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Abstract: This paper  addresses the problem of determining a cyclic schedule for batch production on a 
flow line. We assume a constant supply of raw materials and a constant demand for all finished goods. 
Material  that has completed processing at one stage is t ransferred to the next stage in small transfer 
batches. Inventory may be held before the line, at the end of the line, or between any pair of adjacent 
stations. The objective is to find a sequence of production and a cycle length that minimize the average 
cost per  unit t ime of holding inventory. A linear programming formulation is given that determines the 
optimal cycle length and finishing times for a given set of sequences, one for each machine. Two 
heuristics are presented for finding near-optimal  sequences: one is applicable to the special case of a 
two-machine flow line; the others are applicable to an m-machine line and focus on different aspects of 
the problem (e.g., cycle stock or work-in-process inventory). From a computational  study, we have 
observed that: 1) permutat ion schedules, i.e., schedules with the same sequence on all machines, are 
nearly always optimal, 2) the heuristics produce near  optimal solutions, 3) the batching decision, i.e., the 
choice of cycle length, is substantially more significant than the sequencing decision for minimizing 
inventory costs. 

I. Introduction 

Flow lines are a common means of producing 
discrete parts. In a flow line, each part  visits a 
series of machines in the same sequence. (The 
parts needs not be processed in the same se- 
quence on all machines, however.) Flow lines that 
produce multiple parts typically are designed so 
that, given the anticipated product  mix, the total 
workload on each machine is roughly the same. 
In other instances, however, technological consid- 
erations and changes in the product  mix may 
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cause the various workloads to differ widely. In 
either case, the processing rate and, where appli- 
cable, the setup time, for each product is likely to 
differ across machines. As a consequence of these 
differences, the sequence in which products are 
produced may have an impact on both the total 
value of the inventory in the system and the 
amount  of buffer space required between adja- 
cent machines to accommodate  work-in-process 
(WlP) inventory. 

We consider a flow line that produces several 
types of parts, each with a constant demand rate. 
Each part  has a known processing rate and a 
sequence-independent  setup time (which may be 
zero) on each machine. Our  goal is to find a 
cyclic (pure rotation) schedule that minimizes the 
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average cost per unit time of the sum of finished 
goods, WIP, and raw materials inventory. By set- 
ting all inventory holding costs equal to 1, we can 
also minimize average inventory (in units), and by 
setting the finished goods inventory cost to zero, 
we can minimize average WIP inventory. 

Setup costs also can be included. However, 
just as in single-machine cyclic scheduling prob- 
lems, the introduction of setup costs leads to 
longer cycle durations, and consequently more 
idle time in the schedule. As will be apparent, 
later, in our problem additional idle time makes 
scheduling easier. This is one reason why we 
chose to ignore setup costs. Another  reason is 
that, in many instances, out-of-pocket setup costs 
are negligible, and the manufacturing facility may 
use setup cost as a surrogate for setup time. Since 
we explicitly include setup times, such surrogate 
costs need not be included. 

Our work on this problem was motivated by 
several applications in discrete parts manufactur- 
ing environments where the demand rates for the 
parts are fairly constant, such as component fab- 
rication systems supplying parts to fixed-pace au- 
tomobile assembly lines, systems in which capac- 
ity constraints dictate constant production tar- 
gets, and highly automated systems producing 
parts at a relatively constant rate for long-term 
contracts. Our concern about WIP inventory is in 
the spirit of just-in-time principles of reducing 
overall inventory levels for the sake of faster 
feedback with regard to quality, and to provide a 
competitive advantage by using 'continuous flow 
manufacturing' to reduce lead times (cf. Singh, 
1990). In addition, we are aware of several manu- 
facturing systems in which inter-machine buffer 
space has been reduced, presumably to force 
inventory reductions, and thus necessitating more 
careful scheduling. 

The first portion of this paper deals with the 
case of two machines, but most of the proposed 
heuristics are applicable to larger numbers of 
machines. The remainder of this paper is orga- 
nized as follows. Section 2 provides a formal 
problem statement and a brief review of related 
literature. In Section 3 we develop two formula- 
tions. The first formulation is useful for under- 
standing the various components of the cost func- 
tion and the nature of the constraints. The sec- 
ond formulation is more useful for developing 
heuristic solution procedures. Properties of the 

optimal solution and related conjectures are dis- 
cussed in Section 4. This provides the foundation 
for development of heuristic procedures in Sec- 
tion 5. We also develop worst case error bounds 
for these heuristics. In Section 6, we report re- 
sults obtained in a series of computational experi- 
ments. Section 7 concludes the paper with a 
summary and discussion. 

2. Problem statement and literature review 

We investigate the problem of finding cyclic 
schedules for a flow line that produces multiple 
types of parts. The demand rates are known and 
constant. Production rates and setup times are 
assumed to be deterministic, and the latter are 
assumed to be sequence-independent.  We as- 
sume that a pure rotation policy is used on each 
machine; that is, a particular permutation of the 
products (to be selected) is repeated again and 
again, but the sequences on the machines may 
differ. Pure rotation schedules are used fre- 
quently because of their ease o f  implementation. 
The objective is to minimize the average cost per 
unit time of finished goods, WIP, and raw materi- 
als inventory. Raw material arrives at a constant 
rate to the first processing step. (Other assump- 
tions regarding raw material arrival can be han- 
dled with minor modifications.) We assume that 
the transfer batch size is very small in comparison 
to the total quantity produced in a production 
run, and we model it as if it were infinitesimal. 
Thus, the inventory can be viewed as flowing 
continuously from an upstream buffer (or raw 
materials) into a machine while it is producing, 
from a machine into its downstream buffer while 
the machine is producing, and from the final 
machine into finished goods inventory while the 
final machine is producing. For ease of exposi- 
tion, we assume that one unit of output of a 
machine is required for each unit of output of its 
downstream machines, but any constant multi- 
plicative relationship can be incorporated. 

Jensen and Khan (1972) model a single-prod- 
uct version of our problem in which the cycle 
times are allowed to differ across stages. The 
objective is to minimize the average setup and 
inventory holding cost per unit time. They pre- 
sent a dynamic programming formulation and an 
associated solution procedure for this problem. 
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Taha and Skeith (1970) consider a variation of 
this problem in which backlogging is allowed, and 
lot sizes are constrained to be an integer multiple 
of the lot size at the successor stage. Szendrovits 
(1975) analyzes a special case of the problem in 
which the same lot size is used at all stages and 
no backlogging is allowed. In all three of these 
papers, setup times are assumed to be zero. 

Hsu and EI-Najdawi (1990) analyze a multi- 
product, multi-stage version of our problem in 
which the (pure rotation) production sequence is 
pre-specified, the cycle duration is the same at all 
stages and for all products, and the transfer batch 
size is assumed to be equal to the production 
batch size. Setup costs are included. For this 
version of the problem, the optimal cycle dura- 
tion can be obtained in closed form. 

E1-Najdawi and Kleindorfer (1990) study a very 
similar problem to that of Hsu and E1-Najdawi, 
with the only differences being in the assump- 
tions about when the incremental holding cost 
associated with the value added for a given stage 
starts to be incurred. They show that the objec- 
tive function, constrained to the optimal schedule 
for each value of the cycle duration, is convex in 
the cycle duration. They develop a solution pro- 
cedure which combines a search (for the cycle 
duration) and a linear program to find the opti- 
mal schedule for a given cycle duration. 

Unlike the Hsu and EI-Najdawi and the EI- 
Najdawi and Kleindorder papers, the focus of our 
paper is on the sequencing aspect of the problem. 
Note that even with a pure rotation (common 
cycle) schedule, one may choose to have different 
sequences on the various machines. This intro- 
duces some additional combinatorial issues that 
are ignored in the existing literature. We explain 
these issues by way of an example. 

There  are two machines j = 1, 2 and seven 
parts indexed i = 1 . . . . .  7. All parts have the same 
demand rate of 1 unit per 18 time units. Parts 1, 
2, 3, 4, and 5 are equally expensive to hold in 
WIP, and we assume without loss of generality 
that the WIP holding cost for these parts is $1.00 
per unit per unit time. Parts 6 and 7 have a 
positive but negligible WIP holding cost, e. All of 
the parts have extremely large finished goods 
holding costs, i.e., large enough so that it is 
optimal to produce only one unit at a time. The 
setup time (si) and processing time ( P i )  per unit 
of each the parts are given in Table 1. 

TabLe 1 
Example data 

i sil si 2 p~i  Pi2 x hi I hi 2 di 
(hours) (hours) ( h o u r s /  ( h o u r s /  ( $ /  ( $ /  (un i t s /  

unit) unit) u n i t /  u n i t /  hour) 
hour) hour) 

1 2 0 2 2 1 M '~ 1 /18  
2 2 2 0 1 1 M 1/18 
3 1 1 1 1 1 M 1/18 
4 3 0 1 1 1 M 1/18 
5 1 1 0 3 1 M 1/18 
6 1 1 1 1 • ~ M 1/18 
7 1 1 2 2 • M 1/18 

e is a very small number  and M is a very large number.  

Assuming that only one unit of each part is 
processed in each cycle, the sum of setup and 
processing time required on each machine is 18 
units on machine 1 and 17 units on machine 2. 
Thus, we can satisfy demand exactly with no 
finished goods inventory. Suppose now that the 
sequence of parts on machine 1 is {1, 2, 6, 3, 4, 5, 
7} and the sequence on machine 2 is {6, 1, 2, 3, 7, 
4, 5}. If we require a job processed on machine 1 
in a particular cycle to be processed on the sec- 
ond machine in the cycle with the same index, the 
resulting schedule is as shown in Figure 1. In the 
figure, s indicates a setup, t indicates processing, 
and the numerical index denotes the part. This 
schedule has inventory holding costs of 31 /18  per 
unit time. 

On the other hand, by processing parts 6 and 7 
on machine 1 in one cycle, then on machine 2 in 
the next cycle, we could have obtained the sched- 
ule shown in Figure 2. We say that parts so 
scheduled are 'wrapped' ,  since their production 
schedules wrap around from one cycle to the 
next. Note that this alternate schedule has negli- 
gible inventory holding costs. This example 
demonstrates the potential desirability of using 
different sequences on the various machines, and 
the benefits of considering wrapping. Little of the 
existing literature has considered these issues ex- 
plicitly. 

There  is a considerable amount of research on 
the single-machine economic lot scheduling prob- 
lem (ELSP), of which the pure rotation schedul- 
ing problem is a special case. The pure rotation 
problem was first studied by Hanssmann (1962). 
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M1 

M2 

Fig. 1. Gantt chart with constraints on cycle indices (arrows indicate material transfers) 

Jones and Inman (1989) have found that pure 
rotation schedules perform nearly as well as more 
complicated schedules in single-machine prob- 
lems. It is useful to point out, however, that since 
all of the research on the single-machine problem 
deals with only finished goods inventory, the fun- 
damental nature of our problem is somewhat 
different because it raises the possibility of a 
tradeoff between work-in-process and finished 
goods inventory. This tradeoff is explained by way 
of an example in Appendix A. 

Some recent work has been done on cyclic 
scheduling, where the 'jobs' and hence also the 
processing durations, are defined in advance, and 
where the entire job constitutes the transfer batch. 
These models do not incorporate setup times, 
and with only a few exceptions, the objective is to 
maximize throughput or simply to achieve a tar- 
get throughput for a specified product mix. Ex- 
amples include papers by Matsuo (1990), Roundy 
(1988), and McCormick et al. (1990). Our prob- 
lem is more complicated because we must (i) 
specify the cycle duration (thus also the batch 
sizes); (ii) consider both setup times and process- 

ing times in specifying the detailed schedule; and 
(iii) consider schedule timing constraints that arise 
because of differences between the processing 
times of a part at two adjacent stages. (If the 
latter stage is faster, it is necessary to accumulate 
inventory between the stages and to delay the 
start of processing at the latter stage so as to 
avoid idle time in the middle of the production 
run at that stage.) Moreover, since our objective 
is to minimize the total inventory cost per unit 
time, the differences in the relative inventory 
holding cost rates will influence the quality of the 
sequence, whereas in throughput-based models, 
such relative weights need not be considered. 

3. Problem formulations 

In this section, we develop a two formulations 
of the problem. The first is more traditional and 
treats the processing of each part on  each  m a -  

ch ine  as a separate entity. The second formula- 
tion, on the other hand, views the scheduling 
problem from the perspective of parts, and treats 

M1 

M2 

I sl I tl I s2 Is6 It61s3 It3i s4 I t4lsSis71 t7 I 
I I I l l l l  I l l l  I 

start of next 
cycle 

Fig. 2. Gantt chart with parts 6 and 7 'wrapped' (arrows indicate material transfers) 
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the processing times associated with a particular 
part as a single entity. 

We begin by formulating a simplified version 
of the problem for a rotation cycle where the 
sequence is fixed and the same sequence is used 
on both machines. A related formulation is given 
in E1-Najdawi (1989), but ours differs because of 
the assumptions about transfer batches. The no- 
tation is defined in Table 2. 
We now define the constraints that must be satis- 
fied. We start with the constraints on the finish- 
ing times: 

f i j+l=fi~+vij+6ij  Vi, j, (1) 

f i j= f i_ l j+u i j+s i j+ t i j  Vi, j, (2) 

I0j t vj, (3) 

uij, vii > 0 Vi, j. (4) 

Constraints (1) ensure that the finishing time 
of part i on machine j + 1 is no earlier than the 
finishing time of part i on machine j, accounting 
for the differences in the processing rates re- 
flected in 6ij. The variable vii reflects the delay 
of the start (finish) of processing of part i on 
machine j + 1 in comparison to its earliest feasi- 

ble starting (finishing) time. Thus, v~j, in conjunc- 
tion with the processing rates for part i at ma- 
chines j and j + 1, defines the extent of the 
work-in-process buildup of part i between the 
two machines. 

Constraints (2) ensure that for each machine j 
there is sufficient time to setup and produce part 
i after part i - 1 is completed. The length of the 
cycle is set to T for every machine by constraints 
(3). To define the production times as a function 
of the cycle duration, we require that 

tij = p i j T .  

The minimum cycle length is 

Tmin= Max(i=~lSij//(1- i~lPiJ)l" 

The expression in braces is the minimum cycle 
duration that ensures all setups and production 
can be completed on machine j. Since there are 
multiple machines, the minimum cycle duration 
for the entire system is the maximum of these 
values. We refer to the machine with the largest 
minimum cycle duration as the bottleneck ma- 
chine. 

Table 2 
Notation 

Data: 
i 

J 
n 

m 

di 
Ply 
Pii 
sij 
hij 

Index for the positions in the sequence.  For formulations in which the sequence is fixed and the same sequence 
is used on all machines,  i will also index the part. 

Index for the machines  in the flow shop. 
Number  of positions in cycle. 
number  of  machines  in flow shop. 
the rate of demand for part i. 
the rate of  production of part i on machine  j. 
= d i /P i j ,  the utilization of machine j by part i. 
Setup time of part i on machine j. 
The weight or holding cost on part i for inventory after machine j. Inventory 'af ter  machine 0' is raw material. 

Decision variables: 
T Cycle length. 
fij Finishing time of part  i on machine j. 

Auxiliary variables (implied by the decision variables): 
tij = Tdi /Pi j ;  processing duration of part i on machine j. 
t~ij = (tij -- lij) +, i.e., min imum required delay (given T) between the finishing time of part i on machine  j + 1 and 

the finishing t ime of part i on machine j. This value is positive only when machine j is faster than machine 
j + 1 in processing part  i. 

Uij Additional delay (beyond 6ij) of the finishing time of part i on machine j + 1. 
uij Idle time on machine j before setup of part  i. 
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The derivation of finished goods and WIP 
inventory parallels that given in Jensen and Khan 
(1972). For the sake of completeness, we provide 
details in Appendix B. 

We now formulate the optimization problem 
for a fixed sequence. To emphasize the depen- 
dence on T, we eliminate the tij variables by 
substituting pijT = tij. We can simplify the objec- 
tive by defining 

PiO = Rim + 1 = i for all i. 

The optimization problem is a linear program: 

(P1) 

Min( T ) ( y~=o i~= l h ijdi l PiJ + l - PiJ ' ) 
m - I  n 

+ E E h i jd iu i j  (5)  
/=1 i=1 

subject to 

f / j+ l  = f i j  + Z ( P i j + l  - P i j )  + qt_ ui j Vi, j, (6) 

L j  = f / - l j  -]- Uij "]'-Sij "]- Tpij V i ,  j ,  (7) 
f o i= f . j -  T Vj, 

L j '  Uij' Uij ~ 0 Vi, j .  

Problem (P1) is a very constrained version of 
the problem. Not only is the sequence specified, 
but the constraints (6) and (7) require that the 
units processed on machine j in [f0j, f0j + T] be 
processed on machine j + 1 in [f0i+x, f0j+l + T]. 
As mentioned earlier, there are instances where 
allowing earlier processing of parts (i.e., in the 
previous cycle) on machine j might be advanta- 
geous. The decision of whether to allow a part to 
'wrap' is a binary decision, which adds another 
set of combinatorial decisions, above and beyond 
the sequencing issue. To accommodate wrapping, 
constraint (6) would be replaced by 

f i j+ l  = f i j  + T ( P i j + I  - Pij)  + + uij - Txij  V i ,  j ,  

(6') 

where xij = 1 if part i wraps between machines j 
and j + 1, 0 otherwise. Note that when wrapping 
is allowed, the optimal schedules and objective 
values can differ considerably depending upon 
which parts are 'wrapped',  even when the same 
sequence is used on both machines. 

Although 'wrapping' may provide a lower cost 
than a solution with no wrapping, it appeared to 
us that such a solution might be difficult to ad- 
minister in practice. For instance, in flow lines 
with automated material handling between ma- 
chines, it would be necessary to set aside the WIP 
of the wrapped parts for later use. This could 
require considerable storage space, as well as 
extra equipment a n d / o r  labor to set aside, then 
later retrieve, the WIP. The same problem occurs 
if different sequences are used on the two ma- 
chines. For this reason, we decided to confine our 
development of heuristic procedures to 'un- 
wrapped' permutation schedules. Later in the 
paper, we provide worst case error bounds for 
schedules of this type, as well as empirical results 
on their performance relative to the optimal solu- 
tion. 

It is useful to mention that allowing wrapping 
may be very important in the context of cyclic 
schedules where the objective is to maximize 
throughput. Such wrapping allows one to reduce 
idle time that might otherwise be unavoidable. 
On the other hand, in our problem, where the 
objective is to minimize the total inventory hold- 
ing cost per unit time and the demand rates are 
given, wrapping generally has adverse effects on 
WIP inventory with little, if any, offsetting bene- 
fits of reduced finished goods inventory. In Sec- 
tion 6, we report  computational results that sup- 
port this conjecture. 

Observe that for any given value of T, the 
two-machine Gantt  chart for a given job with 
minimum delay (hence also minimum WIP) be- 
tween machines can take on one of only six 
different 'shapes', which are shown in Figure 3. 
Note that in the 'shapes' with simultaneous com- 
pletion of processing on the two machines, the 
setup on machine 2 may conclude strictly later 
than the setup on machine 1 if the processing 
rate on the second machine is higher than on the 
first. For fixed T, each shape can be defined by 
two parameters: 
a = Difference between start of setup on machine 
2 and start of setup on machine 1. 
b = Difference between completion of processing 
on machine 2 and completion of processing on 
machine 1. 

Note also that delaying the processing on ma- 
chine 2 (i.e., increasing the variable v) effectively 
allows us to change the 'shape' at a cost. Thus, if 
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S 
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S 

I 

s I ' I 
t 

used in generalizing one of our heuristic proce- 
dures. 

We can express both a and b as functions of T 
and the input data, as follows: 
a~j = (s~j - s ~ j + l )  + T(pi  j --Pij+l)+: i.e., the dif- 
ference between the start of setup of part i on 
machine j + 1 and the start of setup on machine 
j when i is scheduled so there is minimum delay 
between the two machines. 
bij = T(Pij+ 1 -p i j )+:  i.e., the difference between 
the end of processing of part i on machine j + 1 
and the end of processing on machine j when i is 
scheduled so there is minimum delay between the 
two machines. 

These relations arise from material flow con- 
straints to ensure continuous processing of all 
units within a batch, and only require information 
on setups and processing intervals. This leads to 
the second formulation for a given sequence ~, 
which is the same on all machines: 

I S 

t 

may be either setup or processing 

Fig. 3. Six different 'shapes' when vii = 0 

T were given, the problem becomes one of decid- 
ing whether and to what extent to alter each of 
the shapes, and simultaneously selecting a per- 
mutation sequence, with the constraint that the 
overall cycle duration is equal to T. 

Although we have defined the 'shape'  parame- 
ters only for the two-machine case, it should be 
evident that similar ideas can be used when there 
are three or more machines. Indeed, for the case 
of m machines; the shape of the zero-delay 
schedule can be defined with 2(m - 1) parame- 
ters. We later explain how these ideas might be 

(P2) 

Min T" H + ~ ,  hijdfl:~j 
i=1 j - -1  

subject to 

ao-(i+ l)j ~- U{r(i+ 1)j -~- go'(i+ l)j 

= bcr(i)j + Uo-(i)j -~- Ro_(i+ 1)j+ 1 

for i = 1  . . . .  ,n ,  j = l  . . . .  , m - l ,  (8) 

aij = ( % -  sij+l) + T ( p ~ j -  pij+,) + 

for i =  1 . . . . .  n, j = l  . . . . .  m - l ,  (9) 

bij = T ( p i j + l  - Pij) + 

f o r i = l  . . . .  ,n ,  j = l  . . . .  , m - l ,  (10) 

for j =  1 . . . .  ,m ,  (11) 

vii _> 0 

f o r i = l  . . . .  ,n ,  j = l  . . . . .  m - l ,  (12) 

u~j >_ 0 

for i = 1 . . . .  , n ,  j = 1 . . . . .  rn, ( 1 3 )  

T > 0 ,  (14) 
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where 

H=½ ~ ~ - ~ h i j d i l p i j - p i j + l l .  
i = 1  j = 0  

Constraints (8) ensure that time delays and idle 
times are properly accounted for at points where 
the schedules of two successive parts 'mesh' to- 
gether. They play the same role as constraints (6) 
and (7) in the previous formulation. For a fixed 
T, (P2) is a highly structured linear program that 
can be solved easily. 

The formulation for a fixed set of sequences 
{%}~1, one for each machine, requires that we 
modify constraint (8) to 

aay(i+ l ) j  "}- Uaj(i+ l ) j  "[" Uo)G+ 1)j 

machine j +  1. For Figure 5, we have Biy= 
{x,..., x~}. 

For each part that is 'wrapped', we must sub- 
tract T from the corresponding vii terms. In 
particular if part i wraps between machines j and 
j + 1, then replace uij by Uij--T wherever it 
appears in the right-hand side of constraints (2'). 
Let x# = 1 if part i wraps between machines j 
and j + 1. The constraint (2') is now 

a %.(i + l)j -}- Vo)(i + l)j Jr U o)(i + l)j 

= bo)(i)j + Uo)(i) j - TXo)(i)j+l .-1- Uo)(i+l)j+l 

+ Y ~ c  k.  
k~B~ 

= bo-j(i)j"l- Vo-j{i)j-l- Uo-j(i+ l)j+ l "]- E Ck, 
k~Bi] 

i =  1 , . . . , n ,  j =  1 , . . . , m -  1, (8') 

where 

C k =Skj+ 1 -~- ZPkj+ 1 -~Ukj+l. 

To clarify this, consider two consecutive parts on 
machine j, %(i) and %.(i + 1). For this pair of 
parts, we find the locations of the same parts on 
machine j + 1. Define Bii as the set of parts that 
appear between i and i + 1 in the sequence on 

We now have a general formulation of the prob- 
lem. We should note that in each formulation, it 
is easy to add constraints on the vifs to reflect 
WlP storage limitations. 

We end this section by deriving a lower bound 
on the optimal objective value, namely HTmin, 
which is needed in our worst-case analysis of the 
heuristics as well as the computational work. This 
is obtained by replacing T by Tmi n and setting 
Uij = 0 for all i and j. This is clearly a lower 
bound for a given (set of) sequence(s) and since 
its value is independent of the (set of) sequence(s), 
it is a lower bound for all (sets of) sequences. 

Machine j: 
Machine j+l :  

item c(i)  item a( i+ l )  

] ba(i)j I ] [ 

a~(i+l)j 

Machine j: 

Machine j+ I: 

item c(i)  
be(i) j + v c(i)j + u o(i)j+l 

1~ item c 0 + l )  

I T 

T 
u c(i)j + a~(i+l)j + v a(i+l)j 

Fig. 4. Diagram for Equation (8) (shaded regions represent idle time) 
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(~j(i) [ (~j(i+l) I 
c~j(i) [ Xl ] . . .  Xk 

Fig. 5. Illustration of Bi) 

(~j(i+l) 
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4. Solution properties and conjectures 

In this section we discuss a property of the 
optimal solution, and conjectures on the optimal 
cycle duration and properties of good sequences. 

Proposition 1. In the optimal solution, 

mini{ Ui) } = 0 for all j. 

Proposition 1 states that there is at least one part 
on each machine which has zero delay. We sketch 
the proof as follows. If the proposition were not 
true, it would be possible to modify the schedules 
on machines j + 1 . . . .  , m so that each event be- 
gins mini{vii} earlier. The schedule is still feasi- 
ble, and the WIP inventory is reduced between 
machines j and j + 1. 

This property, while intuitively appealing, is 
not very useful in developing heuristic solution 
procedures, since it does not help to specify good 
sequences. One of the difficulties in developing a 
heuristic sequencing procedure for our problem 
is not knowing in advance what the optimal value 
of T, T*, will be, and therefore not knowing the 
processing times. In the example problem, we 
knew that T* = Tmi" because of economic consid- 
erations, but it is not clear that such a relation- 
ship holds in general. To investigate this issue, we 
generated and solved 54 two-machine problems. 
We chose to examine problems with the same, 
arbitrarily selected, sequence on both machines 
and no wrapping, since allowing different se- 
quences and wrapping would have relaxed some 
precedence constraints, making it easier to obtain 
a more compressed schedule. These problems 
were constructed by hand with the intent of en- 
suring significant differences among the prob- 
lems. In 52 out of 54 cases, we found that T* = 
Tmi .. In the remaining two cases T* was within 

2% of Tmi n. On reflection, this result is not sur- 
prising. Note from (1) that increasing T above 
Tmi" increases finished goods and cycle WIP in- 
ventory proportionally for all parts. On the other 
hand, it is unlikely to substantially decrease the 
delay WIP for more than a few parts (by allowing 
the schedules to 'fit together '  better). On the 
basis of these preliminary results, we conjecture 
that T* is either equal to, or very close to, Tmi n- 

We also conjectured that using the same se- 
quence on all machines would provide good re- 
sults in most instances with realistic costs. Al- 
though this conjecture is based largely on intu- 
ition, we observed that the solutions for the two- 
machine problems mentioned earlier had rela- 
tively little controllable WIP inventory. (Some of 
the WIP inventory arises because of differences 
in processing times across machines, and is there- 
fore not controllable.) Moreover, the processing 
delays for the individual parts can be selected (by 
the LP) to minimize the total inventory cost. 
Thus, the main factors in obtaining a good solu- 
tion appeared to be selecting a sequence that 
would permit a schedule with T = Tmi n, then sec- 
ondarily avoiding long processing delays between 
machines. 

5. Heuristics and enumeration procedures 

This section describes the various procedures 
used in the computational study, including the 
two proposed heuristics for generating sequences, 
a routine for evaluating permutation schedules 
and a routine for computing optimal solutions for 
two-machine problems. We first describe the enu- 
meration procedures for permutation schedules 
(same sequence on all machines and no wrap- 
ping) and for more general schedules. 
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Because permutat ion sequences are cyclic, if 
there are n parts, we need to examine only (n - 
1)! different sequences. Thus the procedure to 
enumerate  permutat ion schedules first fixes part  
n as the last part,  then generates the ( n - 1 ) !  
different sequences for the first n - 1 parts and 
evaluates each sequence via the LP formulation 
(P2). 

Finding the optimal solution, even for a 2-mac- 
hine problem, is substantially more difficult than 
determining the best permutat ion schedule. For 
m machines, one must consider all possible se- 
quences on each of the m machines. Further- 
more one must account for all possible 'wraps ' .  
For each machine, there are (n - 1)! permutat ion 
sequences. For m machines there are ((n - 1)!) m 
combinations of sequences. The set of all wraps 
appears  to generate 2 n possibilities for each pair 
of sequences on adjacent machines. Each possi- 
bility can be represented as a 0 -1  n-vector in 
which the i-th element is 1 if part  i wraps in the 
solution. However, not all of these possibilities 
are distinct. For example, the solution with wrap 
vector (0 , . . . ,  0), i.e., no parts wrap, and the solu- 
tion with wrap vector (1 , . . . , 1 ) ,  i.e., all parts 
wrap, are identical solutions. Thus for an m-mac-  
hine n-part  problem there are at most ( ( n -  
1)!)m(2 n -  1) m-~ possibilities. Clearly some of 
these are dominated and can be eliminated with- 
out solving the LP. As an example, consider the 
sequence 1,2,3,4 on machine 1, the sequence 
1,3,2,4 on machine 2 and the wrap vector (0,1,0,0). 
This is illustrated in Figure 6. 

Notice that since part  3 is not wrapped,  the 
first lot of part  2 on machine 2 must be com- 
pleted after the lot of part  2 on machine 1. In this 
situation it is not logical to wrap part  2 and 
schedule the lot of part  2 next to the second lot 
of part  2 on machine 2 as is shown in the dia- 

gram. As the alternatives are enumerated,  those 
with clearly dominated wrap decisions are elimi- 
nated and the corresponding LPs are not solved. 

We now describe two heuristic procedures, 
both of which were motivated by the conjectures 
in Section 4. Both deal with the 'jigsaw puzzle'  
aspect of the sequencing problem rather  than 
accounting for the relative economic factors. That  
is, the heuristics concentrate on finding a se- 
quence which minimizes either the cycle length or 
the processing delays, and they do not consider 
the relative values of h i j d  i in determining the 
sequence. This was based on our intuition that 
for most problems, keeping T = T m i  n would lead 
to good solutions, and the remaining costs would 
be minimized by reducing the total processing 
delay. In Section 7, we describe some generaliza- 
tions of these heuristics that incorporate the eco- 
nomic factors, but at the expense of significantly 
greater  computation. 

5.1. Heuristic 1 

The first heuristic applies only to a two-ma- 
chine problem. It starts by computing {ai}n=l and 
{bi}i n l .  It picks the largest b, say bp and then it 
picks the largest a, say ak, that corresponds to a 
different part,  k 4: p. The partial sequence where 
p immediately precedes k is formed. Parts p and 
k are deleted, and they are replaced by a new 
part  with 

a = ap q- max(O, a k - b p ) ,  

b = b k + max(0, bp - ak) .  

In other words, the schedules for parts p and k 
are merged to form a new part with no idle time 
between the parts. This is accomplished by either 
shifting part  p ' s  schedule on machine 1 earlier if 

I 1 I 2 I 3 I 4 I 

I 1 I 3 [ 2 1 4 1  1 1 3  I 2 I 4 I 
Fig. 6. Example of  a dominated solution 
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bp < a~, or shifting part  k ' s  schedule on machine 
1 later if a k < bp. The process is repeated  until 
there is only a single part. The resulting sequence 
is then scheduled and evaluated using the LP. 
Since this heuristic concentrates on reducing idle 
time, we anticipated that it would perform well 
when the utilization levels of the two machines 
are similar, and where reducing idle time on both 
machines would be advantageous. 

An analogous argument  shows that the idle 
time between p and k on machine J caused by 
machines j > J is 

after Cpk ~ Max 
J>J  

(J,)+} 
E 

] = J  

Thus 

5.2. Heuris t ic  2 

The second heuristic takes a different ap- 
proach. Rather  than myopically matching the 
parts that appear  to 'fi t '  together,  we approxi- 
mate the cost of placing k after p by measuring 
the idle t ime that would be created on the bottle- 
neck machine if no avoidable production delays 
between machines were allowed (i.e., ~'is = 0 for 
all i and j). This time is defined as Cpk. We then 
find the sequence that minimizes the total idle 
time added to the schedule of the bott leneck 
machine by solving the (asymmetric) travelling 
salesman problem (TSP) defined by {Cpk}. 

The cpk's are computed as follows. Suppose 
that machine J is the bottleneck, and observe 
that the partial sequence in which p immediately 
precedes k on machine J -  1 may cause idle time 
on machine J if a k j _  l > bpj_  1 and the amount 
will be a k j _  1 --bpd_ l. Similarly machine J - 2  
may cause idle time if a k j _  2 + a k j _  ~ > bpj_  2 + 
bpj_  l" The latter situation is shown in Figure 7. 

In general, the idle t ime between parts p and 
k on machine J caused by machines j < J is 

before  Max ~_, ( a k i - b p l  . 
Cpk 3" <J 1 =j 

Cp k =_ max{cbefore Cp kafter~j. 

One advantage of this heuristic over the previ- 
ous one is that it is defined for problems with 
more than two machines, whereas the first 
heuristic does not have a natural extension to a 
problem with more than two machines. A second 
advantage is that it provides a more global assess- 
ment  of whether  two pieces fit together. The first 
heuristic is rather myopic in this respect. The 
disadvantage, of course, is that it requires solving 
a TSP, but for a small number  of parts (_< 12) this 
does not present  a significant computational bur- 
den. 

We note that this heuristic, while similar in 
spirit to that in McCormick et al. (1989), treats 
the problem with much greater  accuracy. In the 
McCormick et al. paper,  jobs are sequenced based 
on the total idle time incurred on all machines, 
not just the bottleneck. Our heuristic analyzes the 
effects of processing on other stations in comput- 
ing the resultant idle time on the bottleneck. The 
McCormick et al. heuristic does not explicitly 
account for the cyclic nature of the schedule in 
determining the sequence, whereas ours does. 

In some special circumstances the heuristic is 
guaranteed to find the optimal solution. An ex- 
ample of such a case is given in the next proposi- 
tion. 

machine 
1 V/////////A ' a k 

i 

V//////////I'//YSA I I 

Fig. 7. Computation of cpk for Heuristic 2 
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Proposition 2. Suppose machine j is the bottleneck 
machine and that aii >_ 0 for all i. Suppose further 
that Heuristic 2 finds a solution to the TSP with 
value O. Then, that sequence is optimal. 

Proof. By definition of the TSP, the sequence 
found by the heuristic can be executed without 
any shifting (v = 0) with a cycle length of Tmi n + 
objective value of the TSP. Since the value of the 
TSP solution is 0 by hypothesis, and v = 0, this 
yields a solution with objective value equal to 
HTm~ n. Since this is a known lower bound to the 
problem the solution must be optimal. [] 

5.3. Worst case bounds for permutation schedules 

Before closing this section, we develop worst- 
case error bounds for permutation schedules in 
instances where they are not provably optimal. 

Proposition 3. For an arbitrary sequence o', let 
ZUB be the value of  the solution obtained by using 
this sequence on every machine, setting the cycle 
length T = T m i  n and optimizing. Then 

(i) i fhi j  =hi,  Vj, 

Zu~ < ruTH, 

and 
(ii) if  h# is increasing in j, 

Zu~ < (2m - 1)TH. 

Since TH is a lower bound on the optimal value, 
z*, it follow that 

(i) if h i j  = h i, Vj, 

Zu~/Z' <_ m,  

and 
(ii) if  hi~ is increasing in j, 

ZuB/Z' <_ 2m - 1. 

Proof. See Appendix C. 

6. Computational experiments and results 

near optimal solutions by using the same se- 
quence on all machines and without wrapping. 
Second, we were interested in determining how 
important the sequence was in generating good 
solutions. Third we wanted to evaluate the two 
heuristics suggested in Section 5 by comparing 
their objective values to either the optimal solu- 
tion value or a lower bound. 

6.1. Generation of random problems 

Seven parameters were used to generate ran- 
dom problems for the experiments. They are: 
n = The number of parts. 
m = The number of machines. 
hma x = The maximum holding cost. 
Sma x = The maximum setup time. 
Pmin = The minimum machine utilization. 
Pmax = The maximum machine utilization. 
Tequa I = True if the minimum cycle times of the 
machines are equal. 

For the experiments described below, we de- 
cided to test the limits of the heuristics by gener- 
ating problems that would be difficult to solve. In 
our problem, two particular characteristics gener- 
ally make a problem difficult: (i) diversity of the 
items in terms of costs, setup times, and produc- 
tion rates, and (ii) equal utilization (percentage of 
time spent actually producing, exclusive of set- 
ups) across the machines. Diversity in terms of 
costs contributes to the difficulty of sequencing 
and wrapping decisions, while the other factors 
make it difficult to 'fit together '  the schedules of 
the various parts without extending the cycle be- 
yond the minimum cycle duration. We generated 
sets of problems with different levels of diversity 
of both the setup times and the holding costs, 
controlling these factors by setting the h ma x and 
Sma x parameters, respectively. For problems with 
equal utilizations across machines, we initially 
generated problem parameters without this con- 
straint, then scaled the pi /s  to make all utiliza- 
tions equal to that of the bottleneck machine (as 
detailed below). 

More formally, given the parameters, a prob- 
lem was constructed as follows: 

There  were three purposes of the computa- 
tional experiments. First, we wanted to determine 
whether the heuristics could obtain optimal or 

hij-- U[1, hma~] 

for i = 1 . . . . .  n, and j = O , . . . , m ,  
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Sij = U [ 1 ,  Smax] 

for i =  1 , . . . , n ,  and j = 1 , . . . , m ,  

Pij = U [ P m i n / n '  Pmax/n] 

for i = 1 . . . . .  n, and j =  1 . . . .  ,m ,  

where U[a,b] is draw from a uniform distribution 
on [a, b]. We set d i = 1 for i = 1 , . . . , n ,  without 
loss of generality. Given this, the Pij'S determine 
the production rates, {Pit}. 

We wanted the utilizations of the machines to 
be reasonably high, since problems with substan- 
tial idle time are easy to solve. Thus we generated 
e a c h  Pit randomly between Pmin/n  and Pmax/rt 

so that the sum would be between Pmin and Pmax" 
If Tequal, i.e., the minimum cycle lengths were 

constrained to be equal, then the pij's were scaled 
so that Tj = ~'.iSit//(1 -- EiPi j )  = T 1 for j = 
2 . . . . .  m. The required scale factor o~j satisfies 

Solving for ooj we obtain 

tot T1 

! 

With w t known, we set Pit = Pit°Jj, for i = 1 , . . . ,  n, 
j = 2  . . . . .  m. 

6.2. The experiments 

All of the computations were performed using 
Think Pascal Version 3 on a Macintosh II work- 
station. We use the following notation to repre- 
sent the solution values for the various proce- 
dures: 
z** = the optimal objective value. 
z* = the objective value of the best permutation 
schedule. 
z # # =  the worst objective value from the se- 
quence and wrap enumeration given that the LP 
(P2) is solved for the best T and {v). 
z # = t h e  worst permutation schedule objective 
value in the same sense as zO# but the enumera- 
tion is only over permutation schedules with no 
wrapping. 

z~ = the solution value from Heuristic 1. 
z 2 = the solution value from Heuristic 2. 
ZLB = HTmi ", a lower bound on z**. 

6.3. Performance of  permutation schedules on two 
machines 

The purpose of the first set of experiments was 
to determine whether allowing parts to wrap or 
allowing different sequences on each machine 
would provide a better solution than the best 
permutation schedule. The examples in Appendix 
1 demonstrated that there are instances for which 
the optimal solution has a part that wraps or has 
a different sequence on machine 2. Thus the goal 
here is to demonstrate that for reasonable prob- 
lems these considerations will not improve the 
solution significantly. Because the number of per- 
mutations and wraps that need to be enumerated 
grows exponentially, it was possible to consider 
only small problems. Ten four-part problems and 
ten five-part problems were generated. For each 
of the 5-part problems, (4!)225= 18432 se- 
quence /wrap  combinations were examined, and 
an LP was solved for non-dominated combina- 
tions. The parameters of the problems generated 

were: m = 2, hmax = 5, Smax = 5, Pmin = 0.5, Prnax 
= 0.9, and Teq,a I = false. For all 20 problems z** 
= z*. While we cannot guarantee that this would 
hold for all realistic problems, the results did 
confirm our intuition that limiting our search to 
permutation schedules would be more than ade- 
quate in practice. 

We were also interested in ascertaining how 
well arbitrary sequences would perform. For the 
problems described above, we also calculated 
z ~ / z * *  to provide an indicator of the range of 
costs across all sequences. Summary statistics are 
reported in Table 3. The results suggest that the 

Table 3 
Ratio of solution values of worst sequence choice to best 
sequence choice 

Number of z # # / z  ** 

parts Mean Maximum 

4 2.38 2.98 
5 2.56 3.10 
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Table 4 
Experiments with 4, 5, or 6 parts and 2 machines with unequal minimum cycle lengths 

Number Maximum Maximum z 1 / z*  z 2 / z *  

of setup holding Mean Maximum Mean Maximum 
parts time cost 

zl < z2 (%) 

4 5 5 1.0000 1.0004 1.0026 1.0255 10 
50 1.0006 1.0044 1.0003 1.0020 10 

50 5 1.0002 1.0010 1.0000 1.0000 0 
50 1.0001 1.0013 1.0061 1.0516 20 

5 5 5 1.0004 1.0027 1.0015 1.0119 10 
50 1.0006 1.0027 1.0012 1.0063 20 

50 5 1.0013 1.0081 1.0042 1.0159 30 
50 1.0006 1.0043 1.0035 1.0117 40 

6 5 5 1.0015 1.0095 1.0032 1.0119 50 
50 1.0004 1.0022 1.0024 1.0090 40 

50 5 1.0016 1.0079 1.0086 1.0440 50 
50 1.0040 1.0192 1.0026 1.0154 20 

worst sequence is significantly worse than the 
best sequence. 

6.4. Evaluating the two heuristics 

The second set of experiments considered a 
much broader  set of problems. Since the first set 
confirmed that permutat ion schedules are likely 
to provide near-optimal solutions, the best per- 
mutat ion schedule (z*)  was used as a benchmark 
for these problems. The trials included problems 
with 4, 5 or 6 parts. We limited the size of the 
problems because of the number  of alternatives 

that had to be evaluated via an LP, and because 
we wanted to consider many parameter  combina- 
tions. For each problem the maximum setup time 
was either 5 or 50, the maximum holding cost was 
either 5 or 50, and either the minimum cycle 
lengths were constrained to be equal or allowed 
to be unequal. For each combination of number  
of parts, maximum setup time, maximum holding 
cost, and cycle length rule, 10 problems were 
generated,  giving a total of 240 problems. 

Table 4 presents the results for the cases with 
unequal minimum cycle times, i.e., one machine 
was more of a bott leneck than the other. For 

Table 5 
Experiments with 4, 5, or 6 parts and 2 machines with equal minimum cycle lengths 

Number Maximum Maximum z 1 /Z* 
of setup holding Mean Maximum 
parts time cost 

Z 2//Z* 

Mean Maximum 

z~ < z2 (%) 

4 5 5 1.0020 1.0178 1.0040 1.0258 
50 1.0067 1.0196 1.0091 1.0408 

50 5 1.0093 1.0511 1.0149 1.0581 
50 1.0233 1.0995 1.0163 1.0861 

5 5 5 1.0040 1.0268 1.0032 1.0172 
50 1.0069 1.0191 1.0059 1.0207 

50 5 1.0067 1.0523 1.0175 1.0658 
50 1.0159 1.0732 1.0174 1.0562 

6 5 5 1.0032 1.0112 1.0111 1.0388 
50 1.0016 1.0064 1.0087 1.0357 

50 5 1.0101 1.0548 1.0114 1.0265 
50 1.0219 1.1080 1.0208 1.0637 

40 
40 
50 
40 

20 
50 
80 
50 

80 
70 
50 
40 
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Table 6 
Results for problems with 2 machines and 4, 5 and 6 parts, 
summarized over all parameter settings 

Number 2' 1 / z *  

of Mean 
parts 

Table 7 
Performance of two heuristics relative to range of possible 
values 

z 2 / z *  z x < z 2 (%) Number of Mean (%) 

Maximum Mean Maximum parts z t -  z* z 2 - z* 

Z # - -  Z* 2 ̀ #  - -  Z* 

4 1.0053 1.0995 1.0067 1.0861 26.26 4 20 25 
5 1.0046 1.0732 1.0068 1.0658 37.50 5 12 15 
6 1.0056 1.1080 1.0086 1.0637 50.00 6 8 15 

these problems the error from the heuristic only 
occasionally exceeded 1% and rarely exceeded 
2% of  the objective value of  the best permutation 
schedule.  The average performance was well 
within 1%. Table 5 presents the same results 
when the cycle times for the two machines  were 
forced to be equal. These problems were more 
difficult, as we had anticipated. We expected 
these problems to be more difficult since if T = 
Tmi n there can be no idle time on either machine. 
This necessitates longer production delays be- 
tween machines,  i.e., higher vii values. Nonethe-  
less, even here the worst performance by either 
heuristic across all 120 problems was within 10% 
of the value of the best permutation schedule,  
and the average deviation from optimality was 
within 2.4% for all parameter combinations.  

A summary of  the results appears in Table 6. 
Each row in Table 6 reflects the average over the 
8 combinations of parameters for the given num- 

ber of  parts. These results are somewhat  less 
surprising when viewed in light of  the z # / z  * 

statistic, i.e., the ratio of  the objective value of 
the worst permutation schedule to the objective 
value of the best permutation schedule (details 
not shown here). This value averaged about 1.04 
and its maximum value over 240 problems was 
1.15. Thus we can conclude that in absolute terms, 
the heuristics find near-optimal solutions, but for 
permutation schedules, the sequence does not 
have a large impact on the solution value. One 
reason for this is that the unavoidable inventory 
costs account for a majority of  the costs. 

Because z # was generally very close to z* we 
tabulated the statistic ( z  i - z *  ) / ( z  # - z *  ) which 
gives the percentage by which Heuristic i's objec- 
tive value exceeded the best permutation sched- 
ule relative only to the range between z # and z*. 
Table 7 summarizes these results. 

Table 8 

Experiments with 8, 10 or 12 parts and 2 machines with unequal minimum cycle lengths 

Number Maximum Maximum zl / z LB z 2 / z LB 

of setup holding Mean Maximum Mean Maximum 
parts time cost 

z t < z 2 (%) 

8 5 5 1.0047 1.0156 1.0052 1.0194 
50 1.0037 1.0094 1.0037 1.0101 

50 5 1.0065 1.0142 1.0092 1.0204 

50 1.0056 1.0334 1.0053 1.0306 

10 5 5 1.0055 1,0131 1.0064 1.0177 
50 1.0047 1.0109 1.0057 1.0114 

51) 5 1.0087 1.0201 1.0091 1.0175 

50 1.0083 1.0154 1.0120 1.0293 

12 5 5 1.0070 1.0177 1.0090 1.0392 
50 1.0040 1.0125 1.0051 1.0138 

50 5 1.0039 1.0071 1.0061 1.0152 

50 1.0063 1.0148 1.0084 1.0290 

50 
30 

40 
10 

60 
40 
60 

70 

40 
70 
60 

50 
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Table 9 
Experiments with 8, 10 or 12 parts and 2 machines with equal minimum cycle lengths 

Number Maximum Maximum z 1/ZLB Z 2/ZLB 

of setup holding Mean Maximum Mean Maximum 
parts time cost 

zl/z2 (%) 

8 5 5 1.0163 1.0351 1.0215 1.0459 90 
50 1.0278 1.0577 1.0283 1.0491 70 

50 5 1.0194 1.0536 1.0316 1.0613 90 
50 1.0305 1.0658 1.0312 1.0527 70 

10 5 5 1.0215 1.0307 1.0277 1.0359 80 
50 1.0193 1.0399 1.0228 1.0449 80 

50 5 1.0193 1.0291 1.0281 1.0554 90 
50 1.0326 1.1081 1.0467 1.1075 90 

12 5 5 1.0155 1.0311 1.0212 1.0503 70 
50 1.0162 1.0284 1.0202 1.0389 60 

50 5 1.0233 1.0478 1.0293 1.0603 70 
50 1.0285 1.1005 1.0362 1.1089 80 

We also generated several hundred problems 
with more homogeneous parts. Generally, the 
results for these problems (not reported here) 
were even better,  as we had anticipated. 

6.5. Experiments with larger problems 

The purpose of the next two experiments was 
to determine how well the heuristics performed 
on problems with more parts or with more ma- 
chines. The same combinations of paramete r  set- 
tings were used. For the first of these experi- 
ments, the number  of  parts was either 8, 10 or 12, 
and we used the lower bound (ZLB) rather  than 
z* as the benchmark.  Recall that for the prob- 
lems with 4, 5 and 6 parts, the gap between z* 
and ZLB was small. The value of Z*/ZLB was 1.02 
on average and its maximum over the 240 prob- 
lems was 1.11. For these larger problems, we 
compared  heuristics solutions with the lower 
bounds rather  than with optimal solutions. Yet, 
the gaps, summarized in Tables 8 and 9, were of 
the same order of magnitude. The average gap 
between z i for i = 1,2 and ZLB was under  1.2% 
for problems where the minimum cycle lengths 
differed and  under  5% for problems where the 
cycle lengths were equal. Thus, these problems 
appear  to become easier as the number  of parts 
increases. 

Using results from all experiments in which 
both heuristics were tested, we compared  the 

performance of the two heuristics. In the last 
column of Tables 8 and 9, labeled z 1 < z2, we 
report  the percentage of time that Heuristic 1 
outperformed Heuristic 2. We observed that 
Heuristic 1 improved relative to Heuristic 2 as 
the number  of parts increased, and as the mini- 
mum cycle lengths became more equal across 
machines. 

For the last experiment, the number  of ma- 
chines was increased to either 3 or 5. For these 
problems only Heuristic 2 could be applied. For 
the trials with 4, 5 or 6 parts, the benchmark was 
the lower bound, ZLB = HTmi n. The results ap- 
pear  in Tables 10 and 11. Again, the results are 
quite good. The average gap between the heuris- 
tic solution and the best permutat ion schedule 

Table 10 
Experiments with either 3 or 5 machines and 4, 5 or 6 parts 

Number of Number of z 2//ZLb 
machines parts Mean Maximum 

3 4 1.0104 1.1020 
5 1.0113 1.0388 
6 1.0138 1.0937 

5 4 1.0099 1.0468 
5 1.0155 1.0653 
6 1.0131 1.0572 
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Table 11 
Experiments with either 3 or 5 machines and 8, 10 or 12 parts 

Number of Number of z 2 / Z LB 
machines parts Mean Maximum 

3 8 1.0263 1.0860 
10 1.0286 1.0895 
12 1.0262 1.0612 

5 8 1.0678 1.2364 
10 1.0732 1.2339 
12 1.0653 1.1579 

was about 1%. For the problems with 8, 10, or 12 
parts, the 3-machine problems had an average 
gap, relative to the lower bound, of 2.5%. For the 
5-machine problems the average gap was under 
7%. 

In summary, the experiments have demon- 
strated that the controllable WIP rarely adds 
significantly to the cost of a solution. Thus greater 
cost savings may be achieved if by some engineer- 
ing choice one can make both the si/s and pi /s  
more similar across machines for each i, and by 
reducing the setup times in absolute terms. Yet, 
for a given situation, the heuristics presented 
here perform quite well in minimizing the con- 
trollable WIP cost across a broad range of prob- 
lems. 

7. Summary and discussion 

In this paper we have investigated sequencing 
issues in a multi-machine flow shop with the 
objective of minimizing total inventory holding 
costs. We developed a formulation of the prob- 
lem that led us to conclude that 

(a) minimizing the overall cycle duration is 
important, and 

(b) using the same sequence on all machines is 
likely to produce good solutions. 
On this basis, we developed two heuristic proce- 

dures. One applies to only two-machine prob- 
lems, and focuses on minimizing the cycle dura- 
tion. The other can be applied to any number of 
machines and is based upon an approximate rep- 
resentation of our problem as a travelling sales- 
man problem. We also developed worst-case er- 
ror bounds for these heuristics. 

We solved a large number of problems, both 
optimally and using the heuristic procedures. The 
results indicate that the optimal cycle duration is 
equal to or very close to the minimum cycle 
duration. In addition, permutation sequences 
(same sequence on all machines) perform quite 
well in comparison to all possible sequences, and 
worst permutation sequence is not substantially 
worse than the best. Consequently, the heuristics 
produce optimal or very near optimal solutions. 

The heuristics can be generalized in a variety 
of ways. We discuss two possible extensions here. 
The heuristic designed for the two-machine prob- 
lem can be applied directly to multiple machines 
by considering the 'fit' of the schedule profiles on 
the bottleneck machine and its immediate succes- 
sor. Such a procedure might perform well when 
only one machine is highly utilized. The heuristic 
based on the asymmetric traveling salesman pro- 
cedure has greater prospects for generalization. 
In particular, for the case of permutation sched- 
ules, the 'cost' of scheduling one part before 
another can be generalized to include the cost of 
cycle stock due to idle time on the bottleneck 
machine a n d / o r  WIP costs due to schedule de- 
lays that occur when the idle time is eliminated. 
A heuristic of the latter type may be beneficial 
when a savings of a few percent would be worth 
the additional computational effort. 

Appendix A 

In this appendix, we present two examples. 
The notation is defined in Table 2. The first 

Sll = 11 1311 =0.8 
s12 = 5 P12 --" 0.8 

I I s12=2 P21 = 0"1 
h 2  = 1 P22=0.1 I 

Fig. A.1. Gann chart for two parts without shifting or wrapping 
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example is one in which T > Tmi . for the optimal 
solution. The second example has one part  
wrapped in the optimal solution. The following 
data are common to both examples. There  are 
two parts on two machines. Gant t  charts for each 
part,  when scheduled independently and with the 
minimum delay between machines, are given in 
Figure A.1, along with setup and utilization data. 

The minimum cycle lengths for the two ma- 
chines are 

1 + 2  
T1 = 1 - 0.8 - 0.1 30 

2 is 'wrapped ' .  In this case T =  60, v 1 = 0 but 
u 2 = 56. The objective value is 

[60(0.2) + 60(0.9)~b + 564) = 12 + 1004>.] 

It is easy to verify that the third solution is the 
minimum for 4) z [0,4~]. This provides an exam- 
ple where wrapping a part  is optimal. The first 
solution is the minimum for ~b ~ [4@1, ~] and this 
provides the example where T > Tmin in the opti- 
mal solution. The second solution is the minimum 
for 4) ~ [9 s-, ~ ). 

and 

5 + 1  
T 2 = 60, 

1 - 0 . 8  - 0.1 

so machine 2 is the bottleneck. Let d I = d 2 --- 
1, h i0  = h l l  = h i 2  = 1, and h20 = h21 = h22 = ~b. 
Since there are only two parts, there is only one 
sequence to consider, (1,2). There  are three pos- 
sible solutions corresponding to three wrap vec- 
tors, (0,0), (1,0), (0,1). Note that wrap vector (1,1) 
yields the same solution as (0,0). The objective 
value for this problem is 

0 .5T[ (h lod l (1  - 0.8) + ha,d,(0.8 - 0.8) 

+hl2dl (1  - 0.8) + h20d2(1 - 0.1) 

= h2f12(0.1 - 0.1) + h22d2(1 - 0.1)] 

+hl ldav l  + h21d2u 2 

= r ( 0 . 2  + 4)(0.9)) + v I + ~bv 2. 

Let us consider the objective value of the three 
possible solutions. The first solution corresponds 
to the case for which production of neither part  
has been delayed, i.e., v 1 = v 2 = 0. In this case 
T = 61 and the objective value is 

[61(0.2) + 4)(61)(0.9) = 12.2 + 54.94>.] 

The second solution is one in which the produc- 
tion of part  1 on machine 1 is done early in the 
cycle so v~ = 1 but T =  Tmi n = 60. The objective 
value is 

[60(0.2) + 60(0.9)4) + 1 = 13 + 544>.] 

The third solution is the one in which the produc- 
tion of part  2 on machine 1 is delayed so that part  

A p p e n d i x  B 

In this appendix we derive the inventory hold- 
ing cost per  unit time. The finished goods inven- 
tory cost is 

T n 

- -  E h imd i (  l -- Pim)" 
2 i = 1  

If  the raw materials inventory is delivered as 
needed then there would be no such inventory. 
Since the raw materials arrive at a constant rate, 
d i, for part  i, the average cost per  unit time for it 
will be 

T n 

-2 E h iodi (  1 - Pio)" 
i=1 

The two previous formulas are standard ex- 
pressions. We now derive expressions for the 
amount  of  WlP after machine j. To simplify the 
notation we consider the case of WIP between 

I I 
- ~  t 1 

[ ] 
t 2 

Fig. B. la .  Inventory for Case 1 
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machines 1 and 2 and suppress the subscript for 
the part i. There  are three cases. 

Case 1. q ,  t 2 overlap and t 2 > t I (see Figure 
B.la): 

1 2 1 2p  1 
I = 5a Pl + 7"Y 2 + 7 ( a P l  + TP2)/3 

= ½ ( u p , ( a  +/3)  + TP2(T + / 3 ) )  

where a = v  1, / 3 = t l - v  1, and Y = t e + V l - - t  p 
Thus 

I =  ½( v , p , (  t l )  + ( t2 + V , - t l ) p z ( t 2 )  ) 

7v l (  t l p  I + t2P2)  + IP 2 t 2 (  t 2 -  t l )  , 

I / T =  v t d  + I T d ( p 2 - p , ) .  

Case 2. tl, t 2 overlap and t 2 G t~: The inven- 
tory diagram is similar to that of Case 1, except in 
the middle section (/3) the inventory decreases 
rather than increases. 

I • l (o tPl(  Ot +/3)  + TR2(T + /3 ) ) ,  

where a = t I + v I - t2, /3 = t 2 - vl, and y = v 0 .  
Thus 

I = ½( ( t  I + v 1 - t 2 ) P , ( t l )  + v , P 2 ( t 2 )  ) 

=¼/ : , ( t i p  l + t 2 p 2 )  + 1 ( t l - - t 2 ) P l t l ,  

I / T =  v , d  + ½ T d ( p  I --P2)" 

Case 3. t~ and t 2 do not overlap: Note p~t~ = 
P2t2,  and refer to Figure B.lb. We have 

1 2 I T 2 p 2  + 1 I = ~a Pl  + 2( 'YPl  + T P 2 ) ~  

= + / 3 )  + + / 3 ) )  

where a = t 1, /3 = v~ - t 1, and y = t 2. 

I = ½ ( t l p t v  1 + t 2 P 2 ( t  2 + v I - t l )  ) 

1 
= ½ t ' l ( t l P  l + t 2 p 2 )  + 2 t 2 P 2 ( t  2 - t l )  , 

and so forth. 
The derivations above allow us to express the 

average inventory per unit time for any case as 

I / T  = t ' ld  + XTd l  P2 -- Pll- 

The average cost per unit time of the WIP is thus 

m - 1  ~ 1 _ & ] ) .  
~., h i j ( v i j d i  + T T d i l P j + l  

j = l  i=1  

Appendix C 

Proof of Proposition 3. First we show that the 
largest value any vii can obtain is T(1 -Pij+~).  
Consider a schedule (a portion of a cycle) where 
the facility produces every part but i and then it 
produces part i. Let the starting time for the 
production of part i on machine j be time 0. The 
claim is that the finishing time of part i on 
machine j + 1 is at most T, and thus the starting 
time is at most T(1- -Pi j+ l  ). Suppose that we 
schedule part i on machine j +  1 from T ( 1 -  
Pij+~) to T. This leaves from time 0 to time 
T(1 - P i j + t )  to produce the remaining parts and 
execute all the setups, including the setup for i. 
This is clearly feasible since every part k 4= i has 
completed on machine j by time 0. 
For case 1 we need to show that 

I I 

~.~ - -v  I ~ [ Yl 

r n - I  

~_, Y '~hidivi j  < ( m  - 1 ) T H ,  (C.1) 
j = l  i 

since then we have that 

I "1 ~ 
-~----ct ,.-~ < [~ ~ <  ~t 

Fig. B.lb. Inventory for Case 3 

ZUB < T H  + ( m - 1) T H  = m T H  = mzl. B. 

The above inequality is obtained by observing 
that 

vii <_ T ( 1 - P i j )  <- T ( 1 -  m!n {pii }). 
Y 



460 G. Dobson et al. / Cyclic scheduling to minimize inventory in a batch flow line 

Thus So we have 

m - 1  

~ _ ~ h i d i v i j < - T ( m - 1 ) ~ i  h i d i ( 1 - m * n { p i y }  ). 
j = o  i " J 

(c.21 

On the other  hand, if k = Argmin/{p/fl, then 

m 

I Pij+, --Pijl >-- 2(1  --Pik) ,  
j=O 

since 

m - 1  

ztm= TH + ~ Ehi id i v i j  
j=l i 

< TH + TH2(m - 1) < TH(2m - 1) 

< (2m - 1)ZLB. 

For m = 2 the bounds become 

ZUB < 2ZLB and ZUB < 3ZLB. 

k - 1  k - 1  

E [Pij+l--Pij l  >-- E ( P i j + I - - P i j )  = (1 --Pik) 
j=O j=O 

and 

~lDij+m--Pij l~[~(Pij+l--Oij  ) = (1  - - P i k ) .  
j=k  j=k  

Thus 

H>_ ~i hidi(1-min{Piy}) (C.3) 
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Inequalities (C.2) and (C.3) give us (C.1) 
For case 2 

in 

2 H =  ~ Y'~ hiydilPij+ 1 --Pijl  
i j=O 

m 

> ~ ~_~ h i j d i l p i j + l - P i j l  
i j=k  

m 

>--- E h i k d i  E [ p i j + l - - P i j l  
i j=k 

since hij is increasing in j 

>-- ~-~hikdi(1 - Pik). 
i 

Thus 

m - 1  m - 1  

E Ehijdiviy < T E Ehijdi(1-Pij)  
j = l  i j = l  i 

m - 1  
< T ~ 2H<_ 2 H T ( m -  1). 

j = l  
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