformation was first used by Baron [1], Rothschild and Stiglitz
[3] and Sandmo [4] in Economic Theory, and was first used by Gerchak and Mossman
[2] in Iventory Theory to show the effect of the demand variance on the optimal solution
to the classical Newsvendor problem. With 7; as the processing time at stage 1, the

transformation is

Tia = (T — p1) + 1 (15)

where g, is the processing time mean at stage 1. It is clear that (15) implies E [11,] = E [71]
and Var [r4] = o?Var [r]. Hence we increase or decrease the processing time variance
at stage 1 by assigning values for « larger or smaller than 1 respectively. After making

the substitution X; = X5 — X, equation (10) set to zero can be written as

(h1+p)Prir> Xon+n <X, +X1]+(h2 + by +p> Prr < X,| = h3+77:2+p (16)



and hence

(h1+p) Prim > Xon, 72 + T1a < Xoo + X1a| + <h2+52+p) Prim < Xl = hs+hy +p

which, after substituting for 71, from (15), can be rewritten as

f1 (t) fa (u) didu+
X

(h ) Xoat+Xiatm(a-1) pX2atXazmzv,
1+ / /
P X2a 0

(h2+52+P>A 2afz(u)du = h3+EQ+P(17)

Similarly, equation (9) set to zero can be written as

Xq =
Sla—hl gy X2a

[(Ez-*-}w +P) ~ (bt +P)/O fi () dt} A fo(w) du = hy (18)

Differentiating (17) with respect to o we get

(hl + p) X2a+X1a+p1(a-1) dXy dXia
o Jx,. da da
(0]

(Xoa + Xia — 1 — )] f1 (

dfl(azafz (X,a) [(722 +hy + p) ~ (k1 +p) /0

+ ﬂl) Ja (u) du

X1a—k
—19“—-1-+u1

+

fi(t) dt} =0 (19)

and differentiating (18) with respect to a we get

X1a—1
ot

di:afz (X2a) {(ﬁz +hy+p) = (b +P)/0

fi(t) dt]

(o4

Suppose that for some «, we have dX,,/da = 0. Equation (20) implies that either one of

10



the following three statements are true:

1) Xop =0

2) Xloz :ﬂl(l—a)
Xig — 1

T

4) a =o

Equation (18) indicates that 1) leads to a contradiction. If 2) is true and o > 0, then (18)

and (17) imply
hy

Fy [ Xgo) = =——— 21
2 [X24] b D (21)
and
hy + hs +p
Fy[X, | =2 TP 2
el = s -
respectively: contradiction. If 2) is true and @ = 0, then (18) and (17) imply
1 [Ra+ ks +p]
Xoalowo = Fy ! | 2225 23
o= By [ (23
and _
Xma{ -1 (hz + hy +P> (hs+p) . (24)
a=0 = = — M
do Y l(h+p) <h2+h3 +P)

respectively. If 3) is true, then (19) implies

/X2a+Xla+ﬂ1(°‘-1) X2a + Xla —pf1—Uu
(0%

(u = Xaa) i +m) hlu)du=0 (25

X2a

which in turn implies either 2). Moreover, the fact that 2) is true and « = 0 agrees with
the fact that X7 = y; when the processing time at stage 1 is deterministic. As a result
of this analysis, we conclude that dX;,/da = 0 only at a = 0, which implies that (23)

and (24) are true, and at @ = oo by 4). Suppose dX3,/da > 0 for 0 < o < oo, then

11



limg—oo Xoa = o0 since Xy, is continuous.in a. This leads to a contradiction in (17)
since hy > hj. Therefore dXy,/de < 0 for 0 < @ < oo. Equation (18) implies that
Xia < (7(7 - u1> + p1 since equation (9) implies that

0J, (yz, Xoa, Xloz)
0X1,

Nuama(Tom ) = 12 = L (XT) Bo[Xaoo] =By 20 (26)

Therefore, having shown that X > (Xy, — 1) /a + py, we rewrite (20) as

dXs4
(h1+p) -

da
- (hlo; p) ad‘;;a - (X1a = )} f < _A +,U1> OXQQ fo(u)du=0 (27)

f ) [R[R] - B [P |

As a result, for equation (27) to be true, it must be that
Xma < Xla — M1

da — a

(28)

Suppose that for some «, we have dX;,/da = 0. Equation (28) implies that X, > 4.
Therefore, Xi, is strictly decreasing in the region Xj4 < p1. Finally, as a approaches oo,

equations (17) and (18) become

hl +p / /X1a+ﬂl f2 )dtdu + <h2 + h2 +p / f2 du = (hs + h2 + p)
(29)

and

[(ﬁz +hy+p) = (b +p) [ R0 dt] [ hw)du=h, (30)

where Xop = limg_ooXo and Xj, = ltmg—eodX1o/da. After solving equations (29)
and (30), we get

: hy
limaooo X = Fj!|l=————— 31
o : 2 [h’z + hy — hs] (@)

12



(32)

dXi1a 1 lhs+p
do F { Bt

e = N it

If (24) is negative, then Xi, is strictly decreasing in a. If (24) is positive and (32)
1s negative, then Xj, increases as uncertainty is introduced, only to decreases towards
Xio = w1 as « keeps on increasing. After hitting X, = u1, Xi, strictly decreases
as a — oo. If (32) is positive, then X, is increasing with «, and lim,_.dX,/da is
given by (32). In conclusion, X3, is decreasing with a with Xs4|s=0 given by (23) and
1M 00X 2o given by (31), while X, is increasing (assuming (24) is positive) in a with

dX1o/da|a=o given by (24) and limy_.od X1, /da given by (32).

3 Two-Stage Model for Determining Starting Times
with Preset Delivery Dates

Suppose that the delivery dates of the outside parts needed at stage 2 and stage 1 have
been preset at X, and X; respectively, together with the project due date at l;. In this
case it is necessary to determine yj (2, X21, X1) as defined in section 1. However, with

this information structure in mind, the relationship between the state variables is now
h=lk-(l- X21)+ —Y2—T2 (33)

depending on whether the present is located before or after Xs1, and yj (I3, Xo1, X1) is
obtained by solving the following problem:

J3 (l2aX21aX1) = Min Ez /:(lz_xn)+_y2_xl [U - (lz - (lz - X21)+ —Y2 - X1)] fo (U) du +
ha (I — le)+ + (hs + 7{3) Y2 +
E[J; (b= (- Xn)t —y2— 7, X)) (34)

st. Y220

13



Now that X3, and X; are data, we may have either X; < Y; or X; < 7(_: If X; < Y;‘,
then the last term in (34) is expressed as in (6) (but with I, — (I; — X5;)" instead of X5;),
and as in (5) otherwise. Our goal is to show that in both cases, (34) is convex in y,. If

X; < X7, then differentiating (34) twice with respect to y, gives

§2J, (ly, Xo1, X1) ly=(l2=X21)t -4z
—— = (h ly—(lp— X3)T —yo —u)d
6?/% ( vt p) l=(l2=X21)t —y2—X1 f2 (u) fl ( 2 ( : 21) vz U) !
+L(X,) fo (la = (= Xat)" =32 = X1) 20 (35)

since L (X;7) > 0 for X; < 7; On the other hand if X; > Y’{, then differentiating (34)
twice with respect to y, gives

8 J5 (ly, Xo1, X1) h=(l2=Xa1)* -2 +
= (hy+ - X — ygu ) du
i (atp) [ e e Fr (@ (= (= Xo) ™ — o)
+L( )fz (12—(12—X21) —yz—Y{)
la=(l=X21)* -1

= (h ly — (lg — Xo )t — g —u) d
(h1+p) (- Xn)* T f2(u)f1(2 (I ) — Y2 U) u

since L (X;) = 0. Therefore making the substitution X,; =l — (I — Xu)t -y, we get
that y3 (lo, X1, X1) is defined by a wait-until policy where we wait I, — (I — Xo1)t — X5
units of time before processing the job at stage 2 if I, — (I — X21)+ —7;1 > 0, and process

immediately otherwise:

L—(L=Xn)" =X, iflh— (- Xa)" >X, (36)

0 otherwise

Z/; (12,X213X1) = {

—_— —x

X, is the optimal cumulative planned processing for stages 2 and 1. If X; < X7, X,
solves

6J3 (I, Xo1, X1) _ Xa1 /Xu—u

(hy+ p)

. dtd
0X 9 Xo1-X1 () dtdu +

(h2 +Fi2 + p) /Oxn_& fa(u)du— (hs + s + iz +p) =0 (37)

14



and if X; > X, X3 solves

(h1 +p)

5J2 (12,X21,4¥1 _ X2 /X21 u
6}—(—:21 B Xo1— X1

(u) dtdu +

<h2 + hy +P) /OXH_XI fa(u)du - (hs + ha + by + P) =0 (38)

Note that we may have from (37) that X,, < X;, in which case it must have been that

6.7 (I, Xo1, X1) BT
57211 1’3(_21=X1 = h1+p/ / dtdu>(h3+h3+h2+p)
that is
_ h3+7;3+7;2+p
S 1
— i [ha+ha+ha+p
=>X21 = lel[ : hj+p2 <X

Similarly, we may have from (38) that X,, < X}, in which case it must have been that

_— _ h2+752+p] - h3+ﬁs+ﬁz+p]
X = p1|2T2Th S pl
! ! [ hi+p - hi+p
=X, = Fle[ 3 hj—f—p <X

hence y7 = 0 w.p.l and stage 1 is processed immediately when processing at stage 2 is

completed.

4 Case when h3=hy =0

Suppose that the outside supply parts needed at each stage can be made available at no

additional cost. Assume furthermore that these parts are actually available at the time

15



the order is accepted. Then the problem reduces to the one considered in Yano [5]. In

the framework of our paper, the wait-until policy at stage 1 is given by:

h-X) iflh >X]
i=4 " 7t (39
0 otherwise
where X] = FJ [(p + h2) / (p + h1)]. To determine 3 (I;) we solve
J3(ly) =Min hays + E[J; (I — yo — 72)] (40)

st. Y20

Our goal is to show that J; ({3) is convex in y,. The expectation operator conserves con-
vexity. Thus suppose that J; (I;) is convex, then we are done. Our goal is to show that
the Hessian of J; (I;, X;) is positive-definite. Substituting (39) in (1) (with h; = 0 and
X1 2 1), we get

hs (ll —_XT) by (7; - t) fi(t) dt+
Ji(h) =1 pf (t-X7) () dt
hifgt (=) fi(t)dt+p [ (¢~ L) fi (t) dt

o e
A
=

._

v

o~
=

Differentiating (41) a first time with respect to l; we get:

v

d[]{ (11)] — h2
dh (hi+p) 2 fi(t)dt—p X3 210

Differentiating (41) a second time with respect to {; we get:

(43)

& ()] { (h+p) (k) X2
-

0 otherwise

It is easy to see from (41) and (42) that (41) is continuous at /; = X;. (4) is also
differentiable at l; = X by using the fact that X; = F~'[(p+ hq)/ (p + h1)]. We have

16



shown that Jy (/1) is convex in /; and thus J; (I;) is convex in y;. To determine y; (1), we

substitute {; by Iy — y2 — 7 in (40) and get:
. . b-y2-X] —
T3 () =Mingso  hays + ho / (= 92— u=T7) fo () du

+ h1/012 o fz() /Y;(Yf—t)ﬁ(t)dt

toh /I’Hﬂ X /lz—yz-u (b —ya —u—t) fa(u) fi (t) dtdu

2—y2—X,

+ p/h T Xl du/Xl (=) fu(t) de

+p (1 4+ v =l 4+ y2) fa(u)du

la—y2 '
l2-y2 o

tp[ T tu-htuw) fl) (O dde ()
la=y2—X; Jlo=y2—u

Therefore substituting in (44) l; — y, by X321, we obtain y} (/3), the optimal waiting time
before production is started at stage 2 given that we are [, periods away from the due

date. y3 (I2) can be written as:

lh— X, ifl,>X,
y; (la) = " o (45)
0 otherwise

To compute X5, we differentiate (44) after substituting l, — y, by X3; and set it to zero.

Further manipulations result in the following first order condition:

(hy + p) /(X - /le-u (u) dtdu+(hy + p) /XQI_Xl f2(u)du—(hsz +p) =0 (46)

we may have from (46) that X,, < X7, in which case it must have been that

dJy (Iy) X; Xl—u
dly |X21—YI = (hi+p) / / u) dtdu > (hs + p)

that is

—_— - h2+P - h3+p
X, = 1 > 1
1 Fl [h1+p]—FZI [h1+p
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=Xy = Fy

< 1 lhstp —
1 <‘¥
{hlﬂ’] -

hence y7 = 0 w.p.1 and stage 1 is processed immediately when processing at stage 2 is

completed.

4.1 Effect of the Processing Time Variance at Stage 1

In this section, we study the effect of the processing time variance at stage 1 on X, and
X, the optimal planned lead times at stage 2 and 1 respectively. To do this, we will use
the simple mean-preserving transformation of a random variable defined by (15). As a

result, we get

Xia=0a (Y; - Ml) + 1 (47)

After making the substitution X; = X, — X, using the transformation defined by (15)
and substituting X, from (47), equation (46) becomes

Xoa+aX] /52§:3-+7(-;
0

(h+9) [

X2a

72&
Fu () fa (W dtdu(ha+p) [ fo(u)du = (ha+p) (43)
Equation (48) gives Xox|a=o = F5 ' [(p + k3) / (p + h2)]. Differentiating (48) with respect

to a we get

hy + Xzat+oX] dXs, Xoo — b'é
( 1 p) l:a_dc‘j—"‘(XQQ_‘u)]fl( 2a u+X1>f2(u)dU

a2 X2a

+ df;"fz (X20) {(hz +p) = (b1 +p) /0 10 dt] =0 (49)

and hence

(hl + p) /xza+a7; [adXz"

X'Za -
a? X2 do (Xaa = u)] h (

- Xl) frlw)du=0  (50)

18



Suppose there exists « for which dX,,/da = 0. This implies that either o« = 0 or @ — 0.
As o — o0, (48) gives hy = hs: contradiction. Therefore dX,,/da = 0 only at a = 0. For
a >0, dX,/da <0 for (50) to be true. Finally, X5, = 0 implies from (48) that o, the
amount of variance at stage 1 that is required to pool the two stages into a single stage

whose processing time distribution is the convolution of the two stages, satisfies

(otn) [ [ R0 o) didu = p (51)

Recall that for « = 1, X, > 0 only if Fy [,—X—:] < (p+ h3)/(p+ k1), hence the same is

true for a* > 1. For a > o*, X34 = 0 and X, is given by

(h1+p) Pr [Tla +7 < _X_m] =hs+p (52)

Using (15), (52) becomes

fi(t) f2 (u) didu = hs + p (53)

X1a+p(a-1) /ﬁ“%‘l-—"ﬁ-m
0

(hy +P)/0

It is clear that (53) reduces to (51) at a = o, with X1, = o (Y{ - ,ul> + u1. Differenti-

ating (53) with respect to «, we get

Xiatui(a-1) X - — M1~
(h1+p)/0 - { dX‘“_(Xm—m—u)} f (ég—fu-l-lll)fz(u)du:O

a? *da
(54)
Finally, as o approaches co, equations (53) gives
. dyla - h3 + p
liMgoo—— = F! - %)
s [hm i (55)
For equation (54) to be true, it must be that
d X1, < Xia — 1 (56)

da — a
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Suppose that for some a > o, we have dXj,/da = 0. Equation (56) implies that
X1a 2 p1. Therefore, X, is strictly decreasing in the region Xi, < p;. Therefore, if
a is increased more than o and (55) is negative, Xj, increases first, only to decrease
with higher o and to hit X, = y; at some o > o*. After that, it strictly decreases with
a limiting slope given by (55). If « is increased more than a* and (55) is positive, X,
increases first, there does not exist o > a* such that X;, = p1, and lima—odX o /da

is given by by (55). We shall derive a quite restrictive sufficient condition for having

dj(—m/da >0 for a > o*.

(h+p) Pr[a(ri =)+ pr+ 7 < Ko = hs +p (57)

Define o as

Tore = @ (To1 — pio1) + iy = @ (11— 1) + p1 + 72 (58)

where 75 = 72 + 7. As a result, (57) becomes

(h1 +p) Pr {a' (To1 — p1) + par < Yla] =hs+p (59)
and hence
— 1 |h3+Dp
! 13 _
Xia =« (G21 {hl +p] #21) + po1 (60)

where G4, is the distribution of ;. Therefore G5 [(hs + p) / (k1 + p)] > pa1 implies that
dX 1o /da > 0 since (58) gives

, a*Var (1) + Var ()
“ \J Var(r) + Var (m) (61
and hence
dX1a  dX1qda >0 (62)

da = do/ da ~
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if G5 [(hs 4+ p)/ (h1 + p)] > pa1. As a corollary to this result, we get

hs+p
hi+p

h
- [ 2P > (63)

21 hl +p

] > Ha1 = Fl—l [
since the opposite would contradict dX,/da > 0 for a > o*.

4.2 Case when hy > hs > 0 Revisited

We want to shown that in the case of hy > hs > 0, we also have the sufficient condition
for dX14/da > 0, a > 0, that is G5! [(h3 +p) / (k1 + p)] > pa1 implies dX;o/da > 0.
Substituting in (17) from (18) we get

X2a+X1atu1(a-1) mﬂlf:ﬂ:iﬁ'm
/ / i (t) fo (u) dbdu+
Xoa 0
Kot gy, X2a h +p
* £) dt du = = 64
/ A [T pwd = 225 (64
which can be rewritten as
Xgzm—u ), X2a+X1a—at+ur(a-1) hs + D
® #) dudt = = 65
/ / fo () (1) dudt = 2 (65)
and equivalently as
Mt“:“—‘:—"-+u1 Xza+Xia—at+ui(a-1)
[ /0 fa (w) fy (t) dudt = (66)
XpatXig=m =8 )Xot Xia—attur (a—1) hs +
a P
u t)dudt + 3
Jouenme,, fa(u) fu (1) o

As a result, if G5 [(h3 +p)/ (k1 +Pp)] > pa1, then the right-hand side of (67) is also at
least equal to pq;. Therefore dXi,/da > —dXy,/da > 0.
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5 Generalization with Uncertain Delivery Dates

Suppose that the outside suppliers are unreliable and it is required to quote, before any
processing occurs, the delivery dates for the outside supply parts needed at stage 2 and
1. Suppliers unreliability is captured by defining 7, and 7; as the time elapsed between
the quoted delivery date and the actual delivery dates at stage 2 and 1 respectively.
We assume n; and 7; to be continuous random variables with distributions G; and G
respectively. The first stage in the SDP is triggered whenever outside supply parts arrive
at stage 1 or whenever processing at stage 2 is completed, whichever occurs last. The

optimal starting policy at the first stage is still a wait-until policy given by

L-X, it >X,
yi()=4 =~ e (67)

0 otherwise

where X = F|! [(p + hy + h2> /(p+ hl)]. To determine y;, X5, and X we solve

Min J (y2, X, X2) = hs (b= X + Ena]) + (s + o) 2 + (68)
& / ~/11+X21 yg—Xl —v = (X1 — y2 —~ X1)] 7 (w) g1 (v) dwdv +
v+X21-y2-X1
/ /0 [(X21 —y2 — X1) + v — w]g (w) g1 (v) dwdv +

PriXon—y-1<Xi—m|E[J] (Xa—y—7)]+
Pr(Xo—y—72 X —m]E[JT (X; —m)]

s.t. Y2 Z 0,X21 Z O,X]_ 2 0

where 7j = n; + 7, with distribution G. Differentiating with respect to y, we get V X;:

6J5 (Y2, Xo1, X1) 2_5‘]2 (42, X1, X1) +h3=h3 >0 (69)
Y2 5X,21
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hence y; = 0 provided §J5 (y2, X21, X1)/6 X021 = 0 at Xo1 = X5, Equation (68) becomes
Min J (X1, X1) = ha(lo = Xor + E[na]) + (ha+ Fiz) 2 + (70)
/ / [w—v—(Xa1 = X1)]F (w) g1 (v) dwdv +
v+X21— Xl
v+Xo1—
/ / (Xa = X1) + v — |7 (w) g1 (v) dwdv +
v+X2-X1 X1-v
/ X/ { / (X1 —v) — 1] f, (£) di+
P/X [t = (X1 —v)] fi(t) dt] g (w) g1 (v) dwdv +
1=v
oo pu+Xa-Xi1
P/X /0 [p1 = (X1 = v)]7(w) g1 (v) dwdv +

/(;XI—YI /v+X21—X1 [(h2 +_};2) <X1 B 7: ~ v) s

Sl

hl/')?'( _t)fl dt+Pf‘ fl() } (w )91(v)dwdv+
/ijlx /w—(X“ " [hl /OXZI—W [(Xo1 —w) —t] f1 (t) dt+

o[ It- (Xo1 —w)] f1 (2) dt] 01 (v) 7 (w) dvdw +

Xo1—w

oo rw—(X21-X1) :
p/X21 /o (11 = (Xo1 — w)] g1 (v) § (w) dvdw +

o 7 () (i)

—‘

) (G- i @d [ (- T £ 0] 0 (07 ) o

s.t. X21 2 O’Xl Z 0

After further manipilations, differentiating with respect to X5, and X; gives

6]2 (X21, )(1 X2 X21-w ~
ok, - & / t dtdwd el
6Xn (k1 +p) /X1 X1/11+X21_X1 fi()7(w) g1 (v) dtdwdv +  (T1)
XI-XI Xa Xo1~w
h1+P/ /X21 X1/ f1 ()7 (w) g1 (v) dtdwdv +

23



(ho+ B2+ p) /X OT_T /0 R ) gr (v) duwdo +
(hy +Fs+9) /fl 5 /OXQI—le(w)gl (v) dwdv — (ks + T, +p) = 0

and

5J2(4¥21,4X1 _ viXo =Xy Xy-v — o
i, (h1+p) /X1 Xl/ / fi(H)7(w) g1 (v) dtdwdv  (72)

v+ X21— X1 _
— (b + B +p) / / g1 (v) dwdv + Ty = 0
X=X

It can be shown that the Hessian of J; (X5;, X;) is positive-definite by diﬁérentiating (70)
twice, hence X3, and X} are indeed given by (71) and (72). Note that in the case of
unreliable outside suppliers, there are instances where X} > X. Therefore, the realization
of the delivery date for the outside supply parts needed at stage 1 may be such that parts
arrive while the remaining time till the due date is still larger than the optimal planned
lead time at stage 1. And if, in addition to this, processing at stage 2 has already been
completed, then some intentional waiting time at stage 1 is induced until the remaining
time till the due date becomes equal to the optimal planned lead time at stage 1 for
processing at stage 1 to start. This extra waiting time represents the additional cost due
to quoting outside supply parts delivery dates earlier than the beginning of the optimal

planned lead time at stage 1, as a protection against suppliers uncertainty.

6 Conclusion

We considered the problem of quoting delivery due dates to various suppliers in an assem-
bly system with random processing times. We assumed that an order for a project has
been accepted and a due date for the completion of the project has been set in advance.
We also assumed that the suppliers are perfectly reliable and that the suppliers delivery

due dates must be quoted before any processing occurs in the system. Once the delivery

24



due dates have been quoted and processing has begun in the system, it was necessary
to determine the optimal starting time at every stage in the assembly system, due to
the randomness in the processing times at the various stages. We showed that the opti-
mal starting policy at each stage calls for no intentional delay whenever outside supply
parts arrive at that stage and that the optimal delivery due dates can be determined
analytically. We also showed that in the case of the system consisting of two stages in
series, the difference between the optimal delivery date of outside supply parts needed at
stage 2 and the optimal delivery date of outside supply parts needed at stage 1 decreases
with increasing processing time variance at stage 1, while the optimal delivery date for
outside supply parts needed at stage 1 is advanced under mild conditions with increasing
processing time variance at stage 1. If the outside parts delivery dates were preset, the
optimal starting time at each stage is described by a simple wait-until policy, where the
manager waits until the greatest of the delivery date and the beginning of the optimal
cumulative planned processing time of all downstreams stages to begin processing. Thus
the optimal starting policy at each stage is completely determined by a critical number,
the optimal cumulative planned processing time of all downstream stages, showed to be
the minimum of a convex function. With increasing processing time variance at stage 1,
the optimal planned lead time at stage 2 decreases and the optimal planned lead time at
stage 1 increases under mild conditions. We also consider the particular case when the
ouside supply parts at each stage are available at no additional cost and characterize the
wait-until policy that completely determines the optimal starting time at each stage. Fi-
nally we consider the case of unreliable outside suppliers and show that there are instances
where the optimal delivery date for outside supply parts needed at stage 1 is quoted earlier
than the planned lead time for stage 1 due the uncertainty in the actual delivery date,
hence inducing some intentional waiting time in case processing is completed at stage 2,
the ouside supply parts have been delivered and the remaining time until the due date is

still larger than the planned lead time at stage 1.
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