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Abstract 

Let f be a piecewise analytic (but not analytic) function in @[a, b], k > 0, and let p,* be the sequence of 
polynomials of best uniform approximation to f on [a, b]. It is well known that every point of [a, b] is a limit point of 
the zeros of the p,*. Let x E [a, b], and suppose that f is analytic at x and f(x) # 0. The main purpose of this paper 
is to show that there exists a constant y (which depends only on x) such that there is no zero of p,* within the circle 
of radius (y/n) log n centered at X, for all sufficiently large values of n. 
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1. Introduction 

Let E be a compact boundary set C&(E) = 16) in the complex plane whose complement is 
connected and regular in the sense that the complement has Green’s function G(z) with pole 
at ~0 (Walsh [8, p. 651). Let f be a continuous function on E, and for each positive integer IZ let 
p,* be the polynomial of degree at most y1 of best uniform approximation to f on E: 

II f-P,* II E < II f-P II E, 

for every polynomial p #p,” of degree at most n. It is well known by Mergelyan’s theorem [6, p. 
4231 that the left member of the above inequality tends to 0 as II + ~0. 

Now, consider a theorem of Blatt and Saff [2]: 

Theorem 1.1. If f has at least one point of singularity in E (which means that if there is a point in 
E at which f is not analytic), then every point of E is a limit point of the zeros of the p,*. 

The converse of Theorem 1.1 is a consequence of the following well-known result: 

Theorem 1.2. If there is a limit point x E E of the zeros of the p,* and f(x) f 0, then f has at least 
one point of singularity in E. 
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The above theorems imply the following statement: When and only when there is a point of 
singularity (somewhere) in E, all points of E (the points of analyticity as well as the points of 
singularity) attract zeros. This statement characterizes the existence of at least one point of 
singularity in terms of a global limiting behavior of the zeros. 

In the present paper, we investigate the truth of the following hypothesis, which character- 
izes the points of singularity in terms of a local limiting behavior of the zeros: 

Hypothesis. The points of singularity attract zeros faster than the points of analyticity. 

The main results are stated in Section 2, and the proofs are given in Section 3. We conclude 
this introduction with the following definitions: 

Set 

E, := {z: G(z) <log p), 

and rP := aE,, for p > 1. Any open neighborhood of E contains some E,, and according to 
Walsh [8, p. 651, r’ “either consists of a finite number of finite mutually exterior analytic Jordan 
curves or consists of a finite number of contours which are mutually exterior except that each of 
a finite number of points may belong to several contours.” 

It is also known that if f is analytic on E,, then p,* converges uniformly to f on every 
compact subset of E, at a geometric rate. In fact, this can easily be used to prove Theorem 1.2. 

For E = [a, ~1, IP is the ellipse with foci LY and p, whose major and minor semi-axes have 
lengths +</3 - a>(p + l/p) and b(p - (~)(p - l/p) respectively. 

2. Main results 

We begin this section with a theorem, which shows that the points of analytic&y impose a 
certain speed limit on the approaching zeros: 

Theorem 2.1. Let f be a continuous (real or complex) function on E that does not vanish at any 
point of E, and let p, be a sequence of polynomials (of respective degrees at most n) that converges 
to f uniformly on E. Let p,, be a decreasing sequence of real numbers approaching 1, such that 

P,” II f-P, II E --) 0, 

as n + ~0. If f is analytic on E, then p, does not vanish at any point of EPn, for all sufficiently large 
values of It. 

As a consequence of Theorem 2.1, consider a result on piecewise analytic functions: 

Corollary 2.2. Let t, < t, < * * * < t,, and let f be a function k times continuously differentiable 
on [t,, t,], such that f is analytic on (ti_ 1, ti) for every i = 1,. . . , m. Let p,* be the sequence of 
polynomials (of respective degrees at most n) of best uniform approximation to f on [to, t,]. For 

some j= l,..., m, let x E (tj_l, tj>, c, = min(x - tj_l, tj -xl, and 0 < y < c,(k + 1). Suppose 
that f does not vanish in (tj_l, , t .>, and let A,,(x) be the disk of radius (y/n> log n centered at x. 
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Then, p,* does not vanish at any point of A,(x) for all sufficiently large values of n. Furthermore, 
let x = tj, for some j = 0,. . . , m, such that f(x) # 0. Suppose that either the restriction off on 
(tj_I, tj] or the restriction off on [tj, tj+I> is analytic at tj, and let c = f<t, - tj_l> or ~<tj+, - tj>, 

respectively. For 0 < y < 16(k + 11, let A,(x) be the disk of radius [(r/n) log n]*. Then, p,* does 
not vanish at any point of A,(x) for all sufficiently large values of n. 

The following two conjectures are based on some preliminary numerical computations. 

Conjecture 2.3. Let f(x) = I x 1 (or f(x) = 1 x I + 11, and let p,* be the sequence of polynomials (of 
respective degrees at most n) of best uniform approximation to f on [ - 1, 11. Then, there exists a 
constant S < 1.18 (or < 1.52), such that for all sufficiently large values of n, p,” vanishes in the 
disk of radius (S/n) log n centered at x = i, 

Notice that for the functions of Conjecture 2.3, in Corollary 2.2, if x = +, then y < 0.5. This 
shows that the first part of Corollary 2.2 is sharp up to a constant. 

The following conjecture supports our hypothesis that the points of singularity attract zeros 
faster than the points of analytic&. 

Conjecture 2.4. Let f (x) = I x I (or f(x) = I x I + 11, and let p),* be the sequence of polynomials (of 
respective degrees at most n) of best uniform approximation to f on [ - 1, 11. Then there exists a 
constant K, such that p,* vanishes in A,, the disk of radius K/n centered at 0, for all sufficiently 
large values of It. 

How sharp is Theorem 2.1? 

Theorem 2.5. Let E = [ - 1, 11, and let p, be a decreasing sequence of real numbers approaching 
1, such that 

P,“(P, - @+” --f co, (1) 
for some F > 0. Then, for every function f analytic on E, there exists a sequence p, of polynomials 
(of respective degrees at most n> that converges to f uniformly on E, such that p, vanishes in EP,, 
for all sufficiently large values of It. 

We conclude this section by referring the readers to [l, p. 196; 2-5; 91, for related results on 
the distribution of zeros. 

3. Proofs 

Proof of Theorem 2.1. The function f is analytic and non-vanishing in E,, for some p > 1. For 
each positive integer n, let p,* be the polynomial of degree at most n of best uniform 
approximation to f on E. Then 

I P,*(Z)1 >&, 

in EPn, for n sufficiently large, and for some F > 0. 
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By the Bernstein-Walsh Lemma [8, p. 771, for all z E EPn, and for all sufficiently large values 
of ~1, we have 

I&(Z)-P,*(Z)1 ~P~IIPn-P~IIE~~~::lIf-PnIIE~~~~ 
which yields 

I P,(Z) I 2 I P,*(Z) I - I P,(Z) -a,*(z) I > i&. 
This completes the proof. q 

Proof of Corollary 2.2. Let tj_, <x < tj, and 0 < y < c,(k + 1). Choose E > 0, such that 

O<h:= 
2Y 

(&_&)(2-&E) <Ic+l* 

Then, let E=[x-c,+E, x+c,-~1, and 

A log n 
p,=l+ It . 

It is easy to see that p,” <n*, and hence 

p,” II f-P,* II E --) 0, 

since it is well known that II f-p,* II E < const/nk+’ [7, Chapter 71. 
By Theorem 2.1, it remains to show that A,(x) c E,,,. And for this, we may show that 

Y log n c, - & 1 
<- 

n 2 
i 1 Pn--- 7 

P, 

by observing that 

p, - ; =pn - 1+ (p, - 1) - (p, - 1)2 + * * * 
n 

> (Pn - w - Pn> > *l; “(2-4, 

for IZ large. This completes the first part of the proof. 
Now suppose that x = tj, for some j = 1,. . . , m (the case where j = 0 is similar), f(x) # 0, 

and the restriction of f on ( tj_ 1, tj] is analytic at tj (the case where the restriction of f on 
[t., tj+l) is analytic at tj is similar). Let c = b(tj - tj_1>, 0 <y < &(k + 11, and A,(x) be the 
disk of radius [(y/n> log n12 centered at x. 

Choose E > 0, such that 

Y 
A := 

\i(c-E)(l-E) <k+l* 

Then, let E = [tj_l + 415, tj], and pn = 1 + (A/n) log IZ. It is sufficient to show that 

(Y 1; “)2<(c_E)(pn+$) -2(c-4, 
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by using 

Pn+r>2+(pn--)2(2-p~)>2+ 
P, \ 

for iz large. This completes the proof. 0 

Proof of Theorem 2.5. Let 

r,,=l+C b,=+(r,-r,l), 
1+ +E ’ 

Yn = itbn + Pn), f,(=) = m 
z-iy,’ 

Pn = $(Pn -Pil)~ 

Each function f, is analytic on the closure of E,,, for all sufficiently large values of it, and 

iy, E E,,,. 
Let P,*_~ be the polynomial of degree at most n - 1 of best uniform approximation to f, on 

E, for each 12. Then, by Bernstein’s error bound [l, p. 821, we have 

11 fn -Pn*-1 II E < 
2Mn 

yn-l(y 
n ” 

_ 1) ’ 

where 

for some constants M and K. 
Condition (1) yields 

p”/(‘+42)(pn - q2 --) 03, 
n 

which implies 

ri(r, - 1)2 + co, 

and hence the left member of (2) tends to zero. 
Now, set 

P,(Z) = (2 - iv,>p,*&), 

which converges to f uniformly on E, and this completes the proof. •I 
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