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Abstract

We consider a single product, single stage, multiple periods production system
with random yield that minimizes the total quantity released over the planning
horizon while keeping a high probability of meeting the demand in each period. We
present the optimal finite horizon policy, discuss the single assumption underlying

it and present some examples using specific yield distributions.

1 Introduction

We consider the problem of releasing a quantity of a certain kind of raw material at the
beginning of each of n future periods in a single stage production system. We assume
that demand is deterministic and known for the entire planning horizon, and that the

production outcome is a random fraction of the input release quantity. This random
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fraction, better known as yield rate, has a very large variability and upper management
is having great difficulty estimating an accurate measure for the unit shortage cost per
period. However, upper management does require that the demand be met in each pe-
riod with a prespecified confidence level and that any unmet demand be backlogged and
become due the next period. The objective therefore is to minimize the total quantity
released over the planning horizon subject to meeting the demand in each period with a
high probability. The tradeoff between acheiving a high service level and minimizing the
amount of raw material released is clear. Releasing huge quantities of raw material in
a particular line increases the chances of starving other lines in the plant which use the
same raw material and will therefore hinder the overall production capacity of the plant.
Quantities released must be kept at a minimum, only to satisfy in each period the service
level requirement set by upper management. One possibility would be to decide at the
beginning of the planning horizon on all the release quantities that should be made in each
period, without waiting to see subsequent levels of production yield. However a clearly
better choice would be to postpone the release of the kth quantity until the beginning
of period k, when the inventory level at the beginning of that period would be known.
This mode of operation involves information gathering and sequential decision making
based on information i’LS it becomes available and lends itself to Dynamic Programming
techniques. It implies that we are interested in finding an optimal rule for choosing at the
beginning of each period a release quantity for each possible value of inventory level that
can occur. Mathematically the problem is one of finding a sequence of functions, which
will be referred to as a control law or policy, mapping the inventory level at the beginning
of each period into the release quantity so as to minimize the total quantity released in
all future periods while keeping a high probability of meeting the demand in each period.
We refer to such a problem as the multiple periods service level random yield model. The
practical importance of taking into account yield randomness in analyzing production and
inventory models was addressed by, ameng others, Karlin (1958 Sections 4-8) who consid-

ered a multilple periods problem where ordering is restricted to a fixed amount. Lee and



Yano (1988) considered a single period serial system, Sepehri, Silver and New (1986) con-
sidered a single period model with multiple setups, Yao (1988) considered a single period
assembly system, Gerchak, Vickson and Parlar (1988) considered a multiple periods cost
based model and showed that the solution is neither myopic nor order-up-to. Multiple
products models were considered by Singh, Abraham and Akella (1990) and Tang (1990)
in a single period setting. Yano and Lee (1989) reviewed the lot-sizing problem when the
yields are randpm and reported finding little research done on multiple periods problem.
This paper analyzes a multiple periods service level model and is organized as follows. In
section 2, we define our notation and formulate the problem mathematically. In section 3
we study the structure of the optimal policy by considering the first and the second period
problem separately, and then by showing the optimal release policy for a more general n
periods problem. We show that this policy holds under one particular assumption that
we will define later in the section. In section 4, we discuss our assumption and show that
it is valid for all practical yield rate distributions and service level values. In section 5
we present some examples using specific yield rate distributions. Finally, we conclude in

section 6 by suggesting some new directions for research.

2 Terminology and Formulation

In this section we define the terminology that we use throughout the paper and present the
dynamic programming formulation. We use backward recursion to explore the structure of
the optimal policy. Therefore the last period, n, becomes the first period to be analyzed,
period n — 1 becomes the second period and so on. Let d be the demand that needs to be
met at the end of each period with a prespecified level of confidence 4. More specifically,

the service level constraint in any period k is defined as:

PLi+UQx—d>0] >~ (1)



where I, is the on-hand inventory at the beginning of period k, U is the yield rate, a
continuous random variable between 0 and 1 with stationary cumulative distribution F
(Fr = F Vk), and @y is the quantity released in period k. Equation (1) can be rewritten

as:

= Q> i (2)

Let J} (I) be the value function, that is the minimum total quantity released to meet the
service level, given the inventory level I; and assuming that the best decision is taken in
the current as well as in all the future periods. Finally let @ (Ii) be the optimal quantity
to be released at the beginning of period k, given I;. Denote the ith period problem by
P(n — (¢ — 1)), that is the problem of solving an : periods problem. We want to solve

P(1). For a general period k, P(k) is formulated as follows:

Ji (L) = Min Q¢+ E [Jfy; (Ieya)]
Qr > F.Lf[f‘i-,,—] if [, <d
Q>0 if I, >d

P(k) s.t.

An interpretation of this formulation is the following. To solve an n — (k — 1) periods
problem, we minimize the sum of the amount of material released in the current period £,
plus the expected amount of material that might be released in the following n —k periods
given the beginning of period on-hand inventory I;;, which in turn is related to I, the
on-hand inventory at the beginning of period k, through the production outcome U@,
and the demand d in the current period. In other words we are assuming that capacity
is never binding but at the same time we are allowed exactly one trial per period. As

a result, lead time is not more than one period and the relationship between the state



variables [ and Ix4; is nothing but:

Liy1 =1+ UQr—d (3)

The service level constraint defined in equation (2) becomes active only if the current
on-hand inventory level is less than the demand. Otherwise, the release quantity should

only satisfy the non-negativity constraint. Substituting equation (3) in P(k) we get:

Ji (1) = Min Qu+ | Jipy (s + Qs — d) f (u)du

Qk Fl[l A lf]kgd
Qk20 if I 2 d

P(k)

We analyze in the next section the optimal finite horizon policy.

3 Structure of the Optimal Policy

3.1 First Period Problem

With J . (In+1) = 0 VI,41, the optimal decision in the first period is simply to release
the minimum amount of material required to satisfy the service level constraint in that
period. Clearly we do not release any material if the on-hand inventory at the beginning

of that period exceeds the demand. The first period problem is defined as:
Ji(I,)= Min @,

] ety L <d
Q20 il >d

P(n)

The first period policy is given by:

d=In  ifT < d
QL) = Ji(I,) =4 Fib T (4)
0 ifl, >d



3.2 Second Period Problem

The objective function of (Pn-1), Jn-1(In-1,@n-1) is convex in @,_; since J*(I,) is
convex in I,. (P,-1) first order condition is given by

dJn—I (In—b Qn—l) _ ]- %ﬂi:;l _
dQn_l =1- m/o UdF (’LL) =0 (5)

3.2.1 Second Period Policy

Proposition 1 The second period policy is given by

Ll L <y

F=11-1]
Q-1 (In-1) = d—;‘;ff:—l fy1 < L1 < 2d (6)
0 if Iy > 2d

where y; < d and F7'[1 —4] <npi_, < 1.

Clearly for I,_; > 2d, we have that Q%_, (I,_;) = 0 since the left hand side of (5) is
positive. For I,_; < 2d and assuming that E [U] > F~'[1 — 1], we get from (5) that
Qn-1 (In-1) = (2d = I,_y) /n;_, where

[ waP @)= F -] @

and hence n%_;, < 1. Furthermore from equation (7), we have that F~'{1 —+] < n:_,

F=1[1-4] _ F-1[1-1]
wf(@du=(-7)F' -9~ [ Fla)de<F'1-4] ()

As a result, there exists I,_; = y; < d below which the service level constraint is binding

and y, is obtained by solving
1 d—y

5::(2‘1—311)= Fil—4] (9)
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Figure 1 shows a plot of Q%_, (I,_;) versus I,_;. We leave the second period policy with
three observations:

1) The production quantity required to meet the demand (set by the reorder point) is
augmented due to random yield, we say we are ‘overproducing’ (Q%_; (1,—1) > Qd—— In-1),
which is a common feature of random yield models.

2) We are ‘increasingly’ overproducing with decreasing initial stock levels. This can be
seen in proposition 1 where d@Q%_; (I,-1) /dI,—1 < —1, which is to be expected since there
is no limit on backlogging and capacity is not binding.

3) The reorder point is equal to the total demand in all future periods, also expected since

there is no penalty for early production.
Assumption 1 E[U] > F71[l — 4]

Note that this second period policy is valid only if E [U] > F~![1 — 4], which implies that
there exists n7_, <1 that satisfies (7) and hence @} _; (In-1) > 2d — I,,_; for I,_; < 2d.
For the time being we will neglect the case when E [U] < F~'[1 — 4] since it is reasonable
to assume that the service level will always be high enough so that E[U] > F~![1 — 4]
will always be true. In a future section, we will show that this assumption holds for all

practical yield distributions and service level values 7.

3.2.2 Second Period Value Function

Clearly J:_, (In-1) = 0 for I,_;y > 2d. For y; < I,y < 2d, the value function is obtained
by substituting @*_, (I,—1) in the objective function of (P,-1). Doing this, we get that
J*

n—

1 (In-1) is given by

1

T /0 " (s + Qs (o) —d) fWdu (10)

Q-1 (In-1) —

For I,_; < yi, the value function is obtained by substituting in (10) @} _; (Jn-1) by
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!d—ln—l '

F=1{1-~]"
Proposition 2 J;_, (I,-1) is convez.

From (10), the value function is linear for y; < I,_; < 2d since

iy (b)) _ Q) 0 TP d@ ()
d-[n—-l - dIn-l _F—l [1_7] 0/ [1+U_dI—n:——j|f(U)du
_ 495y (a-1) Tt U F [n;‘l_J
- b [1“ [ F= ) - =y
_ F 77;-1]
T Fl-4]

Differentiating J*_, (I,,—;) for I,_; <y, we get:

2d=1I,_1 F_l [l—’y]

1+ d—In—lf 1—+1_7 f(u)du
Ay () [ j et }

dl,., P11 -] (1)

thus J3_; (In-1) is differentiable at I,_; = y; using (9). Furthermore J}_; (I,-1) is convex
for I,_; < y, by differentiating (11) one more time. As a result, JX_, ([,-;) is convex.
Figure 2 shows a plot of J*_, (I,—1) versus I,_;. Finally, we close this section by noting

from (11) that limy, ,,_ dJ3_; (In-1) /dIny =— (1 + p) /F71 [1 — 4] where

o= [ Fwdu/F -

3.3 General Period Policy
Proposition 3 Ji (I, Q) is convez in Qk, k =1,..,n.

It is true for k = n and n — 1. We will show it for 1 < k < n — 2. To do that, we will

assume that the value function for a n — k periods problem is convex in I;4;, show that
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the objective function for a n — k41 periods problem is convex in ¢y, and then show that
as a result, it implies that the value function for a n — k + 1 periods problem is convex in
I}, . Suppose that Ji,, (Ix4+1), the value function for a n — k periods problem, is convex

in Ip4;. It implies that for a n — k + 1 periods problem, Ji (I, Qk) is convex in @ since

Je(Io Q) = Qe+ E [Jiy: (I +UQk — d)] (12)
dJk (Ik, Qk) [ dJI:+1 (Ik+1)
AL LZA R o [t Rt 13
105 Lo (13)
d*Jy, (I, Q) 2P (Tk1) :
_ TRV R M 2 Bk RV BN
100 PV =, 7" (14

Therefore Q) (1), the unconstrained optimal policy for a n — k + 1 periods problem is
obtained by setting (13) to zero and solving for Qx. Now suppose that there exists a unique
point I, = y,_x below which the service level constraint is binding. That is suppose that

the optimal policy for a n — k& + 1 periods problem is defined as follows:

. Q (It) i I > yns
Qx (Ir) = el . (15)
F{[—lﬁ—~ otherwise
7

As a result, the value function in a n — k 4+ 1 periods problem is given by

0 { G+ B (VT =) Hhezuen
rUk) =
F-1[1-«,] iy T [Jk+1 (( —d) (1 - -prl%—_ﬂ)ﬂ otherwise
The first derivative of the value function is given by
@ (1) o aJ2, , (Tesr )
d']l: (Ik) _ de. Ik +E [(1 + UdekI(kIQ> k(ﬁk(-q-iﬂ )] if I, 2 Yn—k (17
dl, ' B ( U\ iG] )
F'l[l 'y] + F"‘l[l—'y]) dlk-(-l otherwise

Clearly the value function is differentiable at I, = yn,_x. For Iz > yn_x, the second

derivative of the value function is given by

EJp (L) PO (I)
ar T dn

LB [Ud?@Z(Ik)dJ;H (Ik+1)] N

dIZ dIk.H
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(ALY g (T ]
E|l1+1 1
( U dl dIf,
(T (1) T (T
— El 1 k +1 )
d*Q, (1) dJg, (Iesr)
1 +1 +1
iz \LTE VT
zero by (13)
dQ; (1) 42ty (Tsa)
= El1 >
( +U dIy aiz,, 20 (18)

Finally, if the service level constraint is binding, then from (17) the second derivative

U 2 Ty (Iegr)
— >
(1 F-11 - 7]) dIi,, 20 (19)

reduces to
d*Jy (Ix)

iz~ F

Therefore J; (Ii) is convex and we are done. However, it still remains to be shown that
Q; (It) is defined as in (15). To do this, it is sufficient to show that Q}, (I) is convex and
limy, oo dQ;, (It) /dI, > F‘—T—[ll——ﬂ The following is a series of propositions that prepare

the ground for showing this and provide more insight on the structure of Q7 ().
Proposition 4 Q5 (k) =0 for Ity > (n—k+1)d, k=1,..n.

It is true for k¥ = n and n — 1. We will show it for 1 < k < n — 2 using the same
kind of inductive argument as in Proposistion 3. Suppose that for some 1 < k < n —
2, we have Ji, (Iyy1) = 0 for Iy > (n—k)d. Then substituting for I, we get
Jip1 (It +UQr —d) = 0 for Iy > (n—k+1)d — UQy and hence for Iy > (n -k +1)d
w.p. 1. Therefore E [Ji, (It + UQx —d)] =0 for I > (n— k +1)d and (12) becomes
Ji (I, Q) = Qx. As aresult, @y (L) = Q5 (It) = J; (L) =0 for I, > (n—k+1)d and

we are done.
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Lemma 1 If E[U] > F~'[1 — 4], then the set of equations f(?’: uf (u)du = Mgy, kb =

I,..,n—1, where

Apu = (;7':“ uf(u)du

S £ (u) du

has for unique solution F71[1 —~] <npi_, <..<np; <1

and A, = F7'[1 -]

The proof to the lemma is very simple. It is true for £k = n — 1 from (7) and it is easy to

see that for 1 <k <n -2

g1 M * *
[ 7 w)du € Aur = [ Fw)du = 0y S

and lim, ., 77 = 1.

Proposition 5 Q% (I,) = @i%ﬁ:&for (m—k-1)d+y, <L <(n—-k+1)d, k=

1,..,n—1.

It is true for £k = n—1. We will show it for 1 < k < n—2 using the same kind of inductive
argument as in Proposistion 3. Suppose that for some (n — k — 2) d+y; < [y < (n —k)d
we have

. iess F ]
Jip1 (k1) = ﬁ%‘:ﬁ [(n = k)d = L]

Then for (n —k —1)d+y1 < It < (n — k+ 1) d, setting (13) to zero results in

Al (1 Q) _ | _ T Plu] (=6 o
TdQe  Fl=1] Jo uf (u)du =

Therefore, Q (It) @; (I) = [(n — k + 1) d — Ii] /n; where

L e el
/Ouf(u)d“—m—-/\kﬂ

1=k+1 1

if and only if there exists such n; < 1. In other words, if and only if E [U] > Aj4;. The
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inequality is satisfied as equality for n;,; = 1. Therefore it is sufficient to show that
the first derivative of the right-hand side with respect to nj,; is non-negative and we are

done. In fact:

Tt M1
dAgy1 _ TS (i) Of f(w)du=1(ngy,) of uf(u)du
* - " 5
@it [Flrea]]
Mhes1
i(nign) [ (nkga=v)f(w)du
= 0 >0

[F[”I:H”Q -

Substituting @ in (12) by Qi (Ik) = [(n — k+1)d — Ii] /n}, we get for (n —k—1)d +
n<L<(n-k+1)d

Ji (L) = %%%[(n—k%—l)d—lk] (20)

and we are done.
Proposition 6 dQ, (I,) /dI; < —1 fork=1,..,n.

It is true for k = n and n — 1. Recall that Q}, (I;), the unconstrained optimal policy for a
n — k + 1 periods problem is obtained by setting (13) to zero and solving for Q. Hence

the equalities

Wi (1Q) | h () g 0 (1.T)

- =0=> —— ot =
dQ; dQrdI, dl,  4Q;
R i (1@ dz‘]l:il([k+l)]
#koz_%ﬁz=_E[U i SR R
d-[k d2Jk!lk,_Q-;! l: 2d2‘]l: 1(Ik+1)] -
dQy E\U a4y
Lemma 2 F~ (1 — 4] < B, k=1,..,n — | where B} is given by
B n—k-1 -1
[uf (wau= P11 71[ i
0 1=0
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The proof is the following. We can write

i

o

F7HL =]
> F‘l[l—v][ipi]—
= F1-91(1-p)
= - [ uf s P

F~1{1-4]

uf (u)du by (8)

v

and hence 8 > —1/F~1[1 —4].
Proposition 7 limy .., dQ; (It) /dlx = B; fork=1,..,n — 1.

It is true for k = n — 1. Suppose that for some 1 < k < n — 2, we have that Q. (It41)
is convex and that limy,,, - oo dQpy1 (Je41) /dLk41 = Biyq- Since B, > B; by definition,
then by (2) these two assumptions imply that the optimal policy for a n — k periods
problem is defined as follows:

m+1 (Ie41) I Tepr 2 Ynok—1

d'lkil
F=1[1-4]

QZ+1 (Ik+1) = (21)

otherwise

Suppose furthermore that y,_; < d + yo—i—1, 2 = k+ 1,..,n — 1 (where yo = d), then
from (17) we get that in a n — k periods problem, limy, ., ._o dJ5;; (It41)/dlk41 is equal

to

g Hnked kil poif1y) )
L+25 " # ({ (1 - Fr[a_—.,]) f(u) du
- F=11 -]

13



1+pznk2z= anlpz
FoH1 =] F11-+]

Note that (22) is true for £ = n — 2, thus we are assuming that it is true for some
1 <k < n—3. Therefore marching one period in time backwards (i.e considering a

n —k + 1 periods problem) and setting (13) to zero we get

. ddy (I, Qr) Yy B
S T R 1—7]/ uf

where B; = limj, __o (d + yn_k—1 — L) /@; (It). Therefore limy, .o, dQ; (It) /dIx =
1/ B¢ because limy, _,_o, @ (Ir) = oo by proposition (6). Using lemma (2) and invoking
the assumption that @ (It) is convex, it implies that there exists a unique I = y,_ <
d + Yn—k-1 below which the service level constraint is binding for £ = 1,..,n — 1. y,_k 1s

obtained by solving

—* d = Yn—k
— Ik 2
Qk (yn—k) F_l [1 _ 7] ( 3)
and thus
. QL) if L > yn_s
Q=4 |
m{—;] otherwise

Finally, as a check to (22), we get that in a n—k+1 periods problem limy, —, o dJ} (Ii)/dI}

is equal to

14



—k~ hm’k-'~°° d+y"d knf A Fif1-]
1+ T ({ 1 F‘lrl—’vl) f(u)du
- F=1[1 =]
n— k 1 z _1[1_7] U
- F11-4]
Y)Yl v (24)
Fl[l—v] Pl =] |

It still remains to be shown that Q) (I}) is convex and we are done. If this is true, then
the optimal policy @ (Ix) for a n — k+1 periods problem, k = 1, ..,n is defined as in (15)

and proposition (3) is true. We do this in the next proposition.
Proposition 8 Q, (I;) is convez in I, k= 1,..,n.

It is true for k = nand n—1. For 1 < k < n -2, the second derivative of@—; with respect

to Ii is given by

., [dm(lk Qi) BI(eQs) _ EI(IeQ) (L, Qk)]
dQy _ | dQy 4Oy dQudly  dQy dIy
d?I; B [dka!Ik’Qk!]
Qi
E [Udz‘,liill(lkﬂ)] E [Uzds‘]éi;(lkﬂ ] —E [UZd Jkil Ik+1 ] [U I:jill (Tk+1) ]
k+1 | 7 k41

]

k+1

Suppose that for a n — k periods problem, we have that the second order condition is

satisfied, i.e. that

E [Ud2‘];+l (Ik+1)] E [U2d3J,:‘+1 (Ik+l)] - E [U2d2J1:+1 (Ik+l)] E [Ud3*]l:+1 (Ik+1)} >0
AT, dR,, AR, AR, (" |
25

15



and thus d?Q,/dI? > 0. We want to obtain an expression for the third derivative of the

value function for a n — k 4 1 periods problem. From (17),

dJg sy (Ik41) Qn dJ?, (Iiy1) _
dJ; (I,) E[ ) 4 ) (1+E[U—%}k+—f+——]> if T > yos

d[k E Iid-];:;_]lk(flz-fl)J _ F—IE.I_’Y] (1 + E [UdJ):dt}k(j’:+l):}> Otherwise

and

M d2Jr, (I .
ey | E [(1 + UdQ;}kf“) ';;;éi ,Hl)] if Iy > yoos
th E (1 B F—IU )2 dZJ:“(IkH)] otherwise

[1 _'Y] dIz.H

k+1

[ 3t )\ 2 BIr, (1
E (1+UdQ;I(ka)) ):;}}3( k+1)j| +

e

o d2Jy (I .
dSJ,: (Ik) _ E Udz?ﬁélk) ,:iJrI:filHl)] if I, > Yk

az

[ 3432 (I .
E (1 - F_1[[11_71> ';‘}js‘ilm)] otherwise

The second order condition expressed in a n — k£ + 1 periods problem becomes

d*J; (Ik)] B [UdeJ’: (Ik)} _E {UzdzJ,‘: (Ik)] P [Ud3J,: (Ix)

kAR 8V >
i i ar i | ="

v

Substituting (18) and (28) in (29), we get for Iy > yn—i

— 2
dQx (Ix) " & Jgps (k1)
dl, dz,,

Qi (In) @*Jgps (Tee) |
dIZ dl]?-}-l J

=% 2 " ]
ko (Ik) dsJk+1 (Ik+1)
dIy I3,

E E [US

(140

E

ElU (1 @ (Ik)>2 EJrey (i)

2
dl, i, v (1 +U

2

B dQx (Ik)>2 I (Ie)

2
U (1 +U d, i,

EQy (It) PJp ey (Ieyr)]

(26)

g

4% (m)? T (Ikm] B [U (1 ) <Ik>)2 P (Te)

E|U*|14U
( dI; Iz, dI; i3,

16

(27)

(28)

(29)
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since d*Q,/dI} > 0 and (25) is true. A similar argument is used to show that (29) is
satisfied for I, < yn—k. Substituting (19) and (28) in (29), we get for Iy < yn_x
ElU(1 - U ’ d2‘]1:+1 (Ik‘l—l) U1 — 4 ’ dSJI:-f-l (Ik-i-l) _
F-11 =] I, F-11 -] dIf,,

‘ U PRIz (Ies) U P Bz L)
2 1 — k+1 +1 _ k+1 \1k+1 >
v ( F-11 - ’Y]) d113+1 U\ F-11 - 4] d11§+1 =0

E

E E

(30)

To show that (30) is true, it is sufficient to show that (28) is non-negative for I, < y,_;.
By (22), limy, - —oo d®J; (I2) /dIx = 0. Furthermore from (28) and the induction argument
we have that

d*Ji (i)

ar - F

U ! d*Jiq (Te)
— >
(1 P ) Iy, 20 e

hence (28) is non-negative for I, < y,_, and we are done. We have shown that the
unconstrained optimal solution @, (I}) is convex in Iy, k = 1,..,n — 1. Figure 3 shows a

plot of the optimal policy @ (Ix) in a n — k + 1 periods problem versus .

4 Justification of Assumption 1

At this juncture, we would like to digress in order to justify assumption (1). We claim
that assumption (1) holds for all practical yield distributions and service level 7. As-
sumption (1) can be rewritten as y > 1 — F' [E [U]]. Consider the Beta distribution with

parameters @ > 1 and b > 1, whose density is given by:

w2 <y <]
f(u)={ IR (32)

0 otherwise
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where B (a,b) is the beta function. The Beta distribution is mainly used to model the
distribution of random proportions such as the proportion of defective items in a shipment.
Therefore it is the most appropriate among the standard probability distributions to use
in conjonction to our model. Furthermore, it is a very general distribution that can take
various shapes according to its parameters. Therefore showing that assumption (1) holds
for all Beta distributions (with ¢ > 1 and b > 1) and for all practical service level 7 is
sufficient for all practical reasons to justify the validity of assumption (1). Our goal is to

find the highest value 4* for which assumption (1) holds for a > 1 and b > 1, i.e to find

a
f)/* = MaX{aZI,bzl} {1 - F [a + b}}

If v* is reasonably high then we are done. In practice, typical values of v range from 0.9
and above and it would be encouraging for the usefulness of the model to obtain y* below

this range. v* occurs when a = 1 and b is very large, thus

ban[—l-—} - lim

1+ b—o0 B(l,b)
1
= lim —b—%—l(l—u)lé“’
. b+l b\’
= m 1_<1+b)

4* ~ (.64 is by no means a restrictive value, hence assumption (1) is valid.

18



5 Examples

Suppose that the density of the yield rate U is given by

flu) =

au* ! if0<u<l
(33)

0 otherwise

which is a special case of the Beta distribution for b = 1. We are interested in the cases
when a > 1. Solving the set of equations in lemma (1), we get for k =1,..,n —1

=[5 a- 7)%](#)“ 34

a

Solving the set of equations in lemma (2), we get for k =1,..,n -1

1) 1 11 (F)
. {[(e:—)u v),J} )

n—-k-1 [1-—’}']z

1+4a

1=0

and

e~
\_—V—/
—~

-
S N

<)
S—’

—~

w

»

-

lim g ={(1+2) (1 -

Note that 8%_, = n%_,. This is due to the fact that in a two periods problem, the un-
constrained optimal policy is linear as can be seen in figure 1. Hence proposition (5)
and (7) are identical in a two periods problem. However this will not be the case for
k < n — 2. Consider for example a three periods problem, that is ¥ = n — 2. Propo-
sition (4) states that Q%_,(In-2) = 0 for I,_ > 3d and proposition (5) states that
Qr_y (In—2) = (3d = I—a) [ni_, for d + y; < I,_y < 3d where n)_, is given by (34).

Moreover, proposition (8) states that Q. _, (I,_,) is convex and proposition (7) states

that
Q. (In-2) if In—a 2> o
Q:—z (In—2) = 4 12
FT:[%%] otherwise
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where y, < d + y; is given by

— _ d -y, ar
Qn2 (y2)—m (37)

Finally , by proposition (7) we have that lim;,_,—_co dQ._o (In_2) /dIu_y = B%_, where
B;_, is given by (35). Figure 4 shows a plot of the optimal policy for a three periods
problem. In a three periods problem, —1/n%_, is the ‘limiting slope’ of the portion of
the optimal policy comprised between d + y; and 3d, while —1/87_, is the ‘limiting
slope’ of the portion of the optimal policy comprised between y, and d + y;. When
the planning horizon is larger than three periods, say four periods, —1/ny_; becomes
the ‘limiting slope’ of the portion of the optimal policy comprised between 2d + y; and
4d, and —1/@;_5 is the ‘limiting slope’ of the portion of the optimal policy comprised
between y; and d 4+ y;. We want to get an expression for the ‘limiting slope’ of the
portion of the optimal policy comprised between d + y, and 2d + y;. We denote this
‘limiting slope’ by ~1/n;2;. Consequently, n5_s = 13Ls, Bis = Mils, Moz = Tita,
B, =n2, and B, = ni_, = nt,. However, before doing that we would like to
get an expression for J;_,([,-2), the value function for a three periods problem. By
proposition (4), equations (18), (19), (20) and (24), it is differentiable everywhere except

at I,_o = 3d and convex. It is given by

(

0 In—2 Z 3d

T (Ineg) d+y1 < Ly <3d

Tog(lg) = { Trams) g S o (38)
I (Iig) Y2 <Ih2a<d+y

I3 (Inm2) L2 <y

\

where

AT, (Ios) F | F [nty]
In_l,l-lfl-oo—_?d-zl__;i - F'll[l—’Y]
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dJ:2, (In_y) F [77122_2] (1+p)

li —— = -
hiamco  dl,_ F1{1—4]
*3 2
lim d']n—2 ([n—Q) — _M
[n_'z—r—OO d[n_2 F_l [1 - 7]

and where limy,_,__o, dJ:%, (I,_,) /dL,_, is obtained from (26) and is given by

- dJE (Ino) s, G o) dJz_y (o)
] ZYn=2\Tnme) Qn_p(In—2 i n—1 Un-1
hrtos dI,_, /0 - rraa EACL

Ih2—-

(1+p) /nnz _ F 2] (1+p)
TFl-1] T F1—4]

We now return to determining —1/n:%,, the ‘limiting slope’ of the portion of the four
periods problem optimal policy comprised between d + y, and 2d + y;. Setting (13) to
zero we get for d+y, < 1,3 < 2d + 1y

dJozg (In-3,Qn-3) _ = (42 (Ia)
10 = 1 +/0 i, uf (u)du+
4d—lﬂ_3
s [dIL, (I,-
/2d+cy)1-3!n_s [ d;n(—a 2)} U’f (u) du=0 (39)

Therefore Q% _5 (I,,_3) for d + y, < I,_3 < 2d + y; solves (39). Hence

i,y zd+y1-1n-s . *2
n—2

I,._a—v—oo
R /"""’ Fldi=-{ i _[PEall=l}
0 ujlujau= In—QEl—OO d,[n_2

’7;2-3 _ F_l [1 — 7]
> | = g

For the specific yield rate distribution defined in (33), we get for a four periods problem,

le. fork=n-3:
1 )("—k—j+1)

at1) (1 _ 4] ) (7
n;jz{[(?)(l 7?]} forj=1,.,n—k (40)




Figure 5 shows the optimal policy for a four periods problem. It can be shown that (40)
is true for 1 < k < n — 4. Furthermore, it can be shown that for a general distribution

we have forn >2, k=1,.,n—-1land j=1,..,n — k:

! .
[ uf =l (41)
where .
: On"“ uf (u)du
Afc-{-l = I
Jott! f(u) du
and
j F1—-4]

(n=j+1) = ZJ:(} pi

Naturally, (41) reduce to (40) when the yield rate is distributed as in (33). Table 1
provides a way to interpret the output of (41). The number of demand periods n increases
vertically and [, the beginning of period k inventory level in a n — k41 periods problem,
increases from left to right. n}’ are the limiting multiplicative coefficients obtained after
solving (41). Next we present numerical examples to illustrate (40) (example 1,2,7,8,9,10)
and to illustrate (41) uéing a Beta distribution with more general pa,’rameters (example 3
to 7,11 to 18) forn > 2,k =1,..,n—1and j = 1,..,n — k. These numerical examples
will provide us insights on the impact of the two state variables, namely the number of
demand periods and the beginning of period inventory, on the optimal release quantity
that must be decided upon at the beginning of the planning horizon. The examples will
be for n = 8 and v = 0.95,0.99. The following are tables that list n,:j for k=11to 7 and
j=1,..,8-k.
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7 6 5 4 3 2 1
0.3122499 | 0.55879325 | 0.74752475 | 0.86459516 | 0.92983653 | 0.9642895 | 0.98217189 | 1
0.3122499 | 0.55879325 | 0.74752479 | 0.86459598 | 0.92985425 | 0.96466162 | 2
0.3122499 | 0.55879331 | 0.74752621 | 0.86462892 | 0.93057204 | 3
0.31224996 | 0.55879544 | 0.74758317 | 0.86596432 | 4
0.31225234 | 0.5588806 | 0.74989421 |5
0.31234752 | 0.56234133 | 6
0.31622777 | 7
Table 1: a =1, b=1~v=10.95
0.14106736 | 0.37558935 | 0.61285345 | 0.78284957 | 0.88478787 | 0.940632 | 0.96989964 | 1
0.14106736 | 0.37558935 | 0.61285345 | 0.78284958 | 0.88478856 | 0.94070531 | 2
0.14106736 | 0.37558935 | 0.61285346 | 0.78285079 | 0.88492647 | 3
0.14106736 | 0.37558936 | 0.61285536 | 0.78309486 | 4
0.14106737 | 0.3755917 | 0.61323756 | 5
0.14106912 | 0.37606031 | 6
0.14142136 | 7
Table 2: a =1, b=1~4=10.99
0.467986 | 0.664428 | 0.786323 | 0.860675 | 0.907152 0.93708 0.957045 |1
0.467986 | 0.664428 | 0.786323 | 0.860675 | 0.907161 | 0.937404 |2
0.467986 | 0.664428 | 0.786323 | 0.860688 | 0.907658 |3
0.467986 | 0.664428 | 0.786345 | 0.861471 |4
0.467987 | 0.664463 | 0.787613 |5
0.468042 | 0.666552 |6
0.471280 |7

Table 3: a =2, b=2, y=0.95
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7

)

4

3

2

1

0.340313

0.733404

0.828249

0.886711

0.923812

0.948049

0.577729

0.733404

0.828249

0.886711

0.923859

0.340313

0.577729

0.733404

0.82825

0.886784

0.340313

0.577729

0.733405

0.828366

0.340313

0.57773

0.733596

0.340314

0.578041

0.340745

Table 4:

a=2 b=2, =099

0.515613

0.679584

0.778068

0.840332

0.881982

0.911109

0.932367

0.515613

0.679584

0.778068

0.840332

0.881988

0.911411

0.515613

0.679584

0.778068

0.84034

0.882411

0.515613

0.6795848

0.77808

0.840957

0.515613

0.679604

0.779024

0.515647

0.681138

0.518224

N | SO W N

Table 5:

a=3,b=3,vy=0.95

0.421832

0.623169

0.743767

0.818214

0.866944

0.900463

0.924418

0.421832

0.623169

0.743767

0.818214

0.866944

0.900504

0.421832

0.623169

0.743767

0.818214

0.867002

0.421832

0.623169

0.743768

0.818299

0.421832

0.623169

0.743901

0.421833

0.623391

0.422195

~N | | O | W N

Table 6: a =3, b=3, v=10.99

24




7

6

5

4

3

2

1

0.69091667

0.88404674

0.95975064

0.98639941

0.99544578

0.99847999

0.99950063

0.69091667

0.88404674

0.95975064

0.98639946

0.9954469

0.99850263

(S

0.69091668

0.88404674

0.9597508

0.98640279

0.99551461

0.69091669

0.88404719

0.95976051

0.9866041

0.69091774

0.88407402

0.96034825

()

0.69098066

0.8856992

0.69479831

-~J

Table : a =2, b=1~v=0.95

0.53073826

0.80964281

0.93203271

0.97681065

0.99220968

0.99739647

0.99913292

0.53073826

0.80964281

0.93203271

0.97681065

0.99220973

0.99740102

o

0.53073826

0.80964281

0.93203271

0.97681078

0.99222332

0.53073826

0.80964282

0.9320331

0.97685091

0.53073827

0.80964381

0.93214798

0.53074023

0.80994324

S | Ot

0.53132928

-1

Table 8: a =2, b=1~=0.99

0.83454507

0.95578993

0.98875937

0.99717792

0.99929373

0.99982342

0.99995661

0.83454507

0.95578993

0.98875937

0.99717793

0.99929388

0.99982646

0.83454507

0.95578993

0.9887594

0.99717853

0.99930601

0.83454507

0.95579004

0.98876178

0.99722692

0.83454547

0.95579926

0.98895372

0.834571767

0.9564164

0.83717359

Table 9: a =3, b=1+v=10.95
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7 6 5 4 3 2 1
0.73163798 | 0.92485588 | 0.98066012 | 0.99512956 | 0.99878016 | 0.9996949 | 0.99992387 | 1
0.73163798 | 0.92485588 | 0.98066012 | 0.99512956 | 0.99878017 | 0.99969551 | 2
0.73163798 | 0.92485588 | 0.98066012 | 0.99512959 | 0.9987826 | 3
0.73163798 | 0.92485588 | 0.98066022 | 0.99513929 | 4
0.73163799 | 0.92485624 | 0.98069848 | 5
0.73163913 | 0.92500058 | 6
0.73209597 | 7
Table 10: a =3, b=1~v=10.99
0.166643 | 0.320559 | 0.466781 | 0.586955 | 0.680147 | 0.751112 | 0.805766 |1
0.166643 | 0.320559 | 0.466781 | 0.586956 | 0.680177 | 0.752055 |2
0.166643 | 0.320559 | 0.466782 | 0.586996 | 0.681419 |3
0.166643 0.32056 0.466833 | 0.388619 |4
0.166645 | 0.320619 | 0.468889 |5
0.1666995 | 0.32300 |6
0.16892 |7
Table 11: a =1, b=2, v =0.95
0.0723905 | 0.20334 0.358563 | 0.499123 0.61235 0.699536 | 0.765922 |1
0.0723905 | 0.20334 0.358563 | 0.499123 | 0.612351 | 0.699676
0.0723905 | 0.20334 0.358563 | 0.499124 | 0.612534 |3
0.0723905 | 0.20334 0.358565 | 0.499358 |4
0.0723905 | 0.203342 | 0.358844 |5
0.0723914 | 0.203621 |6
0.0725771 | 7

Table 12: a =1, b=2, y=0.99
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7 6 5 4 3 2 1
0.11351 | 0.223525 | 0.334649 | 0.432939 | 0.515482 | 0.583731 | 0.640885 | 1
0.11351 | 0.223525 | 0.334649 | 0.43294 | 0.515510 | 0.584677 | 2
0.11351 | 0.223525 | 0.33465 | 0.432974 | 0.516657 | 3
0.113511 | 0.223526 | 0.33469 | 0.434356 | 4
0.113511 | 0.223569 | 0.33631 |5
0.113549 | 0.225319 | 6
0.115094 |7
Table 13: a=1, b=3, y=10.95

0.0486773 | 0.139141 | 0.251609 | 0.360300 | 0.454725 | 0.533533 | 0.598713 | 1
0.0486773 | 0.139141 | 0.251609 | 0.360300 | 0.454726 | 0.533664 | 2
0.0486773 | 0.139141 | 0.251609 | 0.360301 | 0.454884 | 3
0.0486773 | 0.139141 | 0.25161 | 0.360488 | 4
0.0486773 | 0.139142 | 0.251818 | 5

0.048678 | 0.139339
0.0488038 | 7

Table 14: a =1, b=3, v=0.99

0.639767 | 0.806498 | 0.891131 | 0.936216 | 0.961579 | 0.97644 | 0.985472 |1
0.639767 | 0.806498 | 0.891132 | 0.936216 | 0.961582 | 0.97658 | 2
0.639767 | 0.806498 | 0.891132 | 0.936222 | 0.961817 |3
0.639767 | 0.806498 | 0.891141 | 0.936629 | 4
0.639767 | 0.806516 | 0.806516 | 5
0.639804 | 0.807943 | 6
0.64263 |7

Table 15: a =3, b=2, y=10.95
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7

6

5

4

3

2

1

0.534911

0.752826

0.863585

0.921244

0.953021

0.971369

0.982324

0.534911

0.752826

0.863585

0.921244

0.953021

0.971389

0.534911

0.752826

0.863585

0.921244

0.953055

0.534911

0.752826

0.863585

0.921304

0.534911

0.752827

0.863697

0.534912

0.753046

0.535333

Table 16:

a=3, b=2, v =099

0.352983

0.522535

0.642144

0.725568

0.785254

0.829266

0.862966

0.352983

0.522535

0.642144

0.725568

0.785265

0.829778

0.352983

0.522535

0.642144

0.725584

0.78595

0.352983

0.522536

0.642167

0.726525

0.352984

0.522569

0.643501

0.353029

0.524492

0.355664

~N || O W N

Table 17:

a=2, b=3,_’)’=0.95

0.251065

0.444668

0.587941

0.687579

0.757849

0.808896

0.847109

0.251065

0.444668

0.587941

0.687579

0.757849

0.808966

0.251065

0.444668

0.587941

0.68758

0.757944

0.251065

0.444668

0.587942

0.687711

0.251065

0.444669

0.588131

0.251066

0.444939

0.251399

N | SO W N

Table 18: a =2, b=3, v =0.99
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All examples show that n;j are converging rapidly with the planning horizon. Using
this and the fact that lim,_., 7' = 1, then one might suspect that the long run effect
of adding one more period is quickly reached especially in the vicinity of low values of
beginning of period inventory. Therefore the effect on the optimal policy of adding one
more period when inventory is low is simply increasing the release quantity by an amount
equal to that period demand. True, this is a result of no holding cost considerations.
However, the model is not intended to be used in infinite horizon situations. We are
modelling finite horizon situations and holding cost considerations are not important in
such cases, especially when the optimal policy is converging rapidly as suggested by the
numerical examples. To get a feel how fast the optimal policy is converging, consider
equations (40) for k£ = 1. We have

o [lE) a-pi

ny! = : : forj=1,..,n-1 (42)
-1[1-
Tl i)

As n increases, the effect of adding one more power dominates the effect of adding one
more term to the sum in the denominator that converges rapidly especially for large values

of a. Thus nfj approximates

(n—=3)

}(ﬁ? fory=1,.,n-1 (43)

Q=

a1+ )

This is shown in tables 1, 7 and 9 where each row becomes identical to the row below it
except for one additional term close to 1. How large is the error in the optimal values
of the release quantities when holding cost is considered and exactly how long should
the planning horizon be for the holding cost effect to ‘kick in’ and truncate the forecast
horizon are the topics of an ongoing research. Other useful observations in the numerical
examples are that the optimal release quantities increase with the service level, increase
as the distribution is skewed to the left as seen in tables 9, 15, 5,17 and 13, and increase

with the variance of the yield rate as seen in tables 1 through 6.
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6 Conclusion

We have analyzed a multiple periods service level constrained model of a production
system with random yield in a finite horizon setting. The objective was to determine
the optimal release quantity in the current period, given a certain inventory level, that
minimizes the total input quantity throughout the planning horizon while keeping a high
probability of meeting the demand in each period. We have showed that under the mild
assumtions of the model, the reorder point in any period is equal to the total remaining
demand in all future periods (including the current period) and that in any period, we
release a quantity higher than the amount that brings our inventory up to the total
remaining demand in all future periods. Furthermore, we showed that the optimal policy
is convex with the initial inventory level and that there exists in each period a value of the
initial inventory level below which the service level constraint is binding. Although there
is no simple way to compute the optimal policy, we derived expressions for the limiting
slopes of various portions of the optimal policy in each period. These limiting slopes
provide us insights on the impact of the yield rate distribution, the service level, initial
inventory level and the addition of another demand period as was shown in the numerical
examples. Future research involve the study of the effect of holding cost on the optimal
release quantity in a finite horizon setting, and determining infinite horizon policies in the

presence of holding cost.

References

1. Bertsekas, D. (1987), Dynamic Programming: Deterministic and Stochastic Models,

Prentice-Hall.

2. Gerchak, Y., M. Parlar and R. G. Vickson (1986) Periodic Review production Models

30



With Variable Yield and Uncertain Demand, [IE Transactions, 20, 144-150.

3. Karlin, S. (1958) Steady State Solutions, In Studies in the Mathematical Theory of
Inventory and Production, K. J. Arrow, S. Karlin and H. Scarf, Stanford University Press,
Stanford, Ca.

4. Karlin, S. and H. M. Taylor (1975), A First Course in Stochastic Processes, Aca-

demic Press.

5. Lee, H. L. and C. A. Yano (1989) Lot Sizing With Random Yields: A Review, Tech-
nical Report 89-16, Department of Industrial and Operations Engineering, University of
Michigan, Ann Arbor.

6. Lee, H. L. and C. A. Yano (1988) Production Control in Multistage Systems With
Variable Yield losses, Operations Research, 36, 269-278.

7. Sepehri, M., E. A. Silver and C. New (1986) A Heuristic for Multiple Lot Sizing
for an Order Under Yield Variability, IIE Transactions, 63-69.

8. Singh, M., C. Abraham, R. Akella (1990) Planning for Production of a Set of Compo-
nents when Yield is Random, IEEFE Transactions on Comp., Hybrids, and Manufacturing
technology, 36, 359-367.

9. Tang, C. (1990) Composing Batches With Yield Uncertainty, Operations and Tech-
nology Management Working Paper #7-90, The John F. Anderson Graduate School of
Management, University of California, Los angeles.

10. Yao, D. (1988) Optimal Run Quantities for an Assembly System With Random

31



Yields, [IE Transactions, 20, 399-403.

32



Yu+(l-kd | v,,+@2-k)d y,+(n-k-3)d | y,+(n-k-2)d | y,+(n-k-1X # of
sl =< sl = <I =< <I =< <I =< k Q@EM%Q
r10ds
Yo, +(2-k)M | y.,+B-k)d v,+ln-k-2)d | y,+@-k-1d (n-k+1d pe
LN " n’ m n' 1 n
' n? n; n, 2 | nl
,J.M.u ,.‘._.n~|w ,«_“w_lu n-3 4
3“» Su__lu n-2 3
.J“u_n_ n-1 2

Table 1: limiting multiplicative coefficients. for n > 1, k=1,..,n-1, j=1,..,n-k
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Figure 3: Optimal policy for a (n-k +1) periods problem
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Figure 5: optimal policy in a 4 - periods problem
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