
European Journal of Operational Research 75 (1994) 441-461 441
North-Holland

Cyclic scheduling to minimize inventory
in a batch flow line

Gregory Dobson
William E. Simon Graduate School of Business Administration, University of Rochester, Rochester,
NY 14627, USA

Candace Arai Yano

Department of Industrial & Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA

(Received October 1990; revised March 1993)

Abstract: This paper addresses the problem of determining a cyclic schedule for batch production on a
flow line. We assume a constant supply of raw materials and a constant demand for all finished goods.
Material that has completed processing at one stage is t ransferred to the next stage in small transfer
batches. Inventory may be held before the line, at the end of the line, or between any pair of adjacent
stations. The objective is to find a sequence of production and a cycle length that minimize the average
cost per unit t ime of holding inventory. A linear programming formulation is given that determines the
optimal cycle length and finishing times for a given set of sequences, one for each machine. Two
heuristics are presented for finding near-optimal sequences: one is applicable to the special case of a
two-machine flow line; the others are applicable to an m-machine line and focus on different aspects of
the problem (e.g., cycle stock or work-in-process inventory). From a computational study, we have
observed that: 1) permutat ion schedules, i.e., schedules with the same sequence on all machines, are
nearly always optimal, 2) the heuristics produce near optimal solutions, 3) the batching decision, i.e., the
choice of cycle length, is substantially more significant than the sequencing decision for minimizing
inventory costs.

I. Introduction

Flow lines are a common means of producing
discrete parts. In a flow line, each part visits a
series of machines in the same sequence. (The
parts needs not be processed in the same se-
quence on all machines, however.) Flow lines that
produce multiple parts typically are designed so
that, given the anticipated product mix, the total
workload on each machine is roughly the same.
In other instances, however, technological consid-
erations and changes in the product mix may

Correspondence to: Prof. G. Dobson, William E. Simon Grad-
uate School of Business Administration, University of
Rochester, Rochester, NY 14627, USA.

cause the various workloads to differ widely. In
either case, the processing rate and, where appli-
cable, the setup time, for each product is likely to
differ across machines. As a consequence of these
differences, the sequence in which products are
produced may have an impact on both the total
value of the inventory in the system and the
amount of buffer space required between adja-
cent machines to accommodate work-in-process
(WlP) inventory.

We consider a flow line that produces several
types of parts, each with a constant demand rate.
Each part has a known processing rate and a
sequence-independent setup time (which may be
zero) on each machine. Our goal is to find a
cyclic (pure rotation) schedule that minimizes the

0377-2217/94/$07.00 © 1994 - Elsevier Science B.V. All rights reserved
SSDI 0377-2217(93)E0206-D

442 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

average cost per unit time of the sum of finished
goods, WIP, and raw materials inventory. By set-
ting all inventory holding costs equal to 1, we can
also minimize average inventory (in units), and by
setting the finished goods inventory cost to zero,
we can minimize average WIP inventory.

Setup costs also can be included. However,
just as in single-machine cyclic scheduling prob-
lems, the introduction of setup costs leads to
longer cycle durations, and consequently more
idle time in the schedule. As will be apparent,
later, in our problem additional idle time makes
scheduling easier. This is one reason why we
chose to ignore setup costs. Another reason is
that, in many instances, out-of-pocket setup costs
are negligible, and the manufacturing facility may
use setup cost as a surrogate for setup time. Since
we explicitly include setup times, such surrogate
costs need not be included.

Our work on this problem was motivated by
several applications in discrete parts manufactur-
ing environments where the demand rates for the
parts are fairly constant, such as component fab-
rication systems supplying parts to fixed-pace au-
tomobile assembly lines, systems in which capac-
ity constraints dictate constant production tar-
gets, and highly automated systems producing
parts at a relatively constant rate for long-term
contracts. Our concern about WIP inventory is in
the spirit of just-in-time principles of reducing
overall inventory levels for the sake of faster
feedback with regard to quality, and to provide a
competitive advantage by using 'continuous flow
manufacturing' to reduce lead times (cf. Singh,
1990). In addition, we are aware of several manu-
facturing systems in which inter-machine buffer
space has been reduced, presumably to force
inventory reductions, and thus necessitating more
careful scheduling.

The first portion of this paper deals with the
case of two machines, but most of the proposed
heuristics are applicable to larger numbers of
machines. The remainder of this paper is orga-
nized as follows. Section 2 provides a formal
problem statement and a brief review of related
literature. In Section 3 we develop two formula-
tions. The first formulation is useful for under-
standing the various components of the cost func-
tion and the nature of the constraints. The sec-
ond formulation is more useful for developing
heuristic solution procedures. Properties of the

optimal solution and related conjectures are dis-
cussed in Section 4. This provides the foundation
for development of heuristic procedures in Sec-
tion 5. We also develop worst case error bounds
for these heuristics. In Section 6, we report re-
sults obtained in a series of computational experi-
ments. Section 7 concludes the paper with a
summary and discussion.

2. Problem statement and literature review

We investigate the problem of finding cyclic
schedules for a flow line that produces multiple
types of parts. The demand rates are known and
constant. Production rates and setup times are
assumed to be deterministic, and the latter are
assumed to be sequence-independent. We as-
sume that a pure rotation policy is used on each
machine; that is, a particular permutation of the
products (to be selected) is repeated again and
again, but the sequences on the machines may
differ. Pure rotation schedules are used fre-
quently because of their ease o f implementation.
The objective is to minimize the average cost per
unit time of finished goods, WIP, and raw materi-
als inventory. Raw material arrives at a constant
rate to the first processing step. (Other assump-
tions regarding raw material arrival can be han-
dled with minor modifications.) We assume that
the transfer batch size is very small in comparison
to the total quantity produced in a production
run, and we model it as if it were infinitesimal.
Thus, the inventory can be viewed as flowing
continuously from an upstream buffer (or raw
materials) into a machine while it is producing,
from a machine into its downstream buffer while
the machine is producing, and from the final
machine into finished goods inventory while the
final machine is producing. For ease of exposi-
tion, we assume that one unit of output of a
machine is required for each unit of output of its
downstream machines, but any constant multi-
plicative relationship can be incorporated.

Jensen and Khan (1972) model a single-prod-
uct version of our problem in which the cycle
times are allowed to differ across stages. The
objective is to minimize the average setup and
inventory holding cost per unit time. They pre-
sent a dynamic programming formulation and an
associated solution procedure for this problem.

G. Dobson et aL / Cyclic scheduling to minimize inventory in a batch flow line 443

Taha and Skeith (1970) consider a variation of
this problem in which backlogging is allowed, and
lot sizes are constrained to be an integer multiple
of the lot size at the successor stage. Szendrovits
(1975) analyzes a special case of the problem in
which the same lot size is used at all stages and
no backlogging is allowed. In all three of these
papers, setup times are assumed to be zero.

Hsu and EI-Najdawi (1990) analyze a multi-
product, multi-stage version of our problem in
which the (pure rotation) production sequence is
pre-specified, the cycle duration is the same at all
stages and for all products, and the transfer batch
size is assumed to be equal to the production
batch size. Setup costs are included. For this
version of the problem, the optimal cycle dura-
tion can be obtained in closed form.

E1-Najdawi and Kleindorfer (1990) study a very
similar problem to that of Hsu and E1-Najdawi,
with the only differences being in the assump-
tions about when the incremental holding cost
associated with the value added for a given stage
starts to be incurred. They show that the objec-
tive function, constrained to the optimal schedule
for each value of the cycle duration, is convex in
the cycle duration. They develop a solution pro-
cedure which combines a search (for the cycle
duration) and a linear program to find the opti-
mal schedule for a given cycle duration.

Unlike the Hsu and EI-Najdawi and the EI-
Najdawi and Kleindorder papers, the focus of our
paper is on the sequencing aspect of the problem.
Note that even with a pure rotation (common
cycle) schedule, one may choose to have different
sequences on the various machines. This intro-
duces some additional combinatorial issues that
are ignored in the existing literature. We explain
these issues by way of an example.

There are two machines j = 1, 2 and seven
parts indexed i = 1 7. All parts have the same
demand rate of 1 unit per 18 time units. Parts 1,
2, 3, 4, and 5 are equally expensive to hold in
WIP, and we assume without loss of generality
that the WIP holding cost for these parts is $1.00
per unit per unit time. Parts 6 and 7 have a
positive but negligible WIP holding cost, e. All of
the parts have extremely large finished goods
holding costs, i.e., large enough so that it is
optimal to produce only one unit at a time. The
setup time (si) and processing time (P i) per unit
of each the parts are given in Table 1.

TabLe 1
Example data

i sil si 2 p~i Pi2 x hi I hi 2 di
(hours) (hours) (h o u r s / (h o u r s / ($ / ($ / (un i t s /

unit) unit) u n i t / u n i t / hour)
hour) hour)

1 2 0 2 2 1 M '~ 1 /18
2 2 2 0 1 1 M 1/18
3 1 1 1 1 1 M 1/18
4 3 0 1 1 1 M 1/18
5 1 1 0 3 1 M 1/18
6 1 1 1 1 • ~ M 1/18
7 1 1 2 2 • M 1/18

e is a very small number and M is a very large number.

Assuming that only one unit of each part is
processed in each cycle, the sum of setup and
processing time required on each machine is 18
units on machine 1 and 17 units on machine 2.
Thus, we can satisfy demand exactly with no
finished goods inventory. Suppose now that the
sequence of parts on machine 1 is {1, 2, 6, 3, 4, 5,
7} and the sequence on machine 2 is {6, 1, 2, 3, 7,
4, 5}. If we require a job processed on machine 1
in a particular cycle to be processed on the sec-
ond machine in the cycle with the same index, the
resulting schedule is as shown in Figure 1. In the
figure, s indicates a setup, t indicates processing,
and the numerical index denotes the part. This
schedule has inventory holding costs of 31 /18 per
unit time.

On the other hand, by processing parts 6 and 7
on machine 1 in one cycle, then on machine 2 in
the next cycle, we could have obtained the sched-
ule shown in Figure 2. We say that parts so
scheduled are 'wrapped' , since their production
schedules wrap around from one cycle to the
next. Note that this alternate schedule has negli-
gible inventory holding costs. This example
demonstrates the potential desirability of using
different sequences on the various machines, and
the benefits of considering wrapping. Little of the
existing literature has considered these issues ex-
plicitly.

There is a considerable amount of research on
the single-machine economic lot scheduling prob-
lem (ELSP), of which the pure rotation schedul-
ing problem is a special case. The pure rotation
problem was first studied by Hanssmann (1962).

444 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

M1

M2

Fig. 1. Gantt chart with constraints on cycle indices (arrows indicate material transfers)

Jones and Inman (1989) have found that pure
rotation schedules perform nearly as well as more
complicated schedules in single-machine prob-
lems. It is useful to point out, however, that since
all of the research on the single-machine problem
deals with only finished goods inventory, the fun-
damental nature of our problem is somewhat
different because it raises the possibility of a
tradeoff between work-in-process and finished
goods inventory. This tradeoff is explained by way
of an example in Appendix A.

Some recent work has been done on cyclic
scheduling, where the 'jobs' and hence also the
processing durations, are defined in advance, and
where the entire job constitutes the transfer batch.
These models do not incorporate setup times,
and with only a few exceptions, the objective is to
maximize throughput or simply to achieve a tar-
get throughput for a specified product mix. Ex-
amples include papers by Matsuo (1990), Roundy
(1988), and McCormick et al. (1990). Our prob-
lem is more complicated because we must (i)
specify the cycle duration (thus also the batch
sizes); (ii) consider both setup times and process-

ing times in specifying the detailed schedule; and
(iii) consider schedule timing constraints that arise
because of differences between the processing
times of a part at two adjacent stages. (If the
latter stage is faster, it is necessary to accumulate
inventory between the stages and to delay the
start of processing at the latter stage so as to
avoid idle time in the middle of the production
run at that stage.) Moreover, since our objective
is to minimize the total inventory cost per unit
time, the differences in the relative inventory
holding cost rates will influence the quality of the
sequence, whereas in throughput-based models,
such relative weights need not be considered.

3. Problem formulations

In this section, we develop a two formulations
of the problem. The first is more traditional and
treats the processing of each part on each m a -

ch ine as a separate entity. The second formula-
tion, on the other hand, views the scheduling
problem from the perspective of parts, and treats

M1

M2

I sl I tl I s2 Is6 It61s3 It3i s4 I t4lsSis71 t7 I
I I I l l l l I l l l I

start of next
cycle

Fig. 2. Gantt chart with parts 6 and 7 'wrapped' (arrows indicate material transfers)

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line 445

the processing times associated with a particular
part as a single entity.

We begin by formulating a simplified version
of the problem for a rotation cycle where the
sequence is fixed and the same sequence is used
on both machines. A related formulation is given
in E1-Najdawi (1989), but ours differs because of
the assumptions about transfer batches. The no-
tation is defined in Table 2.
We now define the constraints that must be satis-
fied. We start with the constraints on the finish-
ing times:

f i j+l=fi~+vij+6ij Vi, j, (1)

f i j= f i_ l j+u i j+s i j+ t i j Vi, j, (2)

I0j t vj, (3)

uij, vii > 0 Vi, j. (4)

Constraints (1) ensure that the finishing time
of part i on machine j + 1 is no earlier than the
finishing time of part i on machine j, accounting
for the differences in the processing rates re-
flected in 6ij. The variable vii reflects the delay
of the start (finish) of processing of part i on
machine j + 1 in comparison to its earliest feasi-

ble starting (finishing) time. Thus, v~j, in conjunc-
tion with the processing rates for part i at ma-
chines j and j + 1, defines the extent of the
work-in-process buildup of part i between the
two machines.

Constraints (2) ensure that for each machine j
there is sufficient time to setup and produce part
i after part i - 1 is completed. The length of the
cycle is set to T for every machine by constraints
(3). To define the production times as a function
of the cycle duration, we require that

tij = p i j T .

The minimum cycle length is

Tmin= Max(i=~lSij//(1- i~lPiJ)l"

The expression in braces is the minimum cycle
duration that ensures all setups and production
can be completed on machine j. Since there are
multiple machines, the minimum cycle duration
for the entire system is the maximum of these
values. We refer to the machine with the largest
minimum cycle duration as the bottleneck ma-
chine.

Table 2
Notation

Data:
i

J
n

m

di
Ply
Pii
sij
hij

Index for the positions in the sequence. For formulations in which the sequence is fixed and the same sequence
is used on all machines, i will also index the part.

Index for the machines in the flow shop.
Number of positions in cycle.
number of machines in flow shop.
the rate of demand for part i.
the rate of production of part i on machine j.
= d i /P i j , the utilization of machine j by part i.
Setup time of part i on machine j.
The weight or holding cost on part i for inventory after machine j. Inventory 'af ter machine 0' is raw material.

Decision variables:
T Cycle length.
fij Finishing time of part i on machine j.

Auxiliary variables (implied by the decision variables):
tij = Tdi /Pi j ; processing duration of part i on machine j.
t~ij = (tij -- lij) +, i.e., min imum required delay (given T) between the finishing time of part i on machine j + 1 and

the finishing t ime of part i on machine j. This value is positive only when machine j is faster than machine
j + 1 in processing part i.

Uij Additional delay (beyond 6ij) of the finishing time of part i on machine j + 1.
uij Idle time on machine j before setup of part i.

446 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

The derivation of finished goods and WIP
inventory parallels that given in Jensen and Khan
(1972). For the sake of completeness, we provide
details in Appendix B.

We now formulate the optimization problem
for a fixed sequence. To emphasize the depen-
dence on T, we eliminate the tij variables by
substituting pijT = tij. We can simplify the objec-
tive by defining

PiO = Rim + 1 = i for all i.

The optimization problem is a linear program:

(P1)

Min(T) (y~=o i~= l h ijdi l PiJ + l - PiJ ')
m - I n

+ E E h i jd iu i j (5)
/=1 i=1

subject to

f / j+ l = f i j + Z (P i j + l - P i j) + qt_ ui j Vi, j, (6)

L j = f / - l j -]- Uij "]'-Sij "]- Tpij V i , j , (7)
f o i= f . j - T Vj,

L j ' Uij' Uij ~ 0 Vi, j .

Problem (P1) is a very constrained version of
the problem. Not only is the sequence specified,
but the constraints (6) and (7) require that the
units processed on machine j in [f0j, f0j + T] be
processed on machine j + 1 in [f0i+x, f0j+l + T].
As mentioned earlier, there are instances where
allowing earlier processing of parts (i.e., in the
previous cycle) on machine j might be advanta-
geous. The decision of whether to allow a part to
'wrap' is a binary decision, which adds another
set of combinatorial decisions, above and beyond
the sequencing issue. To accommodate wrapping,
constraint (6) would be replaced by

f i j+ l = f i j + T (P i j + I - Pij) + + uij - Txij V i , j ,

(6')

where xij = 1 if part i wraps between machines j
and j + 1, 0 otherwise. Note that when wrapping
is allowed, the optimal schedules and objective
values can differ considerably depending upon
which parts are 'wrapped', even when the same
sequence is used on both machines.

Although 'wrapping' may provide a lower cost
than a solution with no wrapping, it appeared to
us that such a solution might be difficult to ad-
minister in practice. For instance, in flow lines
with automated material handling between ma-
chines, it would be necessary to set aside the WIP
of the wrapped parts for later use. This could
require considerable storage space, as well as
extra equipment a n d / o r labor to set aside, then
later retrieve, the WIP. The same problem occurs
if different sequences are used on the two ma-
chines. For this reason, we decided to confine our
development of heuristic procedures to 'un-
wrapped' permutation schedules. Later in the
paper, we provide worst case error bounds for
schedules of this type, as well as empirical results
on their performance relative to the optimal solu-
tion.

It is useful to mention that allowing wrapping
may be very important in the context of cyclic
schedules where the objective is to maximize
throughput. Such wrapping allows one to reduce
idle time that might otherwise be unavoidable.
On the other hand, in our problem, where the
objective is to minimize the total inventory hold-
ing cost per unit time and the demand rates are
given, wrapping generally has adverse effects on
WIP inventory with little, if any, offsetting bene-
fits of reduced finished goods inventory. In Sec-
tion 6, we report computational results that sup-
port this conjecture.

Observe that for any given value of T, the
two-machine Gantt chart for a given job with
minimum delay (hence also minimum WIP) be-
tween machines can take on one of only six
different 'shapes', which are shown in Figure 3.
Note that in the 'shapes' with simultaneous com-
pletion of processing on the two machines, the
setup on machine 2 may conclude strictly later
than the setup on machine 1 if the processing
rate on the second machine is higher than on the
first. For fixed T, each shape can be defined by
two parameters:
a = Difference between start of setup on machine
2 and start of setup on machine 1.
b = Difference between completion of processing
on machine 2 and completion of processing on
machine 1.

Note also that delaying the processing on ma-
chine 2 (i.e., increasing the variable v) effectively
allows us to change the 'shape' at a cost. Thus, if

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line 447

S

S

S
t

S

I

s I ' I
t

used in generalizing one of our heuristic proce-
dures.

We can express both a and b as functions of T
and the input data, as follows:
a~j = (s~j - s ~ j + l) + T(pi j --Pij+l)+: i.e., the dif-
ference between the start of setup of part i on
machine j + 1 and the start of setup on machine
j when i is scheduled so there is minimum delay
between the two machines.
bij = T(Pij+ 1 -p i j)+: i.e., the difference between
the end of processing of part i on machine j + 1
and the end of processing on machine j when i is
scheduled so there is minimum delay between the
two machines.

These relations arise from material flow con-
straints to ensure continuous processing of all
units within a batch, and only require information
on setups and processing intervals. This leads to
the second formulation for a given sequence ~,
which is the same on all machines:

I S

t

may be either setup or processing

Fig. 3. Six different 'shapes' when vii = 0

T were given, the problem becomes one of decid-
ing whether and to what extent to alter each of
the shapes, and simultaneously selecting a per-
mutation sequence, with the constraint that the
overall cycle duration is equal to T.

Although we have defined the 'shape' parame-
ters only for the two-machine case, it should be
evident that similar ideas can be used when there
are three or more machines. Indeed, for the case
of m machines; the shape of the zero-delay
schedule can be defined with 2(m - 1) parame-
ters. We later explain how these ideas might be

(P2)

Min T" H + ~ , hijdfl:~j
i=1 j - -1

subject to

ao-(i+ l)j ~- U{r(i+ 1)j -~- go'(i+ l)j

= bcr(i)j + Uo-(i)j -~- Ro_(i+ 1)j+ 1

for i = 1 ,n , j = l , m - l , (8)

aij = (% - sij+l) + T (p ~ j - pij+,) +

for i = 1 n, j = l m - l , (9)

bij = T (p i j + l - Pij) +

f o r i = l ,n , j = l , m - l , (10)

for j = 1 ,m , (11)

vii _> 0

f o r i = l ,n , j = l m - l , (12)

u~j >_ 0

for i = 1 , n , j = 1 rn, (1 3)

T > 0 , (14)

448 G. Dobson et aL / Cyclic scheduling to minimize inventory in a batch flow line

where

H=½ ~ ~ - ~ h i j d i l p i j - p i j + l l .
i = 1 j = 0

Constraints (8) ensure that time delays and idle
times are properly accounted for at points where
the schedules of two successive parts 'mesh' to-
gether. They play the same role as constraints (6)
and (7) in the previous formulation. For a fixed
T, (P2) is a highly structured linear program that
can be solved easily.

The formulation for a fixed set of sequences
{%}~1, one for each machine, requires that we
modify constraint (8) to

aay(i+ l) j "}- Uaj(i+ l) j "[" Uo)G+ 1)j

machine j + 1. For Figure 5, we have Biy=
{x,..., x~}.

For each part that is 'wrapped', we must sub-
tract T from the corresponding vii terms. In
particular if part i wraps between machines j and
j + 1, then replace uij by Uij--T wherever it
appears in the right-hand side of constraints (2').
Let x# = 1 if part i wraps between machines j
and j + 1. The constraint (2') is now

a %.(i + l)j -}- Vo)(i + l)j Jr U o)(i + l)j

= bo)(i)j + Uo)(i) j - TXo)(i)j+l .-1- Uo)(i+l)j+l

+ Y ~ c k.
k~B~

= bo-j(i)j"l- Vo-j{i)j-l- Uo-j(i+ l)j+ l "]- E Ck,
k~Bi]

i = 1 , . . . , n , j = 1 , . . . , m - 1, (8')

where

C k =Skj+ 1 -~- ZPkj+ 1 -~Ukj+l.

To clarify this, consider two consecutive parts on
machine j, %(i) and %.(i + 1). For this pair of
parts, we find the locations of the same parts on
machine j + 1. Define Bii as the set of parts that
appear between i and i + 1 in the sequence on

We now have a general formulation of the prob-
lem. We should note that in each formulation, it
is easy to add constraints on the vifs to reflect
WlP storage limitations.

We end this section by deriving a lower bound
on the optimal objective value, namely HTmin,
which is needed in our worst-case analysis of the
heuristics as well as the computational work. This
is obtained by replacing T by Tmi n and setting
Uij = 0 for all i and j. This is clearly a lower
bound for a given (set of) sequence(s) and since
its value is independent of the (set of) sequence(s),
it is a lower bound for all (sets of) sequences.

Machine j:
Machine j+l :

item c(i) item a(i+ l)

] ba(i)j I] [

a~(i+l)j

Machine j:

Machine j+ I:

item c(i)
be(i) j + v c(i)j + u o(i)j+l

1~ item c 0 + l)

I T

T
u c(i)j + a~(i+l)j + v a(i+l)j

Fig. 4. Diagram for Equation (8) (shaded regions represent idle time)

machine j

machine j+l:

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

(~j(i) [(~j(i+l) I
c~j(i) [Xl] . . . Xk

Fig. 5. Illustration of Bi)

(~j(i+l)

449

4. Solution properties and conjectures

In this section we discuss a property of the
optimal solution, and conjectures on the optimal
cycle duration and properties of good sequences.

Proposition 1. In the optimal solution,

mini{ Ui) } = 0 for all j.

Proposition 1 states that there is at least one part
on each machine which has zero delay. We sketch
the proof as follows. If the proposition were not
true, it would be possible to modify the schedules
on machines j + 1 , m so that each event be-
gins mini{vii} earlier. The schedule is still feasi-
ble, and the WIP inventory is reduced between
machines j and j + 1.

This property, while intuitively appealing, is
not very useful in developing heuristic solution
procedures, since it does not help to specify good
sequences. One of the difficulties in developing a
heuristic sequencing procedure for our problem
is not knowing in advance what the optimal value
of T, T*, will be, and therefore not knowing the
processing times. In the example problem, we
knew that T* = Tmi" because of economic consid-
erations, but it is not clear that such a relation-
ship holds in general. To investigate this issue, we
generated and solved 54 two-machine problems.
We chose to examine problems with the same,
arbitrarily selected, sequence on both machines
and no wrapping, since allowing different se-
quences and wrapping would have relaxed some
precedence constraints, making it easier to obtain
a more compressed schedule. These problems
were constructed by hand with the intent of en-
suring significant differences among the prob-
lems. In 52 out of 54 cases, we found that T* =
Tmi .. In the remaining two cases T* was within

2% of Tmi n. On reflection, this result is not sur-
prising. Note from (1) that increasing T above
Tmi" increases finished goods and cycle WIP in-
ventory proportionally for all parts. On the other
hand, it is unlikely to substantially decrease the
delay WIP for more than a few parts (by allowing
the schedules to 'fit together ' better). On the
basis of these preliminary results, we conjecture
that T* is either equal to, or very close to, Tmi n-

We also conjectured that using the same se-
quence on all machines would provide good re-
sults in most instances with realistic costs. Al-
though this conjecture is based largely on intu-
ition, we observed that the solutions for the two-
machine problems mentioned earlier had rela-
tively little controllable WIP inventory. (Some of
the WIP inventory arises because of differences
in processing times across machines, and is there-
fore not controllable.) Moreover, the processing
delays for the individual parts can be selected (by
the LP) to minimize the total inventory cost.
Thus, the main factors in obtaining a good solu-
tion appeared to be selecting a sequence that
would permit a schedule with T = Tmi n, then sec-
ondarily avoiding long processing delays between
machines.

5. Heuristics and enumeration procedures

This section describes the various procedures
used in the computational study, including the
two proposed heuristics for generating sequences,
a routine for evaluating permutation schedules
and a routine for computing optimal solutions for
two-machine problems. We first describe the enu-
meration procedures for permutation schedules
(same sequence on all machines and no wrap-
ping) and for more general schedules.

450 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

Because permutat ion sequences are cyclic, if
there are n parts, we need to examine only (n -
1)! different sequences. Thus the procedure to
enumerate permutat ion schedules first fixes part
n as the last part, then generates the (n - 1) !
different sequences for the first n - 1 parts and
evaluates each sequence via the LP formulation
(P2).

Finding the optimal solution, even for a 2-mac-
hine problem, is substantially more difficult than
determining the best permutat ion schedule. For
m machines, one must consider all possible se-
quences on each of the m machines. Further-
more one must account for all possible 'wraps ' .
For each machine, there are (n - 1)! permutat ion
sequences. For m machines there are ((n - 1)!) m
combinations of sequences. The set of all wraps
appears to generate 2 n possibilities for each pair
of sequences on adjacent machines. Each possi-
bility can be represented as a 0 -1 n-vector in
which the i-th element is 1 if part i wraps in the
solution. However, not all of these possibilities
are distinct. For example, the solution with wrap
vector (0 , . . . , 0), i.e., no parts wrap, and the solu-
tion with wrap vector (1 , . . . , 1) , i.e., all parts
wrap, are identical solutions. Thus for an m-mac-
hine n-part problem there are at most ((n -
1)!)m(2 n - 1) m-~ possibilities. Clearly some of
these are dominated and can be eliminated with-
out solving the LP. As an example, consider the
sequence 1,2,3,4 on machine 1, the sequence
1,3,2,4 on machine 2 and the wrap vector (0,1,0,0).
This is illustrated in Figure 6.

Notice that since part 3 is not wrapped, the
first lot of part 2 on machine 2 must be com-
pleted after the lot of part 2 on machine 1. In this
situation it is not logical to wrap part 2 and
schedule the lot of part 2 next to the second lot
of part 2 on machine 2 as is shown in the dia-

gram. As the alternatives are enumerated, those
with clearly dominated wrap decisions are elimi-
nated and the corresponding LPs are not solved.

We now describe two heuristic procedures,
both of which were motivated by the conjectures
in Section 4. Both deal with the 'jigsaw puzzle'
aspect of the sequencing problem rather than
accounting for the relative economic factors. That
is, the heuristics concentrate on finding a se-
quence which minimizes either the cycle length or
the processing delays, and they do not consider
the relative values of h i j d i in determining the
sequence. This was based on our intuition that
for most problems, keeping T = T m i n would lead
to good solutions, and the remaining costs would
be minimized by reducing the total processing
delay. In Section 7, we describe some generaliza-
tions of these heuristics that incorporate the eco-
nomic factors, but at the expense of significantly
greater computation.

5.1. Heuristic 1

The first heuristic applies only to a two-ma-
chine problem. It starts by computing {ai}n=l and
{bi}i n l . It picks the largest b, say bp and then it
picks the largest a, say ak, that corresponds to a
different part, k 4: p. The partial sequence where
p immediately precedes k is formed. Parts p and
k are deleted, and they are replaced by a new
part with

a = ap q- max(O, a k - b p) ,

b = b k + max(0, bp - ak) .

In other words, the schedules for parts p and k
are merged to form a new part with no idle time
between the parts. This is accomplished by either
shifting part p ' s schedule on machine 1 earlier if

I 1 I 2 I 3 I 4 I

I 1 I 3 [2 1 4 1 1 1 3 I 2 I 4 I
Fig. 6. Example of a dominated solution

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line 451

bp < a~, or shifting part k ' s schedule on machine
1 later if a k < bp. The process is repeated until
there is only a single part. The resulting sequence
is then scheduled and evaluated using the LP.
Since this heuristic concentrates on reducing idle
time, we anticipated that it would perform well
when the utilization levels of the two machines
are similar, and where reducing idle time on both
machines would be advantageous.

An analogous argument shows that the idle
time between p and k on machine J caused by
machines j > J is

after Cpk ~ Max
J>J

(J,)+}
E

] = J

Thus

5.2. Heuris t ic 2

The second heuristic takes a different ap-
proach. Rather than myopically matching the
parts that appear to 'fi t ' together, we approxi-
mate the cost of placing k after p by measuring
the idle t ime that would be created on the bottle-
neck machine if no avoidable production delays
between machines were allowed (i.e., ~'is = 0 for
all i and j). This time is defined as Cpk. We then
find the sequence that minimizes the total idle
time added to the schedule of the bott leneck
machine by solving the (asymmetric) travelling
salesman problem (TSP) defined by {Cpk}.

The cpk's are computed as follows. Suppose
that machine J is the bottleneck, and observe
that the partial sequence in which p immediately
precedes k on machine J - 1 may cause idle time
on machine J if a k j _ l > bpj_ 1 and the amount
will be a k j _ 1 --bpd_ l. Similarly machine J - 2
may cause idle time if a k j _ 2 + a k j _ ~ > bpj_ 2 +
bpj_ l" The latter situation is shown in Figure 7.

In general, the idle t ime between parts p and
k on machine J caused by machines j < J is

before Max ~_, (a k i - b p l .
Cpk 3" <J 1 =j

Cp k =_ max{cbefore Cp kafter~j.

One advantage of this heuristic over the previ-
ous one is that it is defined for problems with
more than two machines, whereas the first
heuristic does not have a natural extension to a
problem with more than two machines. A second
advantage is that it provides a more global assess-
ment of whether two pieces fit together. The first
heuristic is rather myopic in this respect. The
disadvantage, of course, is that it requires solving
a TSP, but for a small number of parts (_< 12) this
does not present a significant computational bur-
den.

We note that this heuristic, while similar in
spirit to that in McCormick et al. (1989), treats
the problem with much greater accuracy. In the
McCormick et al. paper, jobs are sequenced based
on the total idle time incurred on all machines,
not just the bottleneck. Our heuristic analyzes the
effects of processing on other stations in comput-
ing the resultant idle time on the bottleneck. The
McCormick et al. heuristic does not explicitly
account for the cyclic nature of the schedule in
determining the sequence, whereas ours does.

In some special circumstances the heuristic is
guaranteed to find the optimal solution. An ex-
ample of such a case is given in the next proposi-
tion.

machine
1 V/////////A ' a k

i

V//////////I'//YSA I I

Fig. 7. Computation of cpk for Heuristic 2

452 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

Proposition 2. Suppose machine j is the bottleneck
machine and that aii >_ 0 for all i. Suppose further
that Heuristic 2 finds a solution to the TSP with
value O. Then, that sequence is optimal.

Proof. By definition of the TSP, the sequence
found by the heuristic can be executed without
any shifting (v = 0) with a cycle length of Tmi n +
objective value of the TSP. Since the value of the
TSP solution is 0 by hypothesis, and v = 0, this
yields a solution with objective value equal to
HTm~ n. Since this is a known lower bound to the
problem the solution must be optimal. []

5.3. Worst case bounds for permutation schedules

Before closing this section, we develop worst-
case error bounds for permutation schedules in
instances where they are not provably optimal.

Proposition 3. For an arbitrary sequence o', let
ZUB be the value of the solution obtained by using
this sequence on every machine, setting the cycle
length T = T m i n and optimizing. Then

(i) i fhi j =hi, Vj,

Zu~ < ruTH,

and
(ii) if h# is increasing in j,

Zu~ < (2m - 1)TH.

Since TH is a lower bound on the optimal value,
z*, it follow that

(i) if h i j = h i, Vj,

Zu~/Z' <_ m,

and
(ii) if hi~ is increasing in j,

ZuB/Z' <_ 2m - 1.

Proof. See Appendix C.

6. Computational experiments and results

near optimal solutions by using the same se-
quence on all machines and without wrapping.
Second, we were interested in determining how
important the sequence was in generating good
solutions. Third we wanted to evaluate the two
heuristics suggested in Section 5 by comparing
their objective values to either the optimal solu-
tion value or a lower bound.

6.1. Generation of random problems

Seven parameters were used to generate ran-
dom problems for the experiments. They are:
n = The number of parts.
m = The number of machines.
hma x = The maximum holding cost.
Sma x = The maximum setup time.
Pmin = The minimum machine utilization.
Pmax = The maximum machine utilization.
Tequa I = True if the minimum cycle times of the
machines are equal.

For the experiments described below, we de-
cided to test the limits of the heuristics by gener-
ating problems that would be difficult to solve. In
our problem, two particular characteristics gener-
ally make a problem difficult: (i) diversity of the
items in terms of costs, setup times, and produc-
tion rates, and (ii) equal utilization (percentage of
time spent actually producing, exclusive of set-
ups) across the machines. Diversity in terms of
costs contributes to the difficulty of sequencing
and wrapping decisions, while the other factors
make it difficult to 'fit together ' the schedules of
the various parts without extending the cycle be-
yond the minimum cycle duration. We generated
sets of problems with different levels of diversity
of both the setup times and the holding costs,
controlling these factors by setting the h ma x and
Sma x parameters, respectively. For problems with
equal utilizations across machines, we initially
generated problem parameters without this con-
straint, then scaled the pi /s to make all utiliza-
tions equal to that of the bottleneck machine (as
detailed below).

More formally, given the parameters, a prob-
lem was constructed as follows:

There were three purposes of the computa-
tional experiments. First, we wanted to determine
whether the heuristics could obtain optimal or

hij-- U[1, hma~]

for i = 1 n, and j = O , . . . , m ,

G. Dobson et a L / Cyclic scheduling to minimize inventory in a batch flow line 453

Sij = U [1 , Smax]

for i = 1 , . . . , n , and j = 1 , . . . , m ,

Pij = U [P m i n / n ' Pmax/n]

for i = 1 n, and j = 1 ,m ,

where U[a,b] is draw from a uniform distribution
on [a, b]. We set d i = 1 for i = 1 , . . . , n , without
loss of generality. Given this, the Pij'S determine
the production rates, {Pit}.

We wanted the utilizations of the machines to
be reasonably high, since problems with substan-
tial idle time are easy to solve. Thus we generated
e a c h Pit randomly between Pmin/n and Pmax/rt

so that the sum would be between Pmin and Pmax"
If Tequal, i.e., the minimum cycle lengths were

constrained to be equal, then the pij's were scaled
so that Tj = ~'.iSit//(1 -- EiPi j) = T 1 for j =
2 m. The required scale factor o~j satisfies

Solving for ooj we obtain

tot T1

!

With w t known, we set Pit = Pit°Jj, for i = 1 , . . . , n,
j = 2 m.

6.2. The experiments

All of the computations were performed using
Think Pascal Version 3 on a Macintosh II work-
station. We use the following notation to repre-
sent the solution values for the various proce-
dures:
z** = the optimal objective value.
z* = the objective value of the best permutation
schedule.
z # # = the worst objective value from the se-
quence and wrap enumeration given that the LP
(P2) is solved for the best T and {v).
z # = t h e worst permutation schedule objective
value in the same sense as zO# but the enumera-
tion is only over permutation schedules with no
wrapping.

z~ = the solution value from Heuristic 1.
z 2 = the solution value from Heuristic 2.
ZLB = HTmi ", a lower bound on z**.

6.3. Performance of permutation schedules on two
machines

The purpose of the first set of experiments was
to determine whether allowing parts to wrap or
allowing different sequences on each machine
would provide a better solution than the best
permutation schedule. The examples in Appendix
1 demonstrated that there are instances for which
the optimal solution has a part that wraps or has
a different sequence on machine 2. Thus the goal
here is to demonstrate that for reasonable prob-
lems these considerations will not improve the
solution significantly. Because the number of per-
mutations and wraps that need to be enumerated
grows exponentially, it was possible to consider
only small problems. Ten four-part problems and
ten five-part problems were generated. For each
of the 5-part problems, (4!)225= 18432 se-
quence /wrap combinations were examined, and
an LP was solved for non-dominated combina-
tions. The parameters of the problems generated

were: m = 2, hmax = 5, Smax = 5, Pmin = 0.5, Prnax
= 0.9, and Teq,a I = false. For all 20 problems z**
= z*. While we cannot guarantee that this would
hold for all realistic problems, the results did
confirm our intuition that limiting our search to
permutation schedules would be more than ade-
quate in practice.

We were also interested in ascertaining how
well arbitrary sequences would perform. For the
problems described above, we also calculated
z ~ / z * * to provide an indicator of the range of
costs across all sequences. Summary statistics are
reported in Table 3. The results suggest that the

Table 3
Ratio of solution values of worst sequence choice to best
sequence choice

Number of z # # / z **

parts Mean Maximum

4 2.38 2.98
5 2.56 3.10

454 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

Table 4
Experiments with 4, 5, or 6 parts and 2 machines with unequal minimum cycle lengths

Number Maximum Maximum z 1 / z* z 2 / z *

of setup holding Mean Maximum Mean Maximum
parts time cost

zl < z2 (%)

4 5 5 1.0000 1.0004 1.0026 1.0255 10
50 1.0006 1.0044 1.0003 1.0020 10

50 5 1.0002 1.0010 1.0000 1.0000 0
50 1.0001 1.0013 1.0061 1.0516 20

5 5 5 1.0004 1.0027 1.0015 1.0119 10
50 1.0006 1.0027 1.0012 1.0063 20

50 5 1.0013 1.0081 1.0042 1.0159 30
50 1.0006 1.0043 1.0035 1.0117 40

6 5 5 1.0015 1.0095 1.0032 1.0119 50
50 1.0004 1.0022 1.0024 1.0090 40

50 5 1.0016 1.0079 1.0086 1.0440 50
50 1.0040 1.0192 1.0026 1.0154 20

worst sequence is significantly worse than the
best sequence.

6.4. Evaluating the two heuristics

The second set of experiments considered a
much broader set of problems. Since the first set
confirmed that permutat ion schedules are likely
to provide near-optimal solutions, the best per-
mutat ion schedule (z*) was used as a benchmark
for these problems. The trials included problems
with 4, 5 or 6 parts. We limited the size of the
problems because of the number of alternatives

that had to be evaluated via an LP, and because
we wanted to consider many parameter combina-
tions. For each problem the maximum setup time
was either 5 or 50, the maximum holding cost was
either 5 or 50, and either the minimum cycle
lengths were constrained to be equal or allowed
to be unequal. For each combination of number
of parts, maximum setup time, maximum holding
cost, and cycle length rule, 10 problems were
generated, giving a total of 240 problems.

Table 4 presents the results for the cases with
unequal minimum cycle times, i.e., one machine
was more of a bott leneck than the other. For

Table 5
Experiments with 4, 5, or 6 parts and 2 machines with equal minimum cycle lengths

Number Maximum Maximum z 1 /Z*
of setup holding Mean Maximum
parts time cost

Z 2//Z*

Mean Maximum

z~ < z2 (%)

4 5 5 1.0020 1.0178 1.0040 1.0258
50 1.0067 1.0196 1.0091 1.0408

50 5 1.0093 1.0511 1.0149 1.0581
50 1.0233 1.0995 1.0163 1.0861

5 5 5 1.0040 1.0268 1.0032 1.0172
50 1.0069 1.0191 1.0059 1.0207

50 5 1.0067 1.0523 1.0175 1.0658
50 1.0159 1.0732 1.0174 1.0562

6 5 5 1.0032 1.0112 1.0111 1.0388
50 1.0016 1.0064 1.0087 1.0357

50 5 1.0101 1.0548 1.0114 1.0265
50 1.0219 1.1080 1.0208 1.0637

40
40
50
40

20
50
80
50

80
70
50
40

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line 455

Table 6
Results for problems with 2 machines and 4, 5 and 6 parts,
summarized over all parameter settings

Number 2' 1 / z *

of Mean
parts

Table 7
Performance of two heuristics relative to range of possible
values

z 2 / z * z x < z 2 (%) Number of Mean (%)

Maximum Mean Maximum parts z t - z* z 2 - z*

Z # - - Z* 2 ̀ # - - Z*

4 1.0053 1.0995 1.0067 1.0861 26.26 4 20 25
5 1.0046 1.0732 1.0068 1.0658 37.50 5 12 15
6 1.0056 1.1080 1.0086 1.0637 50.00 6 8 15

these problems the error from the heuristic only
occasionally exceeded 1% and rarely exceeded
2% of the objective value of the best permutation
schedule. The average performance was well
within 1%. Table 5 presents the same results
when the cycle times for the two machines were
forced to be equal. These problems were more
difficult, as we had anticipated. We expected
these problems to be more difficult since if T =
Tmi n there can be no idle time on either machine.
This necessitates longer production delays be-
tween machines, i.e., higher vii values. Nonethe-
less, even here the worst performance by either
heuristic across all 120 problems was within 10%
of the value of the best permutation schedule,
and the average deviation from optimality was
within 2.4% for all parameter combinations.

A summary of the results appears in Table 6.
Each row in Table 6 reflects the average over the
8 combinations of parameters for the given num-

ber of parts. These results are somewhat less
surprising when viewed in light of the z # / z *

statistic, i.e., the ratio of the objective value of
the worst permutation schedule to the objective
value of the best permutation schedule (details
not shown here). This value averaged about 1.04
and its maximum value over 240 problems was
1.15. Thus we can conclude that in absolute terms,
the heuristics find near-optimal solutions, but for
permutation schedules, the sequence does not
have a large impact on the solution value. One
reason for this is that the unavoidable inventory
costs account for a majority of the costs.

Because z # was generally very close to z* we
tabulated the statistic (z i - z *) / (z # - z *) which
gives the percentage by which Heuristic i's objec-
tive value exceeded the best permutation sched-
ule relative only to the range between z # and z*.
Table 7 summarizes these results.

Table 8

Experiments with 8, 10 or 12 parts and 2 machines with unequal minimum cycle lengths

Number Maximum Maximum zl / z LB z 2 / z LB

of setup holding Mean Maximum Mean Maximum
parts time cost

z t < z 2 (%)

8 5 5 1.0047 1.0156 1.0052 1.0194
50 1.0037 1.0094 1.0037 1.0101

50 5 1.0065 1.0142 1.0092 1.0204

50 1.0056 1.0334 1.0053 1.0306

10 5 5 1.0055 1,0131 1.0064 1.0177
50 1.0047 1.0109 1.0057 1.0114

51) 5 1.0087 1.0201 1.0091 1.0175

50 1.0083 1.0154 1.0120 1.0293

12 5 5 1.0070 1.0177 1.0090 1.0392
50 1.0040 1.0125 1.0051 1.0138

50 5 1.0039 1.0071 1.0061 1.0152

50 1.0063 1.0148 1.0084 1.0290

50
30

40
10

60
40
60

70

40
70
60

50

456 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

Table 9
Experiments with 8, 10 or 12 parts and 2 machines with equal minimum cycle lengths

Number Maximum Maximum z 1/ZLB Z 2/ZLB

of setup holding Mean Maximum Mean Maximum
parts time cost

zl/z2 (%)

8 5 5 1.0163 1.0351 1.0215 1.0459 90
50 1.0278 1.0577 1.0283 1.0491 70

50 5 1.0194 1.0536 1.0316 1.0613 90
50 1.0305 1.0658 1.0312 1.0527 70

10 5 5 1.0215 1.0307 1.0277 1.0359 80
50 1.0193 1.0399 1.0228 1.0449 80

50 5 1.0193 1.0291 1.0281 1.0554 90
50 1.0326 1.1081 1.0467 1.1075 90

12 5 5 1.0155 1.0311 1.0212 1.0503 70
50 1.0162 1.0284 1.0202 1.0389 60

50 5 1.0233 1.0478 1.0293 1.0603 70
50 1.0285 1.1005 1.0362 1.1089 80

We also generated several hundred problems
with more homogeneous parts. Generally, the
results for these problems (not reported here)
were even better, as we had anticipated.

6.5. Experiments with larger problems

The purpose of the next two experiments was
to determine how well the heuristics performed
on problems with more parts or with more ma-
chines. The same combinations of paramete r set-
tings were used. For the first of these experi-
ments, the number of parts was either 8, 10 or 12,
and we used the lower bound (ZLB) rather than
z* as the benchmark. Recall that for the prob-
lems with 4, 5 and 6 parts, the gap between z*
and ZLB was small. The value of Z*/ZLB was 1.02
on average and its maximum over the 240 prob-
lems was 1.11. For these larger problems, we
compared heuristics solutions with the lower
bounds rather than with optimal solutions. Yet,
the gaps, summarized in Tables 8 and 9, were of
the same order of magnitude. The average gap
between z i for i = 1,2 and ZLB was under 1.2%
for problems where the minimum cycle lengths
differed and under 5% for problems where the
cycle lengths were equal. Thus, these problems
appear to become easier as the number of parts
increases.

Using results from all experiments in which
both heuristics were tested, we compared the

performance of the two heuristics. In the last
column of Tables 8 and 9, labeled z 1 < z2, we
report the percentage of time that Heuristic 1
outperformed Heuristic 2. We observed that
Heuristic 1 improved relative to Heuristic 2 as
the number of parts increased, and as the mini-
mum cycle lengths became more equal across
machines.

For the last experiment, the number of ma-
chines was increased to either 3 or 5. For these
problems only Heuristic 2 could be applied. For
the trials with 4, 5 or 6 parts, the benchmark was
the lower bound, ZLB = HTmi n. The results ap-
pear in Tables 10 and 11. Again, the results are
quite good. The average gap between the heuris-
tic solution and the best permutat ion schedule

Table 10
Experiments with either 3 or 5 machines and 4, 5 or 6 parts

Number of Number of z 2//ZLb
machines parts Mean Maximum

3 4 1.0104 1.1020
5 1.0113 1.0388
6 1.0138 1.0937

5 4 1.0099 1.0468
5 1.0155 1.0653
6 1.0131 1.0572

G. Dobson et al. / Cyclic scheduling to minimize int.,entory in a batch flow line 457

Table 11
Experiments with either 3 or 5 machines and 8, 10 or 12 parts

Number of Number of z 2 / Z LB
machines parts Mean Maximum

3 8 1.0263 1.0860
10 1.0286 1.0895
12 1.0262 1.0612

5 8 1.0678 1.2364
10 1.0732 1.2339
12 1.0653 1.1579

was about 1%. For the problems with 8, 10, or 12
parts, the 3-machine problems had an average
gap, relative to the lower bound, of 2.5%. For the
5-machine problems the average gap was under
7%.

In summary, the experiments have demon-
strated that the controllable WIP rarely adds
significantly to the cost of a solution. Thus greater
cost savings may be achieved if by some engineer-
ing choice one can make both the si/s and pi /s
more similar across machines for each i, and by
reducing the setup times in absolute terms. Yet,
for a given situation, the heuristics presented
here perform quite well in minimizing the con-
trollable WIP cost across a broad range of prob-
lems.

7. Summary and discussion

In this paper we have investigated sequencing
issues in a multi-machine flow shop with the
objective of minimizing total inventory holding
costs. We developed a formulation of the prob-
lem that led us to conclude that

(a) minimizing the overall cycle duration is
important, and

(b) using the same sequence on all machines is
likely to produce good solutions.
On this basis, we developed two heuristic proce-

dures. One applies to only two-machine prob-
lems, and focuses on minimizing the cycle dura-
tion. The other can be applied to any number of
machines and is based upon an approximate rep-
resentation of our problem as a travelling sales-
man problem. We also developed worst-case er-
ror bounds for these heuristics.

We solved a large number of problems, both
optimally and using the heuristic procedures. The
results indicate that the optimal cycle duration is
equal to or very close to the minimum cycle
duration. In addition, permutation sequences
(same sequence on all machines) perform quite
well in comparison to all possible sequences, and
worst permutation sequence is not substantially
worse than the best. Consequently, the heuristics
produce optimal or very near optimal solutions.

The heuristics can be generalized in a variety
of ways. We discuss two possible extensions here.
The heuristic designed for the two-machine prob-
lem can be applied directly to multiple machines
by considering the 'fit' of the schedule profiles on
the bottleneck machine and its immediate succes-
sor. Such a procedure might perform well when
only one machine is highly utilized. The heuristic
based on the asymmetric traveling salesman pro-
cedure has greater prospects for generalization.
In particular, for the case of permutation sched-
ules, the 'cost' of scheduling one part before
another can be generalized to include the cost of
cycle stock due to idle time on the bottleneck
machine a n d / o r WIP costs due to schedule de-
lays that occur when the idle time is eliminated.
A heuristic of the latter type may be beneficial
when a savings of a few percent would be worth
the additional computational effort.

Appendix A

In this appendix, we present two examples.
The notation is defined in Table 2. The first

Sll = 11 1311 =0.8
s12 = 5 P12 --" 0.8

I I s12=2 P21 = 0"1
h 2 = 1 P22=0.1 I

Fig. A.1. Gann chart for two parts without shifting or wrapping

458 G. Dobson et aL / Cycfic scheduling to minimize inventory in a batch flow line

example is one in which T > Tmi . for the optimal
solution. The second example has one part
wrapped in the optimal solution. The following
data are common to both examples. There are
two parts on two machines. Gant t charts for each
part, when scheduled independently and with the
minimum delay between machines, are given in
Figure A.1, along with setup and utilization data.

The minimum cycle lengths for the two ma-
chines are

1 + 2
T1 = 1 - 0.8 - 0.1 30

2 is 'wrapped ' . In this case T = 60, v 1 = 0 but
u 2 = 56. The objective value is

[60(0.2) + 60(0.9)~b + 564) = 12 + 1004>.]

It is easy to verify that the third solution is the
minimum for 4) z [0,4~]. This provides an exam-
ple where wrapping a part is optimal. The first
solution is the minimum for ~b ~ [4@1, ~] and this
provides the example where T > Tmin in the opti-
mal solution. The second solution is the minimum
for 4) ~ [9 s-, ~).

and

5 + 1
T 2 = 60,

1 - 0 . 8 - 0.1

so machine 2 is the bottleneck. Let d I = d 2 ---
1, h i0 = h l l = h i 2 = 1, and h20 = h21 = h22 = ~b.
Since there are only two parts, there is only one
sequence to consider, (1,2). There are three pos-
sible solutions corresponding to three wrap vec-
tors, (0,0), (1,0), (0,1). Note that wrap vector (1,1)
yields the same solution as (0,0). The objective
value for this problem is

0 .5T[(h lod l (1 - 0.8) + ha,d,(0.8 - 0.8)

+hl2dl (1 - 0.8) + h20d2(1 - 0.1)

= h2f12(0.1 - 0.1) + h22d2(1 - 0.1)]

+hl ldav l + h21d2u 2

= r (0 . 2 + 4)(0.9)) + v I + ~bv 2.

Let us consider the objective value of the three
possible solutions. The first solution corresponds
to the case for which production of neither part
has been delayed, i.e., v 1 = v 2 = 0. In this case
T = 61 and the objective value is

[61(0.2) + 4)(61)(0.9) = 12.2 + 54.94>.]

The second solution is one in which the produc-
tion of part 1 on machine 1 is done early in the
cycle so v~ = 1 but T = Tmi n = 60. The objective
value is

[60(0.2) + 60(0.9)4) + 1 = 13 + 544>.]

The third solution is the one in which the produc-
tion of part 2 on machine 1 is delayed so that part

A p p e n d i x B

In this appendix we derive the inventory hold-
ing cost per unit time. The finished goods inven-
tory cost is

T n

- - E h imd i (l -- Pim)"
2 i = 1

If the raw materials inventory is delivered as
needed then there would be no such inventory.
Since the raw materials arrive at a constant rate,
d i, for part i, the average cost per unit time for it
will be

T n

-2 E h iodi (1 - Pio)"
i=1

The two previous formulas are standard ex-
pressions. We now derive expressions for the
amount of WlP after machine j. To simplify the
notation we consider the case of WIP between

I I
- ~ t 1

[]
t 2

Fig. B. la . Inventory for Case 1

G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch]low line 459

machines 1 and 2 and suppress the subscript for
the part i. There are three cases.

Case 1. q , t 2 overlap and t 2 > t I (see Figure
B.la):

1 2 1 2p 1
I = 5a Pl + 7"Y 2 + 7 (a P l + TP2)/3

= ½ (u p , (a +/3) + TP2(T + / 3))

where a = v 1, / 3 = t l - v 1, and Y = t e + V l - - t p
Thus

I = ½(v , p , (t l) + (t2 + V , - t l) p z (t 2))

7v l (t l p I + t2P2) + IP 2 t 2 (t 2 - t l) ,

I / T = v t d + I T d (p 2 - p ,) .

Case 2. tl, t 2 overlap and t 2 G t~: The inven-
tory diagram is similar to that of Case 1, except in
the middle section (/3) the inventory decreases
rather than increases.

I • l (o tPl(Ot +/3) + TR2(T + /3)) ,

where a = t I + v I - t2, /3 = t 2 - vl, and y = v 0 .
Thus

I = ½((t I + v 1 - t 2) P , (t l) + v , P 2 (t 2))

=¼/ : , (t i p l + t 2 p 2) + 1 (t l - - t 2) P l t l ,

I / T = v , d + ½ T d (p I --P2)"

Case 3. t~ and t 2 do not overlap: Note p~t~ =
P2t2, and refer to Figure B.lb. We have

1 2 I T 2 p 2 + 1 I = ~a Pl + 2('YPl + T P 2) ~

= + / 3) + + / 3))

where a = t 1, /3 = v~ - t 1, and y = t 2.

I = ½ (t l p t v 1 + t 2 P 2 (t 2 + v I - t l))

1
= ½ t ' l (t l P l + t 2 p 2) + 2 t 2 P 2 (t 2 - t l) ,

and so forth.
The derivations above allow us to express the

average inventory per unit time for any case as

I / T = t ' ld + XTd l P2 -- Pll-

The average cost per unit time of the WIP is thus

m - 1 ~ 1 _ &]) .
~., h i j (v i j d i + T T d i l P j + l

j = l i=1

Appendix C

Proof of Proposition 3. First we show that the
largest value any vii can obtain is T(1 -Pij+~).
Consider a schedule (a portion of a cycle) where
the facility produces every part but i and then it
produces part i. Let the starting time for the
production of part i on machine j be time 0. The
claim is that the finishing time of part i on
machine j + 1 is at most T, and thus the starting
time is at most T(1- -Pi j+ l). Suppose that we
schedule part i on machine j + 1 from T (1 -
Pij+~) to T. This leaves from time 0 to time
T(1 - P i j + t) to produce the remaining parts and
execute all the setups, including the setup for i.
This is clearly feasible since every part k 4= i has
completed on machine j by time 0.
For case 1 we need to show that

I I

~.~ - -v I ~ [Yl

r n - I

~_, Y '~hidivi j < (m - 1) T H , (C.1)
j = l i

since then we have that

I "1 ~
-~----ct ,.-~ < [~ ~ < ~t

Fig. B.lb. Inventory for Case 3

ZUB < T H + (m - 1) T H = m T H = mzl. B.

The above inequality is obtained by observing
that

vii <_ T (1 - P i j) <- T (1 - m!n {pii }).
Y

460 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line

Thus So we have

m - 1

~ _ ~ h i d i v i j < - T (m - 1) ~ i h i d i (1 - m * n { p i y }).
j = o i " J

(c.21

On the other hand, if k = Argmin/{p/fl, then

m

I Pij+, --Pijl >-- 2(1 --Pik) ,
j=O

since

m - 1

ztm= TH + ~ Ehi id i v i j
j=l i

< TH + TH2(m - 1) < TH(2m - 1)

< (2m - 1)ZLB.

For m = 2 the bounds become

ZUB < 2ZLB and ZUB < 3ZLB.

k - 1 k - 1

E [Pij+l--Pij l >-- E (P i j + I - - P i j) = (1 --Pik)
j=O j=O

and

~lDij+m--Pij l~[~(Pij+l--Oij) = (1 - - P i k) .
j=k j=k

Thus

H>_ ~i hidi(1-min{Piy}) (C.3)

Acknowledgements

We wish to thank Karla E. Bourland for intro-
ducing us to this problem.

This research was partially supported by a gift
from the Ford Motor Company to the University
of Michigan and by the Center for Manufacturing
and Operations Management, William E. Simon
Graduate School of Business Administration,
University of Rochester.

Inequalities (C.2) and (C.3) give us (C.1)
For case 2

in

2 H = ~ Y'~ hiydilPij+ 1 --Pijl
i j=O

m

> ~ ~_~ h i j d i l p i j + l - P i j l
i j=k

m

>--- E h i k d i E [p i j + l - - P i j l
i j=k

since hij is increasing in j

>-- ~-~hikdi(1 - Pik).
i

Thus

m - 1 m - 1

E Ehijdiviy < T E Ehijdi(1-Pij)
j = l i j = l i

m - 1
< T ~ 2H<_ 2 H T (m - 1).

j = l

References

Dobson, G. (1987), "The Economic Lot Scheduling Problem:
Achieving feasibility using time-varying lot sizes", Opera-
tions Research 35/5, 764-771.

EI-Najdawi, M.K. (1989), "Common cycle aproach to lot-size
scheduling for multistage, multiproduct production pro-
cesses", Unpublished Ph.D. Dissertation, The Wharton
School, University of Pennsylvania, Philadelphia, PA.

EI-Najdawi, M.K., and Kleindorfer, P.R. (1990), "Common
cycle scheduling for multi-product, multi-stage produc-
tion", Working Paper, College of Commerce and Finance,
Villanova University, Villanova, PA.

Gallego, G. (1990), "An extension to the class of easy eco-
nomic lot scheduling problems", liE Transactions 22/2,
189-190.

Hanssmann, F. (1962), Operations Research in Production and
Inventory Control, Wiley, New York.

Hsu, J.I.S., and EI-Najdiwa, M. (1990), "Common cycle
scheduling in a multistage production process", Engineer-
ing Costs and Production Economics 20, 73-80.

Jensen, P.A., and Khan, H.A. (1972), "Scheduling in a multi-
stage production system with set-up and inventory costs",
AIIE Transactions 4, 126-133.

Jones, P.C., and Inman, R.R. (1989), "When is the Economic
Lot Scheduling Problem easy?", l ie Transactions 21/1,
11-20.

McCormick, S.T., Pinedo, M.L., Shenker, S., and Wolf, B.

G. Dobson et al. / Cyclic scheduling to minimize inuentory in a batch flow line 461

(1989), "Sequencing in an assembly line with blocking to
minimize cycle time", Operations Research 37, 925-935.

Matsuo, H. (1990), "Cyclic scheduling problems in the two-
machine flow shop: complexity, worst-case and average
case analysis", Naual Research Logistics 37/5, 679-694.

Roundy, R. (1991), "Cyclic schedules for job shops with
identical jobs", Mathematics of Operation Research, to
appear.

Szendrovits, A.Z. (1975), "Manufacturing cycle time determi-
nation for a multi-stage economic production quantity
model", Management Science 22, 298-308.

Singh, D. (1990), "Using CFM as a competitive edge", Au-
tomation 37, 64-65.

Taha, H.A., and Skeith, R.W. (1970), "The economic lot sizes
in multi-stage production systems", AIIE Transactions 2,
157-162.

