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Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog
methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that
can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of
finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high

count rate pulse spectroscopy.

1. Introduction

The theory of optimal pulse shaping in high resolu-
tion spectroscopy has been well developed and pub-
lished in number of articles and textbooks. While the
ideal cusp shape has been cited to give the best signal-
to-noise ratio, it has been recognized that this pulse
shape is not practical because of its theoretically infi-
nite time duration [1,2]. In a typical spectroscopy con-
figuration employing a charge sensitive preamplifier,
two generalized types of noise are of significant impor-
tance: step and delta noise [1,3]. When delta noise is
predominant, the optimum pulse shape for a finite
pulse duration is the symmetrical triangular shape [1,4].
In addition to electronic noise, the pulse height mea-
surement is subject to other sources of fluctuations
such as statistical variations in the number of charge
carriers, microphonic effects, charge loss due to trap-
ping, etc. [5]. An additional consideration is the sensi-
tivity of the pulse shaping techniques to variations in
the detector charge collection time. Ballistic deficit and
charge trapping effects can noticeably reduce the reso-
lution of spectrometers when shapers producing short
pulses with sharp peaks are used. It has been demon-
strated that these effects can be reduced by using
flat-topped shapes [1,6,7].

This paper describes a technique for synthesis of
optimal pulse shapes (symmetric triangle and symmet-
ric trapezoid) for high resolution, high throughput
spectroscopy, using fast recursive digital algorithms.
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The technique also allows synthesis of other shapes
such as finite cusp-like and flat-topped cusp-like shapes.
The algorithms are suitable for real time implementa-
tion, require only simple hardware, and offer flexibility
in the adjustment of the output pulse shapes.

2. Synthesis of trapezoidal and triangular pulses

In common spectroscopy systems, the detector-pre-
amplifier configuration is followed by a prefilter circuit
(pole-zero cancellation, CR differentiation) that pro-
duces a pulse with short rise time followed by a long
exponential tail. In the following development, we as-
sume this type of input signal with amplitude normal-
ized to one and a decay time constant of 7. The rise
time of the pulse, for now, will be considered to be
very short. An example of the exponential signal is
sketched in Fig. la.

The initial problem we have addressed is to develop
an efficient algorithm to convert this exponential pulse
to a pulse with true trapezoidal shape. We will first
carry on the analysis in the continuous time domain,
and then apply the results in the discrete time domain.

The output s(¢) of a linear time-invariant system is
given by the convolution integral

s(t) =f_+:y(z')h(t—z') dr, (1)

where v(¢) is the input signal and A(¢) is the impulse
response of the system. For real-time signal processing
the system must be causal, i.e. the output at given
moment depends only on present and previous values
of the input signal. As a result the upper limit of
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Fig. 1. Convolution of an exponential input signal (a) with
rectangular function (b) and the output response of the sys-
tem ().

integration in Eq. (1) can be truncated at the moment
of time ¢ at which the output of the system is evalu-
ated. Our goal is to find a causal system with finite
impulse response which, when used in Eq. (1), will
transform an exponential input signal into a trape-
zoidal shape. The convolving function should also be
simple and practically realizable.

2.1. Convolution with rectangular and truncated ramp
functions

First consider a system with a simple rectangular
impulse response, also called a moving average system.
The digital implementation of this system in radiation
spectrometry has been previously described [8]. An
example of a unit rectangular function is shown in Fig.
1b. The output response of the moving average system
to an exponential input signal (Fig. 1a) is presented in
Fig. 1¢. The result of the convolution of an exponential
signal with a unit rectangular function is described by
the following equations

p(1) =f0’ T A =r(l—e /7y, O<t<T,
(2)

and

T,
P(t)=f0'e”")/’ dt'=re /(e =1), t>T,.
(3)

The response of the system for ¢ <0 is zero. Note that
the only time dependent terms in Eq. (2) and Eq. (3)
are exponentials. An important feature of the output
signal is that, after reaching a maximum, it decays with
the same time constant as the time constant of the
input signal.

Another simple convolving function is the truncated
ramp (or saw-tooth) function. Fig. 2b shows a unit
slope truncated ramp function with duration 7,. The
response of this system to an exponential signal (Fig.
2a) is depicted in Fig. 2¢. The output response of this
system is given by

r(t)= f’t' T =t —7i(1 -7,
0

0<r<T, (4)
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Fig. 2. Convolution of an exponential input signal (a) with unit
slope truncated ramp function (b) and the response of the
system (c).
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and
T ,

r(t) :/ 1t1 e(l —t)/T de
0

=re /(r+e/ (T ~7)), t>T,. (5)

Again the response of this system for t < 0 is zero, and
this case will be omitted in the following discussions.
Eq. (4) has two time dependent terms — one is linear
and the other is exponential.

2.2. Impulse response of the trapezoidal shaper

We next will develop the conditions under which a
flat-topped trapezoidal shape can be synthesized. Tak-
ing the definitions of r(¢) and p(¢) from above, con-
sider a function f(¢) defined as

f()=r(t) +7p(1) +ap(t = T)), (6)

where q is a parameter. It is assumed also that 7| < T,.
Further, for simplification, the function describing the
output signal of the system in given time interval will
be indicated using two indices referring to the begin-
ning and end of the interval, e.g. f;,(+) denotes f(¢) in
the time interval 0 <t <T,, f,,(¢+) implies f(t) for
T, <t <T,, etc. Using this convention and defining a
moment of time T, =T, + T}, Eq. (6) can be rewritten
as three separate equations

fo(t) = ¢, 7
fialt) =21 —e /") 41 e /(74 /(T — 7))
+ar(l—e U T/
=7t +ar+re UTV/(T, —1-4q), (8)
fa(t)y =12 e”!/T(ef2/7— 1)
+re”/ (14 e/ (T - 7))
(- et ©

Eq. (7) represents the linear rising slope of the desired
trapezoidal shape. The next step is to find the condi-
tion under which f(¢) is constant in the interval T, <t
< T,. This condition can be determined from Eq. (8).
Since f1,(¢) must be time independent, it is necessary
that 7\ — 7 —a =0or a = T, — 7. For the case in which
a=T,— 1, Eq. (8) and Eq. (9) reduce to

fi(t) =Tyr, (10)
fr(t) =12 ef(’frz)/f%-f(T,—f). (11)

This choice of @ = T, — 7 is assumed for the remainder
of this analysis. If the trapezoidal shape is to be sym-
metric, the signal must decay to zero at T, =T, + T,.
Let the response of the system be written as

s(8) =f(1) +q(r) (12)

where g(¢) is the specific function that results in s(¢)
becoming a symmetric trapezoidal function defined as

S_a(1) =0, (13)
soi(t) =1¢, (14)
sip(t) =Ty, (13)
sp(t) =Tt —7(t - T), (16)
53.(t)=0. (17)

The specific solution for g(¢) can be found from Eq.
(7) and Egq. (10) through 17. The result is that ¢(z) = 0
in the time interval — <t < T,, and in the rest of the
time domain g(¢) is defined by

qx(1) = ‘[T(t_Tz)_72(1_6*“_72)/7)] (18)
and
@(t) = —[r? e /7], (19)

Egs. (4), (5), (18) and (19) show that g{(¢) has the same
shape as r(¢) but with opposite polarity and a delay in
time of T,

a(t) = ~r(t=Ty). (20)

Thus, a system with properties that transform an expo-
nential to a trapezoidal shape has been determined. In
the case of T, =T, the trapezoid is reduced to a
triangular shape. It should be noted that other con-
straints can be applied regarding the shape and dura-
tion of trailing edge of the trapezoidal pulse, and
asymmetric shapes can be obtained. However, a sym-
metric shape is generally preferred for optimum signal-
to-noise ratio in the measurement of pulse height [3].
From the distributive property of convolutions, the
impulse response of the system can be written as

h(t)y =hy(t) +7hy(t) + (T) = 7)hy(t = T))
—h(1-T,), (21)

where £ (¢) and h,(¢) are the impulse responses of the
truncated ramp system and the moving average system
respectively. The impulse response of the trapezoidal
shaping system is shown in Fig. 3b. In this example
T, = 7. This response is synthesized by simple functions
and is suitable for real time digital implementation.

3. Digital implementation of the trapezoidal shaper

Consider an exponentially-decaying input signal that
is digitally sampled at equal intervals of time. In what
follows, we will measure time in units of the sampling
period. The input signal at time i will be written as
v(i). The first step in the synthesis is to convolve the
sampled input signal with a rectangular function. Since
it is required that the convolution be performed in real
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Fig. 3. Convolution of an exponential input signal (a) with
trapezoidal shaper impulse response (b) and the output re-
sponse of the system (c).

time, it is convenient to use a recursive convolution
algorithm. The recursive form of moving average sys-
tem is given as

n
p(n)y= Y v(i)—v(i-1)

1=0
or
p(n)=p(n—-1)+v(n)—-v(n-1), n=0, (22)
where v(n) is the prompt sample at time n and v(n — 1)
is a sample at a time that is delayed by [ relative to n.
We will denote [ as the length of the convolution
function.

The initial conditions that are imposed will deter-
mine the offset of the output signal. It is usually
required that the offset be zero, so that the initial
condition can be defined as

v(n)=0, n<O0. (23)
Further, we assume that the same initial condition is
met for the recursive algorithms to be discussed later.

The next step is to define a recursive algorithm for
convolution using a truncated ramp function. Again it

is assumed that the slope of the ramp is equal to unity.
Under these circumstances the recursive form of the
convolution can be written as

1

r(n) XA Lv(i)—v(j—k) —v(i—k')k

=0\ ;=0
or
r(ny=r(n=1D+p(n)—v(n-k)k, n=0 (24)

Here p(n) represents a moving average (Eq. (22)) with
length k, and k' is a delay parameter. Three different
impulse responses can be obtained depending upon the
choice of value of k', as shown in Fig. 4. For the
trapezoidal shaping discussed above it is necessary that
k' be set equal to k.

Recursive convolution algorithms using higher or-
der polynomial truncated functions can be constructed
in fashion similar to that described for the truncated
ramp case. For instance, a convolution with a trun-

p
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Fig. 4. Impulse response of a truncated ramp system at
different values of the delay parameter k'. (a) k' >k, (b)
k'=k, () k' <k.
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cated (k> + k)/2 function can be written in recursive
form as

n ] !
u(ny= Y, { Y { Yv(i)—v(ji—k)—v(i—k')k
1=0

=0 J=0

k?+k
—v(l—k) 3

or

2

u(n)y=u(n—1)y+r(n)—v(n—k)

n=0,

(25)
where r(#n) is truncated ramp convolution with length
k (Eq. (24)). Convolution with higher order polynomial
functions requires operations with large integer num-
bers resulting in an increased complexity of the system.
Thus, we will limit our considerations here to systems
with rectangular and truncated ramp impulse re-
sponses.

The response of the trapezoidal shaper discussed
previously in the continuous time domain can be writ-
ten in the form of a recursive algorithm in the discrete
time domain. It is assumed that the decay time con-
stant of the sampled exponential signal is equal to M.
The rise time of the trapezoidal shape is set to & and
the duration of the flat top of the trapezoidal shape is
equal to m =!— k. From Eq. (21), the response of the
system can be written as

s(n)y=r(n) +Mp(n) +(k—M)p(n—k)—r(n-1).
(26)

From Eq. (22) and Eq. (24) the response of the system
can be expressed in terms of sampled input signal

s(n) =i go[v(j)—v(j—k)]—v(i—k)k

é[v( )= (i~ 1]

21
DELAY,
Sampled [k] -
data input +
23
DELAY2
[m] +
+
):2
DELAY3
K] -

+(k—M) Y [v(i-k)—v(i—1-k)]

=0

uM:

L LU= (i =k=D)]

—u(z— k. 27
Let
ANy =v(j)—v(j—k)—v(i=1)+v(j—k—1).
(28)
The substitution of Eq. (28) into Eq. (27) yields
s(ny=Y X d(j) +d" (M. (29)
1=0y=0

The recursive form of Eq. (29) is given by
s(ny=s(n—=1) +p'(n)+d**(n)M, n=0, (30)
where

p(n)=p(n—1)+d*(n), n=0. (31
Eqgs. (30) and (31) define a recursive algorithm for
generating a symmetric trapezoidal shape from a sam-
pled exponential input signal. When k& =/ the system
response results in a symmetric triangular shape. Using
Eqgs. (30) and (31), a simple hardware configuration can
be assembled using only a small number of standard
digital pulse processing building blocks. A simplified
block diagram of the trapezoidal shaper is depicted in
Fig. 5.

Three programmable delay pipelines [9] are used
for providing the necessary time shift of the sampled
input signal. In subsequent steps, the signal passes
through arithmetic units according to the algorithm
described by Egs. (30) and (31). All building blocks are
integer arithmetic devices using signed variables. It
should be noted that the digital processor passes just
one digital value per processed pulse to the multichan-
nel analyzer corresponding to the peak value of the
shaped pulse. The approach is an extension of that
employed in our previous work [8] where a similar

M
X
+
ACC R
Z, 2 Filter
output
+
ACC
1
To peak
detector

Fig. 5. Block diagram of digital trapezoidal /triangular shaping system. The building blocks are as follows: ¥, ~ adder /subtracter;
ACC - accumulator, X — multiplier; DELAY - delay pipeline.
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threshold-free approach for detecting peaks has been
described. Peaks are detected by monitoring sign
changes in the result of the addition that precedes the
final accumulation. When the noise level is high or
when the sampling ADC misses some codes, measures
need to be taken to avoid erroneous peak detection,
especially in the case of a flat-topped pulse. Details of
the peak detection process are given in refs. [8,10,11].

4. Other digital recursive algorithms

The recursive algorithms described in previous sec-
tions allow a variety of different shapes to be synthe-
sized in real time. When the time constant of the
exponential input signal is comparable to the length of
the convolution function the methodology described
for the trapezoidal signal can be applied but with
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Fig. 6. Exponential pulses (see text) with different rise time (a) and the corresponding trapezoidal pulse shapes (b).
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Table 1
Digital recursive algorithms and the corresponding output
responses to a step input signal

INPUT RECURSIVE DELAY PULSE
wn) ALGORITHM ! SHAPE

s{n)=s(n—1)+v(n)
—2 v{n—k)+v(n-2k}

s(n)=s{n—1)+v(n)—v(n—k)
—vn=1)+vn-1-k) I=k+m

pn)=pin—1)+v(n)=vn=1}) l1=2k41
s(n)=s(n—-I)+p(n)-vin—k)i

p(n)= p(n—-1)+vn)-v(n-k)
+v(n—{)-vin-I-k)})

s(n)= stn— 1)+ p(n)-{vn—k)

+v(n—1)] k-vin-1)+v(n-1l-k} 2+m

l=k+m

significantly different outcome. With the proper choice
of parameters, finite cusp-like and flat-topped cusp-like
shapes can be obtained. Optimization of the shapes
often requires a solution of transcendental equations
and the resulting pulse shape will be asymmetric. In
this section, however, we will discuss a different case
for which the input signal has a long decay constant
and can be approximated as a step function. This
circumstance holds when the output signal from a
charge sensitive preamplifier is directly digitized [12].

First, consider the case of a step input. Using a
rectangular convolving function, trapezoidal or triangu-
lar responses can be obtained. Cusp-like or truncated
cusp-like pulse shapes can be synthesized using the
recursive algorithms given by Eq. (24). Table 1 summa-
rizes the recursive algorithms and corresponding pulse
shapes. Because of the bipolar impulse responses of
the systems shown in Table 1, the amplitude of the
shaped pulse is independent of any dc offset of the
step input signal. Thus, the technique is directly appli-
cable to the signal from a reset type preamplifier as
well as that from a conventional resistive feedback
preamplifier.

5. Simulations and preliminary experimental tests
5.1. Calculated response

In the previous sections we considered the rise time
of the exponential pulse to be very short. In reality,
however, the rise time of the signals is finite and
depends on variety of factors: finite rise time of the
analog circuits, CR networks in the path of the signal,
finite charge collection time, etc.

We have therefore investigated the effect of finite

rise time on the trapezoidal shaping steps that have, to
this point, been illustrated for input pulses of zero rise
time. The assumed input pulse shape was modified to
be of the form

V(t)=7—0

where @ now accounts for the finite rise time of the
pulse. In Fig. 6a, three input pulses (A, B, and C) are
shown with values for 7/8 of 0.01, 0.025 and 0.05,
respectively. In each case, the total charge (area under
v(¢)) has been kept constant. The rise time of the
trapezoid is equal to decay time constant of the expo-
nential signal. The amplitude of the output from trape-
zoidal shaper is given in units 72. The flat top of the
trapezoidal pulses in Fig. 6b has a duration of 1 of the
decay time constant 7. The highlighted areas show the
parts of the trapezoid which are affected the most by
the variations in the rise time of the exponential pulse.
Note that the maximum amplitude of the shaped out-
put is the same for all three cases or, in other words,
the output is free of the effects of ballistic deficit over
this range of variation of the input rise time. The
advantage of trapezoidal shaping in avoiding resolution
loss due to ballistic deficit in germanium spectrometers
has been previously recognized [1,6,7]. The time dura-
tion of the flat top must be long enough to accommo-
date the rise time variations, but should be made no
longer than necessary to minimize the total pulse length
and consequent effects of pile-up. One feature of the

(e /7 =e "), (32)
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Fig. 7. Sampled input pulse (a) and corresponding trapezoidal
shape (b). The decay time constant is 1.5 ps and the flat top
duration of the trapezoidal shape is 800 ns.



344 V.T. Jordanov, G.F. Knoll / Nucl. Instr. and Meth. in Phys. Res. A 345 (1994) 337-345

Table 2

Energy resolution of the digital trapezoidal /triangular shaper
at different settings, and the energy resolution data which
were obtained using a quasi-Gaussian shaper at the same
measurement conditions

PULSE HPGe DETECTOR X-RAY DETECTOR
SHAPE (¥Co - 1 33 MeV) (1 Am - 59 4 keV)
T Tw FWHM Ty Tw FWHM
{us] s} TkeV] {ps] {ps] [keV]
T 0 68 1735 | o 72 i
02 70 928 02 74 112
04 72 243 04 76 112
TW
06 74 241 06 78 113
06 32 340 0 38 131
T, T FWHM A Ty FWHM
- fus] {ps] [keV] us] fws] {keV]
o
2 55 574 2 55 138
4 " 241 4 11 118
Tw 6 16 210
2 30 198

* This entry is the delay m = k —1 (see Eq. (28)-(31)).
T Width of the pulse at 2% of the amplitude.

present digital approach to shaping is that the flat top
duration can be easily adjusted to suit the application
by a simple change in choice of delay settings.

5.2. Experimental measurements

In order to test the techniques for synthesis of
triangular and trapezoidal shapes, a prototype system
was assembled that implements the algorithms devel-
oped earlier in this paper in a personal computer (PC)
on a pulse-by-pulse basis. While this configuration is
not the full hardware implementation we envision for
the finished system (such as illustrated in Fig. 5), it is
capable of testing the principles at data rates that are
limited by data transfer and processing time in the PC.
A full hardware implementation would impose no rate
limitations, and maximum throughput would be set
only by pile-up considerations.

In our prototype, the input pulses were obtained
from the fast output of a spectroscopy amplifier (Ortec
673) [13). This signal has a rise time (10-90%) of
approximately 220 ns and an exponential decay time
constant of either 1.5 or 3.5 ps (these are approximate
values and depend on pole-zero adjustment). This pulse
was sampled using a 10-bit ADC (AD9020) operating
at 50 MHz. Time slices of up to 20 us length were
temporarily stored for each pulse in a FIFO buffer and
then transmitted to the PC for implementation of the
recursive shaping algorithms. The output of the shaper
was then stored in a multichannel spectrum based on a
trigger provided by the peak sensing algorithms similar

to those described in ref. [8]. For comparison purpose,
the quasi-Gaussian analog output of the same spec-
troscopy amplifier was also supplied to a conventional
multichannel analyzer.

A typical time slice including the input signal and
the corresponding trapezoidal shape output pulse is
shown in Fig. 7. A digital gain of 4 was used so that the
amplitude of the shaped signal is approximately 4
times greater than the amplitude of the exponential
signal.

We used two detectors to evaluate the performance
of the digital shaping system. The first was a p-type
HPGe with 30% relative efficiency, while the second
was a p-i-n photodiode used as X-ray detector. The
counting rate was kept low (less than 1 keps) in order
to ensure that pile-up would have no significant effect
on the recorded spectra. Table 2 summarizes the ob-
tained results.

The data presented in Table 2 shows the superiority
of the digital trapezoidal /triangular shaping system
compared with the quasi-Gaussian shaper. Specifically,
the digital system allows a shorter shaping time to be
chosen at equivalent energy resolution, compared with
the quasi-Gaussian shaper. This advantage will be most
important at high counting rates where pile-up is a
major consideration. By increasing the duration of the
flat-topped part of the trapezoid, the effects of ballistic
deficit are eliminated. It is also evident that, in the
case of a detector with a very short charge collection
time (the X-ray detector), the energy resolution is
independent of the duration of the flat part of the
pulse shape which is in good correspondence with
theoretical predictions [1,3]. In obtaining these results
we have found that proper adjustment of pole-zero is
critical to provide an input pulse with a single exponen-
tial decay.

The results shown in Table 2 indicate a distinct
advantage of the prototype digital shaper over the
analog system used for comparison purposes. However,
several words of caution are in order in interpreting
these preliminary results. The system used to obtain
these data operated in quasi-real time, and was not a
true on-line processor of the type illustrated in Fig. 5.
While we are reasonably confident that such a system
could produce similar results, that capability has not
yet been demonstrated. Also, the analog shaping am-
plifier used for comparison purposes is a common
commercially available unit, but may not represent the
ultimate performance that could be obtained with a
custom designed analog pulse processing system.

6. Conclusion

Recursive algorithms for the digital synthesis of
trapezoidal and triangular pulse shapes have been de-
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veloped. Priority was given to real time applicability of
the shaping steps and their simplicity. The technique
offers flexibility through simple software adjustment of
the shape parameters depending on the characteristics
of the detector. Particularly, it has been demonstrated
that by varying (digitally) just one parameter (the dura-
tion of the flat top of the trapezoid) an effective
elimination of the effects of ballistic deficit from an
HPGe detector can be achieved.

References

[1] V. Radeka, IEEE Trans. Nucl. Sci. NS-15 (1968) 455.

[2] P.W. Nicholson, Nuclear Electronics (Wiley, New York,
1974).

[3] F.S. Goulding, Nucl. Instr. and Meth. 100 (1972) 493.

[4] F.S. Goulding, D.A. Landis and N.W. Madden, IEEE
Trans. Nucl. Sci. NS-30 (1983) 301.

[5] K. Debertin and R.G. Helmer, Gamma- and X-ray Spec-
trometry with Semiconductor Detectors (North-Holland,
Amsterdam, 1988).

[6] F.S. Goulding et al., presented at IEEE NSS, San Fran-
cisco, Nov. 1993,

[7] S.M. Hinshaw and D.A. Landis, IEEE Trans. Nucl. Sci.
NS-35 (1990) 374.

[8] V. Jordanov and G.F. Knoll, IEEE Trans. Nucl Sci.
NS-40 (1993) 764.

[9] V. Jordanov, EDN 37 (Nov. 12, 1992) 200.

[10] F. Hilsenrath, H.D. Voss and J.C. Bakke, IEEE Trans.
Nucl. Sci. NS-32 (1985) 145.

[11] T.H. Wilmshurst, Signal Recovery from Noise in Elec-
tronic Instrumentation, 2nd ed. (Adam Hilger, Bristol,
1990).

[12] T. Lakatos, Nucl. Instr. and Meth. B 62 (1991) 289.

[13] Ortec 673 spectroscopy amplifier and gated integrator
manual (Ortec, 1984).



