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Abstract

We consider a single product, single stage, multiple periods production system with
random yield that minimizes the total quantity released over the planning horizon while
keeping a high probability of meeting the demand in each period. We present the optimal
finite horizon policy and propose a lower and an upper bound on the optimal release quantity.
We discuss the conditions under which these bounds are tight in a finite horizon setting,
which leads us to the special case of the uniform distribution of yield. We also show that the
upper and the lower bound converge to the optimal policy as the planning horizon increases.
Finally we assume that material is discounted as time goes on and show that in this case the

optimal release policy is myopic.

1 Introduction

We consider the problem of releasing a quantity of a certain kind of raw material at the begin-
ning of each of n periods in a single stage production system. We assume the demand to be

deterministic and known for the entire planning horizon, and the production outcome to be a



random fraction of the input release quantity. Upper management requires that the demand
be met in each period with a prespecified confidence level. Any unmet demand is backlogged
and becomes due the next period. The objective is to minimize the total quantity released over
the planning horizon subject to meeting the demand in each period with a high probability.
The tradeoff between achieving a high service level and minimizing the amount of raw material
released is clear. Releasing huge quantities of raw material in a particular line increases the
chances of starving other lines in the plant which use the same raw material and will there-
fore hinder the overall production capacity of the plant. Quantities released must be kept at
a minimum, only to satisfy in each period the service level requirement set by upper manage-
ment. One possibility would be to decide at the beginning of the planning horizon on all the
release quantities that should be made in each period, without waiting to see subsequent levels
of production yield. However a clearly better choice would be to postpone the release of the
kth quantity until the beginning of period k, when the inventory level at the beginning of that
period would be known. This mode of operation involves information gathering and sequential
decision making based on information as it becomes available and lends itself to Dynamic Pro-
gramming techniques when it comes to solving such problems. It implies that we are interested
in finding an optimal rule for choosins at the beginning of each period a release quantity for each
possible value of inventory level that can occur. Mathematically the problem is one of finding a
sequence of functions, which will be referred to as a control law or policy, mapping the inventory
level at the beginning of each period into the release quantity so as to minimize the total quan-

tity released in all periods while keeping a high probability of meeting the demand in each period.

The practical importance of taking into account yield randomness in analyzing production and
inventory models was addressed by, among others, Karlin (1958 Sections 4-8) who considered a
multilple periods problem where ordering is restricted to a fixed amount. Lee and Yano (1988)
considered a single period serial system, Sepehri, Silver and New (1986) considered a single
period model with multiple setups, Yao (1988) considered a single period assembly system, Ger-
chak, Vickson and Parlar (1988) considered a multiple periods cost based model and showed
that the solution is neither myopic nor order-up-to. Multiple products models were considered

by Singh, Abraham and akella (1990) and Tang (1990) in a single period setting. Yano and



Lee(1989) reviewed the lot-sizing problem when the yields are random and reported finding lit-
tle research done on multiple periods problem. This paper analyzes a multiple periods service
level model and is organized as follows. In section 2, we define our notation and formulate the
problem mathematically. In section 3 we study the structure of the optimal policy by considér-
ing the first and the second period problem separately, and then by proving the optimal release
policy for a more general n periods problem. We show that this policy holds under one particular
assumption that we will define later in the section. In section 4, we discuss our assumption and
show that it is valid for all practical yield rate distributions and service level values. In section
5, we derive lower and upper bounds on the optimal release policy, we discuss the conditions
under which these bounds are tight in a finite horizon setting which leads us to the special case
of the uniform distribution of yield in section 6. We also show in section 5 that the upper and
lower bound converge to the optimal policy as the planning horizon increases. In section 7 we
discuss the discounted case, show that the optimal release policy is of the extended myopic type
and determine an upper bound on the forecast horizon. We conclude in section 8 by proposing

some new directions for research.

2 Terminology and Formulation

In this section we define the terminology that we will use throughout the paper and present the
dynamic programming formulation. We use backward recursion to explore the structure of the
optimal policy. Therefore the last period, n, becomes the first period to be analyzed, period
n — 1 becomes the second period and so on. Let d be the demand that needs to be met at the
end of each period with a prespecified level of confidence a. More specifically, the service level

constraint in any period k is defined as:
Pl +UQi-d>0]>a (1)

where I is the on-hand inventory at the beginning of period k, U is the yield rate, a continuous
random variable between 0 and 1 with stationary cumulative distribution F' (F}, = F' Vk), and

Qy is the quantity released in period k. Equation (1) can be rewritten as:

P[Uz%—:hlza



> Q> g (2)
Let 6 be the discount factor with 0 < 6§ < 1 and J; (Ix) be the value function, that is the
minimum total quantity released to meet the service level, given the inventory level I, and
assuming that the best decision is taken in the current as well as in all the future periods.
Finally let Q% (Ix) be the optimal quantity to be released at the beginning of period k, given
I.. Denote the ith period problem by P(n — (i — 1)), that is the problem of solving an 7 periods
problem. We want to solve P(1). For a general period k, P(k) is formulated as follows:
Ji (k)= Min Qc+8E [Ty (Iks)]

P(k) s.t. QO 2 F—‘%%T’T il <d

Qx>0 if [y >d
An interpretation of this formulation is the following. To solve an n — (k — 1) periods problem,
we minimize the sum of the amount of material released in the current period k, plus the é-
discounted expected amount of material that might be released in the following n — k periods
given the beginning of period on-hand inventory Ix41, which in turn is related to I, the on-hand
inventory at the beginning of period k, through the production outcome UQy and the demand
d in the current period. In other words we are assuming that lead time is less than one period

and as a result, the relationship between the state variables I and Ix4 is nothing but:
Ly =L+ UQkr—d (3)

The service level constraint defined in equation (2) becomes active only if the current on-hand
inventory level is less than the demand. Otherwise, the release quantity should only satisfy the
non-negativity constraint. Substituting equation (3) in P (k) we get:
1
J,: (Ik) = Min Qk + 5fJ,:+1 (Ik + uQ - d)f(u)du
0
d—1 :
k > == if Ik <d
P(k) sl 2T =
Qx>0 if I > d
We will first assume that 6 = 1, that is we will assume that raw material does not devaluate
as time goes on. We will analyze the optimal finite horizon policy in this case. Next (keeping
6 = 1) we will derive lower and upper bounds on the optimal release policy in a finite horizon

problem. Lastly we will assume that é < 1 and find out the effect of discounting on the optimal

release policy.



3 Structure of the Optimal Policy

3.1 First Period Policy

With J .y (Ing1) = 0 Vin41, the optimal decision in the first period is simply to release the
minimum amount of material required to satisfy the service level constraint in that period.
Clearly we do not release any material if the on-hand inventory at the beginning of that period

exceeds the demand. The first period problem is defined as:
Jx(I,) = Min Qy

Qn > 7 il < d

Qn 20 ifl, > d

P(n) s.t.

The optimal solution to problem P(n) is given by:

* * F‘(i~ll—a if I < d
Qn(In) =Jn(In) = . (4)
0 ifI, > d

note that Q% (I,) and J; (I,) are convex functions. Convexity of these two functions in subse-

quent periods will be a key argument for proving our results for general horizons.

3.2 Second Period Policy

We would like to solve P(n-1), our first task is to obtain an expression for the value function
J* (In-1 + UQn-1 — d). Such an expression is obtained by substituting I, in equation (4) by its

expression in equation (3). Doing this we get:

—-,T—]—?d""-l‘m"-l if U < Min (1 —-—2“‘""-1)

Ja(In-14+UQnor — d) = . o= ' " Qno1 (5)

otherwise

Since U lies between 0 and 1, we therefore identify from equation (5) 3 cases in the second period
problem, depending on the value of I,_1: In-1 > 2d,d < I—1 < 2d and I,_; < d. In the rest of

this section, we will analyze each case in order to conclude about @} _; (In-1) and J5_; (In-1).



3.21 CaselI([,_;>2d)

Here, equation (5) gives J; (In-1 + UQn-1 — d) = 0 and hence P(n-1) becomes Min Q,_; s.t.
@n-1 > 0. Therefore as expected, no release should ever take place in a two periods problem
(Ja-1 (In-1) = @1 (In-1) = 0) if the on-hand inventory at the beginning of the current period

exceeds the total demand in both periods.

3.2.2 CaselII (d < I,-1 <2d)

The service level constraint is still not active in this case since I,_; > d. However, after
substituting equation (5) in P(n-1), the objective function is no more described by the same

function for all non-negative values of Q,_;. Mathematically, P(n-1) becomes:

ﬁn—l
* _ . 2d - In—l - uQn—l
where
1 f0<Qn-1<2d -1,
ﬁn—l = 2d—1
o=t i Quoy 2 2d - Iy

Qn-l

The objective function of P(n-1), Ju-1 (In-1), is the sum of two functions. It suffices to show
that both functions are convex to conclude that J,_; (I,-1) is a convex function. While @n-1
is clearly convex, we therefore only need to show that the second function, which is nothing but

E[J; (In-1 + UQn-1 — d)], is convex. In fact, if 8,—; = 1, then

PE[Jr(In-1+UQny —d)]  d?J2 ()
Qi _, - d()?

EvY] >0

since J;; (.) is convex from equation (4). On the other hand, if 8,_; = ﬁl—lfl‘—‘, then

Q

ﬁn—l
dE[J3 (Inor + UQnor = d)] _ [ dJ5() o
Y _O/ Ty (wd



since J (d) = 0. Hence

PE[Jn (1 +UQua —d)] _ [ d*J3() ,
dQ?_ d()*

L ¥il)
d(.)

—L——=Bn_1f (Bn- l)dgn 11 0

since _?Ll < 0 and d"" L < 0. As aresult, Jo—1(In—1) i1s convex. next, we differentiate

Jn-1(In-1) with respect to Qn 1 to find the minimum. Doing this we get:

dJn-1(In-1) _ u
Qo T 0/ P e

Therefore we conclude the following: E[U] < F7'[1-qa] & Qi_;(In-1) = 0 and E[U] >
F1[1 —a] & Q}_ (In-1) solves the following integral equation:

Br-1

/ uf (u)du = F~'[1 - o (6)

0

where (3 _, = Q_2d:_(1?n;_15 < 1. Call the solution to equation (6) Q2L (In-1), then Q2L (In-1) =
ﬁ; , (2d — I—1) where f;_, is a function of only a and F. Furthermore from equation (6), we

can write
-1 F~11-0]

o
o

fzuf(u du = zF(z)—sz(x)dz
0 0
F~1[1-q] F~11-q]
= [ uf(u)ydu = (1-a)F '[1-q] [ F(z)dz
0 0
< Fll-qf
Therefore we can write:
S P l-a] <8, <1 ()

This latter result will be used in case III.

Assumption 1: E[U] > F71[1 - q]




For the time being we will neglect the case when E[U] < F~!'[l - q] since it is reasonable
to assume that the service level will always be high enough so that E[U] > F~![1 — a] will
always be true. In the next section, we will show that this assumption holds for all practical

yield distributions and service level a.

3.2.3 CaseIll ([,-; <d)

As mentionned above, the service level constraint becomes active in this case. Recalling that

Q:L, (In—1) is the optimal solution to the unconstrained problem and using the result in

. . . . d—1In—

equation (7), the optimal order quantity becomes nothing but F—-fﬁ—_:x]' for In—1 < yn—1 and
. n_1—2F 7 1-4q] , . . . .

Q:L, (In-1) otherwise, where y,_1 = [Z;:.l‘_‘ﬁ:q[l_—:]ld is the unique solution to the equation

1 d=y,_
Qi snt) = G (= o) = o ®)

A plot of the optimal order quantity versus the initial inventory in a two periods problem is

shown in figure 1.

3.2.4 Properties of the Value Function

Before ending this section on the second period policy, we would like to study the properties of
the value function of the second period problem since these properties will be useful in carrying
the analysis for the third period policy. We shall denote the value function by J2!, (I,_;) for
Yn-1 < In_y < 2d, and by J32, (In—1) for Iy < yn-1. J2L, (In-1) is obtained by replacing
Qn-1by Q2L (In-1) in the objective function of P(n-1) as defined in case II for Qn_1 > 2d—1I,_;.

Doing this and differentiating J1, (I,—1) with respect to I,_; we get:

ﬁ‘
dali(nmy) 495, () o 4QsL, (In-1)
o = e Pl | |LHeTan | f (e

I

4Q*L | (In-1) et Fls,]
dlln_l [l - ({ F-T=«a f(u)du} - F- 1—101



Therefore from equation (6) we can write

dJ;:}_ (In—l) _ F[,B:;_ ]
d;n_l ORI —la] (%)

J22, (In-1) is obtained by replacing Qn—_1 by Fl:fﬁ in the objective function of P(n-1) also as

defined in case II for Q,—1 > 2d — I,—;. Doing this and differentiating J,‘;zl (In-1) with respect

to I,—1 we get:

2 (In-1) R
d‘]’;‘:—-l In_l 1 u
=- 1 l- —— d
I Fii—a | T 0/ < F1[l- a]) fudu)(10)
The following are properties of J32, (In—1):
dJ,:l_l(In-l) d'],‘,?q(ln—l)
a) T = 9o Ino1 = Yn-1.
2 J*2
=g 20
, 432 | (In-1) 1 Frii-el u
¢) limj, ;oo =2 = — =gy |1 of (l - S ) f(u)du

Property a is true from equation (8) since

2d — yn—1

Flll-al=p"
d_yn—l [ ] Bn—l

Property b falls by differentiating equation (10) one more time and property c falls directly from
equation (10). A plot of the value function versus the initial inventory of a two periods problem

is shown in figure 2.

3.3 General Period Policy

Suppose that for a general n (n > 3) periods problem, the optimal release quantity at the be-

ginning of period i + 1 (n — 2 > i > 0) is defined as follows:



0 Liy1 2 (n—i)d

Qi Tiy1) n=(+2]d+ Yot < L1 < (n—i)d

Qit1 (Lit1) =< \ , ,
Qi1 (Liy1) n=(G+k+D)]d+ynk <Ly <[n—-(i+k)]d+ Yn—(k-1)

ifk=2.n-(i+1)

| FTisa Liy1 < yin
(11)
Q:‘fl (Lit1), k=1,2,..,n — (i + 1) is the unique solution to
k ":il dJ"‘J
1+)° —‘*“—2('—)uf(u)du=o (12)
j=1 d()
«(j+1)
141
where
ST =
ﬂf+1 = ["'(i+j)]d2'"f::‘ﬂ“)_1‘+‘ ifj=2..k
0 ifj=k+1
and
( (n—i)d=I;1 ——
e =1
Wi LMt gy (13)
141
0 fj=k+1
and y,,_ is the unique solution to
. d— yn-
Qi (vnk) = ot (14)

T FIl-q

10



Furthermore, let the value function be such that

0 Lip1 > (n—i)d

Jih(Iiy)  n=(+2)d+ya1 < Lip1 < (n—1i)d

Jiv1 Lig) = S o ‘
Ji(Liy)  n=(i+k+D]d+ypsk <Ly S[n= (4 k)] d+ yox-1)

ifk=2,.,n-(i141)

\ J,-*+('11_1) (Zi+1) Liy1 Syin

(15)

where J7,; (I;41) is a continuous, differentiable and convex function, for I;4; < (n — i) d. Finally

let:

n—1 *
dJi (iv) _ j=1+iF[ﬂjI] (16)
d(liyr) — F'[l-qf
and \ -
n— F »k -
o W Te) ) - ’=“;v-[ffi_]§’=°’” if k=1,2..,n-(i+1) )
m — = k-1
Liyi——c0  dliyq 3 Eﬁo_i k=i
where
F-11-q]
u
=1 - — d 1
p=14 / (1= i) F (19
and '
gif= lim g Vk=1..n-(i+1) (19)
=0

Before showing that the optimal release quantity at the beginning of period i is also defined as in
equation (11), we would like to study some properties of the optimal release quantity @7, (Li+1)

as defined in equations (11). We do this in the following set of propositions.

11



Proposition 1: Q:‘f_l (I;+1) that solves equation (12) uniquely is a convex function in the in-

terval where it is defined in equation (11).

Proof: The proof is by induction. For k = 1, we get

1
Mit1

*1
+ / ‘“'“(')uf(u)du:o (20)
0

d()

From equations (13) and (16), the unique solution to equation (20) is clearly a linear, hence a
convex function, for I;4; < (n —i)d and therefore in the interval where it is defined in equa-

tion (12).

now suppose that for k = m, the unique solution to equation (12) is a convex function in the inter-
val where it is defined in equation (11). That is suppose that the unique solution to the following
equation is a convex function for [n — (i + m 4+ 1)]d+ yn—m < Liy1 < [n = (i 4+ m)]d+ Yn—(m—1)

*

Mit1 '
i dJ=, (.
1+Z / L:;r(%(—)uf(u)duz0 (21)
I=1 4541 .
Miy1

We would like to show that this is also true for ¥ = m + 1, i.e. that the unique solution
to the following equation is a convex function for [n — (i + m +2)]d + Yn-(m+1) < lig1 <
[n_(i+m+1)]d+yn—m

1 .
)
i+2
I+ 10
=1 eG4)
141

uf (u)du =0 (22)

From equation (21) we know that the second derivative of the solution to equation (22) is
non-negative at Ij;; = [n— (i + m 4+ 1)]d + yp_m, since n:ff“) = 0 at that point and thus
equation (22) reduces to equation (21). Furthermore, it is clear that the solution to equation (22)

is a linear function only when I;;, approaches —oo, since

; dQzk, (L)) ™!
1 *o— i SHHLVHD ek oy 1
I.‘+11£>n-oo Tit1 I.»+11_r>n_oo [ dlipy B v l,..,m+

12



and therefore equation (22) reduces to

ﬁf("*“)
o dI:5 ()
«(m+1)

whose unique solution results in Q;};" "’ (Ii4+1) being a linear function, since the integrand is in-
dependent of I;;; from equation (17). Therefore the unique solution to equation (22) is convex
for I;;; < [n—(i+ m+1)]d + yn—m, and hence in the interval where it is defined in equa-
tion (11).

Proposition 2: Q7 (Ii+1) as defined in equation (11) is a continuous convex function, dif-

ferentiable everywhere except at Ii41 = yiy1.

Proof: The proof falls directly from Proposition 1 and the fact that at I3 = [n — (i + k)] d +

Yn-(k-1) Vb = 2,..,n — (i + 1), we have from equations (12) and (13) that Q;-‘il (Liyr) =

(k= Q. (I Q= :
QH(_kl 2 (Li+1) and hence Q'Jfli1+l) = Q'*émﬁ +1) at that point. On the other hand, at

I;41 = Yip1, we have from equation (14) that

sn=(i41) ( _ _d= Uil
Qz+1 (yH'l) - F_l [1 _ C!]

and therefore @, ; (fi4+1) is continuous at that point, but the derivative at the right of that point

is not the same as at its left. We will show later that it is actually greater or equal.

The next step is to show that the optimal release policy in period i is also defined as in equa-

tion (11). That is, we would like to solve P(i) defined as follows:
Jr(Ly= Min Qi+ E [J7 (L +uQi — d)]
Qi 2 iy i L<d

P(i) s.t. F= =
Q@i>0 if [; >d

We would like to solve P(i), our first task is to obtain an expression for Ji% (i + uQi — d).

13



Such an expression is obtained by noting that Ji | (;+1) is defined as in equation (15). As a
result, J7; (I + uQ; — d) is defined differently depending on the yield realization in period i.
More specifically in P(7) we get:

(T (14 uQi-d) i U< Min (1,00"7)

JE (L+uQi—d)  if Min (1,17{‘“) < U < Min (1,175)
fork=1,..,n-(i+1)

i1 (L +uQi —d) = (24)

0 otherwise

we therefore identify from equation (24) n — (i — 1) cases in P(i), depending on the value of I;
the beginning of period on-hand inventory (The last case arises when the service level constraint

becomes active.):

) L3> - (- 1)d

b) [ = (i + D]d + yus < i < [n— (= 1) d

&) [n— (i +E)dtynos <L < (it k= 1)]d+yoqer) Vh=2,.n— (i +1)
d)d< L <d+yin

e) I; <d

3.3.1 Case a

Here, equation (24) gives J5; (I; + UQ; — d) = 0 and hence P(i) becomes Min Q; s.t. Q; > 0.
Therefore as expected, no release should ever take place in a period i problem (J; (;) = QF (I;) =
0) if the on-hand inventory at the beginning of the current period exceeds the total demand in

all future periods.

14



3.3.2 Caseb

Similarly to the second period policy, P(7) becomes:

l

J*(z)_MmQ,+/ (T + uQi — d) f (u) du

The objective function of P(i), J; (I;), is the sum of two functions. It suffices to show that both
functions are convex to conclude that J; (I;) is a convex function. While @; is clearly convex, we
therefore only need to show that the second function, which is nothing but £ [J,_H (L+UQ; - 4d)],

is convex. In fact, if n! < 1, then

n
dE [J1} (L+ UQ; - d)] _/d‘]ﬁlf)
dQ; - )

since Ji; ((n — i)d) = 0 from equation (15). Hence

PE [Tk (5 +UQi—d)] _ d?JH() : izl () dn}
: : u)du + — ! L >0
dQ? ] Ta()? vf) O f<'7>da2z
. d2J() 4z, () : dn} i
since f(.),— = 0 and _+_d(.) < 0 from equation (16), and o <0 by definition. Clearly

the second order derivative is also non-negative if n,-l > 1. As a result, J; ([;) is convex. next,
we differentiate J; (I;) with respect to @; to find the minimum. Doing this we conclude the

following:

el T Pl <P - sl Q1 (1) =0 (25)

j=141

and E[U][T}2 H_, [ﬁ*l] > F71[1 - o] & Q! (In—2) solves the following integral equation:

.1

" _ F'[1-q
0/ uf (u)du = - 11+l ; [ﬁ*l} (26)

where il = EH%I;_I < 1. Call the solution to equation (26) Q:* (L), then Q'(L) =
n—ir[n — (i = 1)]d — I; where n! = B! is a function of only « and F. Therefore if we can show

that equation (25) can never occur, then we would have shown that @' (I;) is the same as in

15



equation (11). We do this in the next proposition.

Proposition 3: E [U][]}= 1+1 [ﬂ*l] >F11-d]

Proof: Recall that we assumed that Qi1 (Liyr) s obtained from equation (11), i.e. that

1
Al

[ uf = i )

PR (27)
0 H] =2+1 [ﬁ*l]

therefore it must have been that

F7'{1-a]
Mzt P57

E[U]2

Therefore what we need to show is that for 1y < 1, we have

s
[ uf (u)du

EW]2 5 = Aip (28)
[ f(u)du

0

Moreover, the inequality is satisfied as equality for 5:11 = 1. Therefore it is sufficient to show

that the first derivative of the right-hand side of the inequality is non-negative and we are done.

In fact:
81 Ll
SR [ nci) [ el
Wi GEN§

8ty
1(871,) [ (B3 —u)S (w)du
—_ 0 > 0
Fls ) -

Therefore we have shown that Qf' (I;) is the same as in equation (11). The next set of propo-

sitions result in properties of Q;-'l (L) Vi=1,..,n-1, in terms of 8.

16



Proposition 4: 37! are unique solutions to the following set of equations:

s
/f()du._ iy fori=1,2.n—1 where A, = F7'[1 — q]
0

Proof: It is true for i = n — 1 from equation (6), (where B:_, = 82L,) and true for a general i

from proposition 3.

Proposition 5: F71[1-a] <@, <8, <. <1

Proof: It is true for ¢ = n — 1 from equation (7) and it is easy to see that for i < n -1,

lChe Bl
[uran=atnz [ s oz g
0 0

and limy_ o ,Bfl =1.

Therefore, Assumption 1 is sufficient to establish that in period ¢, for [n — (1 4+ 1)} d + yn-1 <
I; < [n—(i—1)]d, we must release a quantity larger than [n — (i — 1)]d — I; (we say we are
overproducing). By the end of this section on the General Period Policy, we would have shown
that the optimal release quantity in any period is convex in the beginning of period on-hand
inventory, hence releasing up to the total demand in all future periods is a lower bound on the

optimal release quantity.

3.3.3 Casec

In this case, P(i) becomes for k = 2,..,n — (i + 1):
2l

n;

k
S =Min Qe+ Y. [ UL+ uQi-d)f (wdu

]=1 (741
7"_(.7+ )

Similarly as in Case b, the objective function of P(i), J; (;), is the sum of two functions. It

suffices to show that both functions are convex to conclude that J;(I;) is a convex function.
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While @Q; is clearly convex, we therefore only need to show that the second function, which is

nothing but E [J* 51 (Li+UQ; — d)], is convex. In fact, V k=2,.,n— (i + 1). if n} < 1, then

dE [J (L +UQi — d)] Zk: dJ ()

10, uf (u)du (29)

+1)

since a) n,(j appears as the upper bound and as the lower bound of two consecutive integrals

and we assumed that the value function is continuous for I;4; < (n — i) d in equation (15), and
b) Ji; ((n — i) d) = 0 from equation (15). Hence the second derivative becomes nothing but:

d2J7!

1+1()u ) du sz+1() d'?,
A e =gyt (o) g, 20

CPEJ L (L+UQi-d) &
dQ? =2

=1 (
l

E \—;u

)
since a) nEjH) appears as the upper bound and as the lower bound of two consecutive integrals
and we assumed that the value function is differentiable for I;;; < (n —i)d in equation (15),

b) ﬂ’%— > 0 since we assumed that the value function is convex for I;4; < (n — i) d in equa-
tion (15), and c) i{}'(tf)(—) < 0 from equation (16) and ;@"- < 0 by definition. Clearly the second

order derivative is also non-negative if n} > 1. The same argument applies if for some j > 1, we

have n{ > 1. As aresult, J; (I;) is convex.

Next, we need to find the optimal order quantity Q? (I;). Consider 24L) 5t Q, = [n—-(i-1)]d-
I;. Since J; (I;) is convex in @;, then if and only if we can show that the derwatwe at this point is
negative then the optimal order quantity @7 (I;) is the unique solution to the objective function
of P(i) for n} = L—(%l]d— which is nothing but equation (29) added by 1.

*J

. .
1+ A (')uf(u)du =0 (30)

In fact, at Q; = [n — (i — 1)]d = I;, we get:

A f+ du+f—*“—f()u



IN

Lagsl (. . .
1+ ({ —(‘f(r)uf(u) du since we assumed that J7 ; (/i+1) is a continuous,
differentiable and convex function for [;1; < (n —1)d

1 I—In;11+tF['B;l]

— === FE[U] <0 from Proposition 3

Call the solution to equation (30) Q:* (I;). The following are properties of Q* (L) V k =
2,..,n—(i4+1):

d f(k—l) I dO*k I, .
a) Q; ( ): Q:il,-( )atIi:[n—(l+k—1)]d+yn—(k—l)'

dl;
sz’k(I.’)
b) =z — 20.
sk(r.
c) Letting % =limj - 5_7}‘— =limf._ 51—%#, then 3:¥ solves the following
equation:
Bk -1
dJzE ()
uf (uydu = —| lim L2
O/ f (u) [,Mﬁ_oo d()

F711-q]
Ve [ ot Y

from equation (17) (31)

Property a is true since we assumed that J7 , (;+1) is a continuous and differentiable function
for I;3; < (n — i) d, property b is true from proposition 1 and finally property c falls by taking

the limit of equation (30) as I; — —oo.

3.3.4 Cased

In this case, P(i) becomes:
n’

Ji (I}) = Min Q,-+i / J7 (L + uQi = d) f (u) du

J=1 1
m‘(1+ )
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To show that J; (I;) is convex, we use the same argument as in case ¢ but for k = n —i. By the

same argument, we conclude that @ (I;) solves

‘J

Z—: / ’+1()uf(u)du=0 (32)
=1

(J+l)

Call the solution to equation (32) @ *(" 0 (L;). The following are properties of @; *(n-1) (L):

d 4‘("“(”’1)) I d f("‘i) I

*(n—i)
b) 225 5

t(n l) .
¢) Letting ﬁ—,('%_;y =limp 5 —,(m =limyp o ——'ﬁ—li— then ﬂ ~) solves
fi UR

1

the following equation:

grn=+ (n—i) -1
' _ dri " ()
J uf (u)du = —[,'+}‘i“.oo d()
-1 _
= F_[.l_cxl from equation (17) (33)
Tis ™ pr

Property a is true since we assumed that J7 , (/i+1) is a continuous and differentiable function
for I;41 < (n — i) d, property b is true from proposition 1 and finally property c falls by taking

the limit of equation (32) as I; — —oo.

3.3.5 Casee

As mentionned above, the service level constraint becomes active in this case. Recalling the
properties of the unconstrained optimal solution Q*(" 9 (I;) in section 3.3.4, the next question
that we would like to answer is whether there exists a value for I; below which the service level

constraint becomes binding. We answer this question in the following proposition.
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Proposition 6: ,B’f(n_i)

1

> F 11 -al

Proof: From equation (33), we can write

g [y, [P0l !
[ uf(u)du = F-1 [1-a] Z?:ot 1( f (I—-F—_r’[‘m])f(u)du) }

0 0

F-11-q]

- j1-1
ZF—I[I—Q] 2;’;0< ({ (1-‘}:—-13[‘1—_;1))((“)(1“)}

F~11-q]
=aF 1-a]+ uf (u)du
0
ﬁ:("“)
=> [ uf(u)du>aF~1[1-a]
F-1{1-q]
S A Y | B

Therefore, the optimal order quantity becomes nothing but F_-dl'—[lliﬂ for I; < y; and Q:("_i) (L)
otherwise, where y; is the unique solution to the equation

sn-i), y_ 4=y
Qi (yt) - F_l [1 _ a] (34)

We have thus proved that Q¥ (I;) is defined as in equation (11). A plot of the optimal order
quantity for P(1) versus the initial inventory is shown in figure 3a for a four periods problem
where the point of intersection between the service level constraint and Q7> (1) is denoted by
y1. The next task is to show that this optimal policy implies a value function J7 (I;) defined as

in equation (15). We do this in the next section.
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3.3.6 Properties of the value function

Ji (L) = 0 in Case a. We shall denote the value function by J! (I;) for Case b, J* (I;) for Case
c,dandefor k =2,..,n—(i—1). J(I) is obtained by replacing Q; by Q:1 (L), given in
equation (26) in the objective function of P(i) as defined in case b for Q; > [n — (i — 1)]d - I

(i.e. nf <1). Doing this and differentiating J*! (I;) with respect to I; we get:

dIs(L)  dQ(I, Fls; ! dQ*1(1,
‘dl.(- e le.( ) JF‘}'T[I E:] ] f [1+ Q ( )]f(“)d“

aT; F11=a] F-1[1-a]

4Q1 (1) [1_ I [ﬁ“] "f uf(u)du} B [n“] rorsd 18]

art () IGEE (B
T Td C  Fl—q

(35)

Using equation (26) and the fact that *1 = 17]1 Jr% (L) for k = 2,...,n—iis obtained by replac-

ing Q; by Q¥ (I;) in the objective functlon of P(i) as defined in case ¢ for Q; > [n — (i — 1)]d—1;
(i.e. nf <1). Doing this and differentiating J3* (I;) with respect to I; we get:

dJrk (I, dQ*" I de’
dl,'( ) = ) Z / uf(u )du +Z / +1 u) du

]- c( 14+1) J 1 t(_1+1)

which, from equations (30) and (32), becomes:

The following are properties of J** (I;) for k = 2,....n — i:

*(k-1) k )
a) T, @ - ,(-') at I =[n—(i+k-1)]d+ yp_(k-1)-
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ki _ DS FIBH TS

b) limy; o —7— = FTl1=a]
d2J2k ()
c) T > 0.
Property a is true since ;% = 0 for k = 2,...,n — i, Property b is true from equations (13)

and (17) and Property c is true by the same argument that the derivative of equation (29) is

1

function of P(i) as defined in case d for Q; > [n — (i — 1)]d — I; (i.e. n} < 1). Doing this and

non-negative. Finally, Jrn=(i-1)) (L;) is obtained by replacing Q; by F_-dl'_[fli_aj in the objective

differentiating J:(n—(i_l)) (I;) with respect to I; we get the following properties of J:(n_(i_l)) (L):

de("—i)(I'. dJ_‘("-(‘—l))(I‘
a) t T, ) = & T, ) at I; = y;.

4 =0=0) (1) oo P

b) limy;— oo =—gr——" = ~ =i

dzJ-'("_(i_l))(Ig)
dl

)

> 0.

(n=(=1)) 0, Property b is true from equations (13) and (17) and

Property a is true since 7,
Property ¢ is true by the same argument as Property ¢ for k < n — (i —1). We have just
shown that the optimal policy defined as in equations (26), (30), (32) and (34) implies a value

function J* (I;) defined as in equation (15).

4 Discussion

At this juncture, we would like to digress in order to justify Assumption 1. We claim that
Assumption 1 holds for all practical yield distributions and service level a. Assumption 1 can
be rewritten as @ > 1 — F [E[U]]. Consider the Beta distribution with parameters a > 0 and

b > 0, whose density is given by:

v (1-¢ b-1

Blab fo<zcl

0 otherwise

23



where B (a,b) is the beta function. The Beta distribution is mainly used to model the distribu-
tion of random proportions such as the proportion of defective items in a shipment. Therefore
1t 1s the most appropriate among the standard probability distributions to use in conjonction to
our model. Furthermore, it is a very general distribution that can take various shapes according
to its parameters. Therefore proving that Assumption 1 holds for all Beta distributions (and
for all practical service level a) is sufficient for all practical reasons to justify the validity of
the Assumption. Our goal is to find the highest value a* for which the Assumption still holds
irrespective of the values a and b. If this value a* is reasonably high then we are done. Typical
values of & range from 0.9 and above and it would be very useful to obtain the sought after
o below this range. To find out the value of o*, we will take the limit of 1 — F[E[U]] as
E[U] approaches 0. For the case of the Beta distribution where E[U] = +55 it is the limit of
1-F [#b] as b becomes very large compared to a, or equivalently the limit of 1 — F [ﬁ] as
b approaches infinity. For the particular Beta distribution corresponding to b = 1, this limit

b
'b+b_1) as b approaches infinity, which is nothing but

can be computed easily. It is the limit of (
e~!. Therefore it suffices that o be larger than e~! for our Assumption to hold! However, when
a = b clearly o should be greater than 0.5 for our assumption to hold, which is greater than
e~! and which violates our previous result. Intuitively, a value of b that is very large compared
to a would lead to a distribution skewed heavily to the left, therefore inciting for the release of
large quantities even if the beginning of period on-hand inventory in multiple periods problem
is relatively large. On the other hand as the values of a and b becomes equal, or even better as
a becomes very large compared to b, the yield distribution becomes skewed to the right. As a
consequence of this fact, only relatively large values of a (surely larger than 0.5) would require
that some quantity be released when the beginning of period inventory in a multiple periods
problem is relatively large. Therefore what we should actually check is the limit of 1 — F [a“ﬁ]
as a becomes very large compared to b, or equivalently the limit of 1 — F [ﬁ;] as a approaches
infinity. For the particular Beta distribution corresponding to a = 1, this limit can be computed
easily. It is the limit of 1 - (a%)a as a approaches infinity, which is nothing but 1 —e~!. There-

fore it suffices that o be larger than 1 — e~! for our assumption to hold. a* = 1 — e~! ~ 0.64 is

by no means a restrictive value, hence Assumption 1 is valid.
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5 Bounds on the optimal policy

We are now ready to derive a lower and an upper bound on the optimal release policy based on

the properties derived in section 3.

5.1 Lower Bound

From propositions 2, 5 and 6, a lower bound on the optimal release quantity at the beginning

of a finite horizon problem of n periods is the following:

0 if Iy > nd
LB(Qi(h) =1 @' (h) = 5) ify, < h <nd
e ifh <y

d—y’

where y; solves Q3! (3/1) = FTha]
5.2 Upper Bound

For a finite horizon problem of n periods, we found in section 3 that @7 (1), the optimal release

policy at the beginning of the planning horizon (¢ = 1), is a continuous function for I; < nd,

and differentiable everywhere in this range except at I; = y;. Furthermore, we found that the
wk

limiting slope of Q{" (L) fork=1,2,..,n—1, 5;1'1F = limy - 5%#—)-, solves equations (26),

(31) and (33). Finally in proposition 6, we showed that the service level constraint is binding

for I; < y;. As a result, an upper bound on the optimal release quantity is defined as:

(

0 L >nd

it (h) (n=2)d+yn-1 < Lis1 <nd

UB(@Q1(h)) = | (36)

UB(Q* (1) [n—(k+D]d+yoi <D < (n=k)d+ yn_eon)
fk=2.,n-1

gl L <y
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where UB( 1k (Il)) is a line with slope ﬁ;l_l,; and yi solves equation (14) for k = 1,....,.n — 1.
Figure 3b depicts the upper bound for the case of n = 4. We are interested in computing the
coeficients 3;* for k = 1,...,n — 1 and a certain n. By the same arguments as in propositions
3, 4 and 5, we compute the coefficients ﬂfk for k =1,..,n —1 by rewriting equations (31) and

(33) as:
ok

[ uf (wydu=ak, (37)

0
where A:-—(k—l) = %E—__}L’;‘l, i=1,...,n —k, which implies that
%ﬁﬂ <BEL <. <O <BF <1 and lim G =1 VE
In order to compute 3;* for a certain n and k, we need to solve equation (37) fori = 1,...,n— k.
As n approaches in fty, fk approach 1 for any finite k. Therefore for large inventory levels and
large planning horizons, the upper bound and the lower bound will merge together to result in
an optimal policy that calls on releasing up to the total demand in all future periods. However,
since the lower bound on the release quantity will approach infinity for any finite inventory level
as the planning horizon increases, therefore the optimal policy will be one in which we release
the most we can and release again in the next period after a demand d is withdrawn. Clearly
from renewal theory, the long run average amount of material released per period in this case
will be F?UT independently of the amount of quantity released at the regeneration point (release
point). Therefore the infinite horizon problem is trivial, and thus we will restrict ourselves to
the finite horizon case only. We would like to find under which conditions are these bounds

tight. Clearly, for 1 = 1 and a finite horizon n we have

F o] < g™ V< <P <h <1 and lim ' =1 Vk

;(n_l) is obtained by solving equation (37) for ¢ = 1 and ¥ = n — 1. The solution to this
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equation implies that

- F71[1-q]
U,=(1-p)F'l-a] < ————
(1-p) | 1< T2

<g V<
Therefore the closer is (1 — p) F~![1 — o] to 1, the tighter are the bounds. Substituting for p
and making further manipulations, we get

F-1-q]
¥, = F'[1-a] - / Fz)dz < g7V <1

The shaded area in Figure 4 represents ¥,. Clearly the closer is ¥, to 1, the tighter are the
bounds. At the limit, as ¥, approaches 1, the yield density becomes concentrated at 1 and the
finite horizon problem becomes trivial. When this happens, our finite horizon bounds merge
and our optimal release policy is one in which we release up to nd — I;. We are interested in
situations where W, is not close to 1. Such cases can arise when either the yield rate density
is concentrated at some low value, or when the yield is highly variable. If the yield rate is
concentrated at some low value, then production losses due to low yield can be compensated
by scaling the production quantities suitably. In practice, it is the yield variability that causes
yield to have a disastrous effect on production decisions, therefore we may assume that the yield
density is distributed with a high variance. It is from that perspective that our model is useful,
in that it provides a means for making sequential production decisions in the presence of highly
variable random yield. Consider for example the Beta distribution who is widely used to model
the distribution of random proportions such as the proportion of defective items in a shipment.
We are interested in the bell-shaped class of Beta distribution (a > 1, b > 1) plus one other
special Beta distribution: the case when a = b = 1 which is nothing but the uniform distribution.
Any other values of the parameters a and b would result in a very unrealistic yield distribution.
Luckily, the variance of the uniform distribution is larger than for any Beta distribution whose
parameters a > 1 and b > 1. The next question that comes to mind is the following: How good
are the upper and the lower bound that we just proposed for a finite horizon problem, in case of
a highly variable yield whose distribution is uniform between 0 and 1 ? In the next section we

shall focus on the uniform distribution and consider numerical examples to compute the worst
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case error between the upper and lower bounds. It is easy to see that the worst case error occur

at the point where the lower bound intersects the service level constraint, namely yi.

6 Special Case: the Uniform Distribution

If the yield rate is uniformly distributed, then in an n periods problem, we get from equations
(26), (31), (33) (assume i = 1 to denote that the decision is being taken at the beginning of

the planning horizon) and for k = 1,...,n - 1:

;k___z(n—k) 21— a) [2<l—a)}_l (38)

As can be seen from equation (38), 3;* converges faster for a high service level as the plannning
horizon increases, ¥V k = 1,...,n — 1. Denote by R; the ratio of the upper bound to the lower

bound (see figure 3b for the case of n = 4). Then R; is defined as:

n=1 SH¥n—(i-1)~¥ns
1=1 g"

nd—y
ﬁ‘

1

R =

(39)

where y, = d and y; = y; (not to be confused with y; defined as the intersection of the service
level constraint with Q;(n_l) (11)). Therefore for a > 0.9, B;* can be treated as constant for say

n > 3 and can be approximated by

By~ V(1= a?) (40)

Hence R; will approach 1 as n increases since y; is finite for i = 1,....,n. The higher is «, the
slower is the rate of convergence. To illustrate R;, we consider two numerical examples and
compute Ry for n =4 and & = 0.9, 0.95. Doing this, we find R; to be 1.23 qnd 1.29 respectively.
In other words, the worst case error is 23% and 29% for a service level of 0.9 and 0.95 respectively
in the case of a uniformly distributed of yield between 0 and 1, in a 4 periods problem. In

practice however, planning horizons are typically longer than 4 and the yield distribution has
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a variance smaller than the uniform distribution since we usually possess a general idea as to
where the density might centered, and consequently use a bell-shaped distribution to model the
yield variability. Therefore, the suggested upper and lower bound provide a good approximation

to the optimal release quantity.

7 Discounted Case (0 < § < 1)

We would like to study the case when material is discounted as time goes on and determine an
upper bound on the forecast horizon. The forecast horizon is defined as the number of future
periods (including the current period) that we need to take into account in order to make a
decision on the quantity released in the current period. To determine the forecast horizon, we
will proceed with the same analysis as in section 3, i.e. using backwards recursion. We will
do this until we arrive at a horizon length that will stop increasing as we continue on moving
backwards and making decisions in the current period. Doing this for the first few periods, we
observe that there exists a period 1, i.e. a horizon n — (i — 1), for which Proposition 3 (in its

discounted version) does not hold anymore. That is

ni “'1-4]
5 11ILF[£]< A0 (41)

Inequality (41) implies that it is not optimal in period i to release for [n — (i + 1)]d 4 yp—1 <
I; <[n—(i-1)]d and hence for (n — i)d < I; < [n — (i — 1)] d. It follows that in period (i — 1),
it is not necessary to release for (n —i)d + yn—1 < I; < [n — (i — 1)] d since the analysis for that

period results in :
F7 11 -q]

gr=(i-1) "1:[1 F [ﬁlﬂ] < E[U]

=1+

Therefore the condition that we need to check in this period turns out to be

F1[1 -q]

n—2
v o] « £

I=1

(42)

If inequality (42) is true, then it is not optimal to release in period i—1for [n — (i 4+ 1)} d+yp_2 <
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I;_1 < (n =1)d+yn-1 and our forecast horizon remains (n — i) periods. Otherwise, our forecast

horizon increases by one period and we move to check if the following condition is true in period

(1=2):
F~1[1-q]

n-2

l=1-1

(43)

Therefore there exists a period j < i, 1.e. a horizon n — (j 4 1) in which it is not optimal to

release for I; > [n — (5 +1)]d.

n-2 -1
s+ (1 4 6p) F |8 Sf__ﬂ—_a] 44
( ”zﬂq ) < 5 (44)

Continuing in this manner, one can see that there exists a period k < j < 1, i.e. a horizon

n — (k4 2) in which it is not optimal to release for I > [n — (k + 2)]d.

5n—(k+2) 1 5 5 2) e F [ *x3 < F—l [1 - C!] 45) -
(1+ 8+ (69) 1=1;~1H BI]—_EW (45)
Therefore the condition that we need to check in period k — 1 turns out to be
3 n-3 -1
- F7H1 -«
L ILF ) < )

If inequality (46) is true, then it is not optimal to release in period k—1for Ir_; > [n — (k + 2)]d
and our forecast horizon remains (n — (k 4 2)) periods. Therefore it is easy to see that an upper

bound n* to our forecast horizon is the smallest n that satisfies the following inequality:

= m_ O F11-q
» Y 6o = o <

(47)

Stated differently, we should never release any quantity if our beginning of period inventory
exceeds n*d. Notice that when § = 1, inequality (47) is never satisfied since (1 - p) F~! [l — o] =
¥, < E[U] from figure 4.
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8 Conclusion

We have considered a multiple periods production system with random yield and deterministic
demand. We used a service level constraint to model product shortages. There exists other types
of service levels in which product shortages can be modeled. It would represent a valid direction
for future research to study the effect of different types of service levels on the behavior of the
optimal policy. For example, the line manager may be required only to satisfy a proportion a of
the total demand of the whole planning horizon, as opposite to a proportion « of the demand in
each period as considered here. In this case, he or she may find himself or herself doing so well
during the first periods so that he or she would be able to shut the line at an early stage, rather
than wait until the end of the planning horizon to do it. Another direction for future research
may be one which involves multiple products as opposite to a single product as considered here.
One in which researchers would study the dynamic interaction between yield rates of different

components that must be present in the final set in certain prespecified proportions.
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