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Abstract: In an earlier paper  we presented an approximate analytical model to estimate the expected 
device utilization and the expected station cycle times (i.e., the average time between two successive 
arrivals of  a device at each station) in a manufacturing system served by trip-based handling devices. 
Assuming that empty devices are dispatched according to the Modified First-Come-First-Served rule, the 
above model provides the expected device utilization, which the analyst can use to determine whether  a 
proposed trip-based handling system is "stable".  In this paper  we present  an approximate analytical 
model to estimate the expected waiting times for move requests that occur in single-device trip-based 
handling systems such as cranes, vertical reciprocating conveyors, microload A S / R S ,  unit load Tandem 
AGVs,  etc. The model represents  a conceptual contribution, and it enhances the original model from a 
practit ioner 's  viewpoint since expected waiting times (and the associated mean queue lengths) can play 
an important  role in deciding whether  the performance of a "s table"  system is actually "acceptable".  

Keywords: Manufacturing industries; Queues; Material  handling 

1. Introduction 

Material handling technology has changed dramatically during the last decade, mostly due to the 
introduction of computers  and automation.  White (1987) states that " the  changes of the past will seem 
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small in comparison with the changes anticipated in the next decade". According to Industrial Engineer- 
ing (1986), the sales of nonautomated material handling equipment produced by US manufacturers alone 
will grow 8.1% per year to a total of $12.1 billion in 1994. 

The significance and role of material handling are understood better today. Both in research and 
practice, more time is being devoted to the design and analysis of handling systems. However, primarily 
due to a lack of general-purpose (i.e., non technology-specific) analytical design models, many handling 
systems used today are designed through simulation models. Although simulation is a powerful analysis 
tool, it is often an expensive and time consuming undertaking. 

In an earlier paper (Srinivasan, Bozer and Cho, 1992), we presented an approximate analytical model 
to estimate the throughput capacity of trip-based material handling systems for a wide range of handling 
and layout alternatives. In this paper, we present an approximate analytic model to estimate the expected 
waiting times experienced by move requests that occur in single-device, trip-based handling systems. The 
performance of the analytic model is evaluated through simulation. 

There are several examples of single-device, trip-based handling systems. Unit load automated guided 
vehicles (AGVs) in tandem AGV systems, the storage/retrieval (S/R) machine in microload automated 
storage/retrieval (AS/R) systems, industrial robots, vertical reciprocating conveyors, and cranes are 
good examples of such systems. Although the authors do not classify it as such, the interested reader may 
refer to Tompkins and White (1984, p. 143) for a fairly extensive list of single-device and multiple-device 
trip-based handling equipment. 

In the paper, a container or load moved by the device is referred to as a 'job' or 'move request'. 
Trip-based handling systems where the device can concurrently move multiple jobs with different 
destinations are beyond the scope of this study. Tractor-trailer AGV systems and people-moving 
elevators, for example, fall in this category. (Note that with such systems the definition of a 'trip' may 
take several forms.) 

1.1. Problem environment 

Consider a 4-station trip-based material handling system depicted in Figure 1, where the input/output 
(1/O) stations are represented by stations 1 and 2, and the processor stations are denoted by stations 3 
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Figure 1. Typical trip-based handling system 
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and 4. There is an input queue and an output  queue for each station including the I / O  stations. We 
assume that all input and output queues have sufficient capacity so that the device or the processors 
seldom get blocked. 

Jobs from outside the system enter through one of the I / O  stations and, when all the operations have 
been completed, they exit through one of the I / O  stations. An incoming job arrives directly at the output 
queue of an I / O  station while an outgoing job is deposited at the input queue of an I / O  station where it 
is assumed to exit from the system instantly. That is, no processing takes place at the I / O  stations. 

A processor station represents either one machine, or a group of machines (a cell), or a department. 
Jobs to be processed are removed from the corresponding input queue and later, when processing is 
complete, they are placed in the corresponding output queue without delay. (Material handling needs 
within a station is beyond the scope of our study.) Although certain job characteristics may change after 
processing, we assume that as far as the material handling system is concerned, flow is conserved at each 
processor station. We also assume that the processing times are exponentially distributed. (Later in the 
study, we relax this assumption and present numerical results for non-exponential processing times as 
well.) 

The dispatching rule used for the device when it becomes empty is the Modified First-Come-First- 
Served (MOD FCFS) rule introduced by Srinivasan, Bozer and Cho (1992). Under this rule the device, 
upon delivering a job at the input queue of station i, first inspects the output queue of that station. If 
one or more move requests are found, then the device is assigned to the oldest move request at station i. 
If the output queue of station i is empty, the device serves the oldest move request in the system 
(regardless of its location). However, if the device finds no move requests in the system, it stays idle at 
station i until a job is completed at one of the stations. Using simulation, Srinivasan, Bozer and Cho 
(1992) show that the MOD FCFS rule is comparable in throughput performance to the Shortest-Travel- 
Time-First (STTF) rule. 

2. Literature review 

In this section, we review previgas studies that fall within our definition of trip-based handling 
systems. To the best of our knowledge, in the manufacturing arena, there is no general-purpose analytical 
model which can be used to determine the expected waiting times in trip-based material handling 
systems. Those that are reported in the literature have certain shortcomings and they are developed for 
specific types of material handling equipment, primarily microload A S / R  systems and (pick & drop) 
AGV systems. 

Consider first the microload A S / R  system. Chow (1986a) presents an approximate analytical model to 
predict the utilization of the S / R  machine and the expected waiting time by modeling the system as an 
M / G / 1 / F C F S  queue. That is, the arrival of the move requests (from the stations) are assumed to follow 
a Poisson process while the S / R  machine has a general service time distribution. Assuming that the S / R  
machine never finds the destination buffer full, approximate values for the first and second moments of 
the S / R  machine service time are obtained from the flow matrix by a simple probabilistic argument. The 
S / R  machine is assumed to serve each move request according to this distribution regardless of the 
actual origin and destination of a move request (and the position of the S / R  machine before it begins 
service). The performance of the approximate model is not fully explored in the paper. Furthermore, the 
FCFS rule leads to unnecessary empty travel for the S / R  machine. In a subsequent paper, Chow (1986b) 
uses a simulation model to evaluate alternative dispatching rules for the S / R  machine. 

In the context of an industral robot or microload A S / R  systems, Toro-Ramos and McGinnis (1990a,b) 
study the performance of a single-device system where the capacity of both the input and output queues 
are finite. While the first study (1990a) assumes that a full input queue blocks the sending station, the 
second study (1990b) assumes that each station has a temporary storage area which is used when the 
S / R  machine finds the input queue full. In both studies, the authors estimate the expected device service 
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time per job and the expected waiting time for the move requests. In the first study, they approximate 
empty device travel by a model suggested in Egbelu (1987). That  is, the empty device dispatching rule is 
not explicitly taken into account. In the second study, the authors use an iterative scheme to obtain the 
empty device travel time. To estimate the expected waiting time for the move requests, they use a 
network of queues with a central server station, which has certain limitations as described later in this 
section. 

Consider next A G V  systems. Relative to microload A S / R  systems (where a single S / R  machine 
serves a set of workstations), A G V  systems are generally more difficult to analyze since all stations are 
served by a fleet of AGVs.  However, due to the relatively large number  of current and potential AGV 
applications in manufacturing, A G V  systems have received considerably more attention in the literature. 
We will limit our  discussions to A G V  studies that are concerned with or applicable to single-vehicle 
systems. 

A new concept for designing A G V  systems is suggested by Bozer and Srinivasan (1991). The authors 
propose a tandem A G V  system which is based on partitioning all the stations into non-overlapping, 
single-L,ehicle loops, thereby eliminating possible congestion. They develop an analytical model to 
estimate the throughput capacity of a single uehicle serving a set of stations under  the First- 
Encountered-First-Served (FEFS) rule as described by Bartholdi and Platzman (1985). With FEFS, an 
empty vehicle continues to travel and polls each station according to a predetermined sequence. The 
vehicle serves the first job that it encounters while polling. This is a decentralized rule as opposed to 
FCFS, STTF, and M O D  FCFS which are centralized dispatching rules. That  is, with FEFS, the vehicle 
needs only local information in 'deciding' which move request to serve next. With the other dispatching 
rules, however, the vehicle generally needs to 'know'  the oldest or closest move request in the system. 

Hodgson, King and Monteith (1987) develop a heuristic empty vehicle dispatching rule for a 
single-~,ehicle system. This dispatching rule, labeled 'rule ' ,  is based on certain characteristics they 
observed in an analytical model that was developed for very simple systems (where the maximum number  
of stations is equal to four and the buffer space for each output queue is limited to one). Although the 
rule is truly dynamic in the sense that the destination of the empty vehicle is reevaluated at every station 
it passes, three scaling factors are required for reevaluation. (Each scaling factor is determined 
subjectively.) In the study, the performance of ' rule '  is tested against the Vehicle Looks For Work 
(VLFW) rule, which is equivalent to the STTF rule. The authors empirically observe that ' rule '  provides 
shorter expected output queue lengths. 

Yao and Buzacott (1985, 1986, 1987) model a flexible manufacturing system as a network of queues 
with a central server station, which represents the material handling system. (Jobs traveling between 
processing stations go through the central station by definition.) Each station has one or several (parallel) 
servers. In all three studies the authors assume that all the stations have limited local buffers, except for 
the 1986 study where the buffer of the central station has infinite capacity. Since the material handling 
system is modeled as a central server, it is difficult to use the above models to capture the performance 
of the handling system with reasonable accuracy. This is primarily because in central server models 
delivery times between all the stations are the same regardless of where the job is picked up and where it 
needs to be delivered next, and the probability that a job will be routed to a particular station does not 
depend on the previous station. 

In trip-based handling systems discussed in this paper,  a single device serves a set of stations in a 
non-deterministic order. Recall that, under the M O D  FCFS rule, when the device delivers a job at the 
input queue of a station, it immediately inspects the output queue of that station. If the output queue is 
empty, the device is dispatched to pick up the oldest move request elsewhere in the system. A system 
which operates  in a similar manner  is a 'polling system' where a single server polls (i.e., inspects) the 
stations one-at-a-time, and serves at most one customer each time a station is polled. (For a survey of 
various types of polling systems, the reader  may refer to Takagi, 1990, among others.) There  is, however, 
a fundamental  difference between polling systems and trip-based handling systems. In the polling system 
described above, the server always polls a station before it can serve a customer, i.e., every customer is 
served as a result of polling. In our model, some customers are served on a FCFS basis, whereas some 
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others are served as a result of polling (which occurs only when the loaded device delivers a load at its 
destination). 

3. The model  

In this section we develop an approximation for the expected waiting times in the output queues of 
single-device material handling systems. We consider a system with M stations. Let O denote the set of 
processor stations, and let /2 denote the set of I / O  stations in the system. (Recall that every station in 
the system is assumed to have both an input and an output queue.) The rate at which jobs arrive at the 
output queue of station i is denoted by A i. 

To perform a trip, the device picks up a job from the output queue of a station and delivers it to input 
queue of some other station. Let Ag denote the rate at which the device delivers jobs to the input queue 
of station i. We assume that A i equals Ag in steady state at the processor stations. (This also implies that 
a processor station may never be a bottleneck in the system.) For I / O  stations, A i need not equal Ag in 
general. However, from conservation of flow, provided that the device is able to meet  the demand placed 
on it, we must have ]~i~aAi = S , i~aA i. Recall that when a job is delivered at the input queue of an I / O  
station, it is assumed to exit from the system instantly. 

Let  pgy denote the probability that a job, which is picked up by the device from the output queue of 
station i, is destined for station j. (It is implicit that Pij = 0 . )  The values for A i a r e  obtained from the 
unique solution to the system of equations: 

M 
Ai = ~ /~jPji for i ~ / 2  and A i = 1~ i for i ~ O. (3.1) 

j - 1  

Let "~T denote the total arrival rate at the output queues of all stations. Note that from conservation 
of flow, A T = Y~/M__ 1A i = ~]/M__ 1A i. Recall that we assume each station has sufficiently large input and output 
buffers so that the device and the processors seldom get blocked. We also assume that the distance 
between the input and output queues of a station is negligible. (It is straightforward to extend the model 
to include non-negligible distances between these two queues.) 

Recall that under the MOD FCFS discipline, whenever a device delivers a job at the input queue of a 
station, it 'inspects' (the output queue of) that station. The time taken by the device to pick up a job from 
the output queue of station i, transport it from station i to station j, unload it at station j, and then 
inspect station j, is collectively assumed to be a random variable with mean Tij , and second moment r~ 2). 
The empty device travel time from the output queue of station i to the output queue of station j is a 
random variable, with mean o-,.j and second moment ~ri~?), which includes the time taken to 'inspect' 
station j. (Strictly speaking, when the device arrives at a station empty, it knows that there should be a 
job waiting at the station; however, we will still use the term inspect.) It is implicit that rig = r~ ff) = 0, and 
that orii = O'i~ 2) = ,0 .  

In the following discussion, unless specified otherwise, the index for any summation is assumed to be 
over the range 1 through M. Let O/f (O~e) denote the proportion of time that the device is traveling loaded 
(traveling empty) and let p = af  + a e denote the utilization of the device. Clearly, if the device is to meet 
the required throughput,  we must have p < 1. Observe that the term af  i s  easily computed from the 
input data as 

Olf = E l~i E Pij3"ij" ( 3 . 2 )  
i j 

Let q;f denote the probability that the output queue of station i is empty at the instant it is inspected 
by the (loaded) device and let ~gf denote its complement, i.e., ~gf = 1 - qif. All  expression for qif, in terms 
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of p and the data parameters ,  is presented in Srinivasan, Bozer and Cho (1992). We present the 
expression below, without proof: 

A~ A~ (1 - p )  (3.3) 
( A I( + 

where 

X = E EAgAycrij (3.4a) 
i j 

and 

1 A m 
, 4b, 

Equation (3.3) presents an expression for qif in terms of the unknown p. An approximate expression 
for p in terms of qif may be obtained as follows. If  we assume that the device delivers a load at any 
station at a random point in time, then (lit represents  the probability that the output  buffer of station i is 
empty at an arbitrary instant in time. This also implies that l-[i q~, is the probability that all the output 
buffers are empty at an arbitrary instant in time. Since the device becomes idle if all the output buffers 
are empty, we obtain the following expression for p: 

P = 1 - 1-Ic/~f. (3.5) 
i 

Remark.  By the well known PASTA property (Poisson Arrivals See Time Averages), if the loaded device 
arrivals at a station follow a Poisson process, then the above assumption would be theoretically justified. 
It is unlikely that the loaded device arrives at a station according to a Poisson process. However, if the 
matrix which specifies the load routing, i.e., the pi imatr ix ,  induces some randomness,  and if there is a 
sufficient number  of stations, then it is not unreasonable to assume that the device delivers loads at 
random points in time. Indeed,  in all our simulation experiments, we observed that the coefficient of 
variation for the loaded-device interarrival times at any station was consistently very close to 1. Of 
course, while this is a necessary condition for the interarrival times to be exponentially distributed, it is 
not a sufficient one. We also found that the M / G / 1  model approximates the simulated mean waiting 
times of loads in the input buffers remarkably well. 

Equations (3.3) and (3.5) suggest the following iterative algorithm to compute p. We start with an 
initial estimate for p and compute the c/if-values from equation (3.3). Next, using these q/f-values, we 
compute the new value of p from (3.5), and so on, until two successive estimates for p are reasonably 
close. It is shown in Srinivasan, Bozer and Cho (1992) that this algorithm will always converge, and 
return a unique value of p < 1, if ~ f +  max i ~D i < 1. Provided that the device meets the required 
throughput  based on the above criterion, the value of p and the values for c/i,, i = 1 . . . . .  M, obtained 
above are next used to derive the expected waiting times in the output queues. 

3.1. Expected waiting times in the output queues 

The basic approach followed here is similar to the one presented by Srinivasan (1988) who obtains the 
expected waiting times in polling systems with non-exhaustive service. Note, however, that the system 
with the M O D  FCFS rule has characteristics that are quite different from a polling system. 

To obtain the expected waiting times in the output  queues, we assume that the arrival process of jobs 
at each output  queue is Poisson, and that these processes are independent  of each other. This implies 
that jobs are delivered (arrive) at the output  queues at arbitrary instances in time. Given exponential 
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processing times and fairly high processor utilizations, this assumption is a reasonable one. While 
exponential processing times may be questionable, high processor utilization is not uncommon in 
manufacturing. 

Consider a tagged job that arrives at output queue i. Since Poisson arrivals see time averages (Wolff, 
1982), the tagged job finds the steady state distribution of jobs present at output queue i. Let P/(n) 
denote the probability that the tagged job finds n jobs already present at output queue i, and let WOi(n) 
represent the conditional expected waiting time for the tagged job, given that it finds n jobs at output 
queue i upon arrival. Let WO i denote the expected waiting time for the tagged job arriving at output 
queue i. Then 

o o  

WOi = E P i ( n ) W O , ( n )  • (3.6) 
n=0 

If we can estimate the values of Pi(n) and WOi(n), we can determine WO i from (3.6). To estimate 
WOi(n), we consider two cases: n = 0 and n > 0. 

If the tagged job finds no jobs at output queue i upon arrival, the device is either busy or it is idle at 
station j, j = 1 , . . . ,  M. Let x i denote the probability that the device is busy when the tagged job arrives. 
For this case let C~ denote the expected time for the device to return to station i. On the other hand, if 
the tagged job finds the device idle, then the tagged job automatically becomes the oldest job in the 
system, and the idle device is dispatched to station i. Let C/~ denote expected time for the device to 
arrive at station i from the idle state. Thus, for n = 0, 

W O i ( 0 )  =Xi CB q- (1 -xi)CIi  . (3.7) 

If the tagged job finds n > 0 jobs at output queue i upon arrival, we define the job at the head of this 
output queue as the Head-Of-Line (HOL) job. The expected waiting time for the tagged job is the sum 
of two quantities: (i) the expected time, C H, starting from the time of its arrival until the time the device 
arrives at that station to pick up the HOL job, and (ii) the expected time for the device to pick up the 
n - 1 remaining jobs, followed by a visit to pick up the tagged job; that is, the expected time for the 
device to complete n successive cycles where the expected value of a cycle is denoted by C s. Thus, 

WOi(n)  = C  H +nCi  s, n > O .  

Hence, from (3.6)-(3.8), 
o o  

WOi=Pi(O)[xiCiB + (1 - x i )C  ]] + Y'~ 
n = l  

= Pi( O)[ xi Cs  + (1 - x i ) C / ]  -[- C 2 

Noting, from Little's law, that ~:= lnPi(n)= 

Pi(O)[ xiCi B -}- (1 - x i )C:  ] + [1 
W O i  --- 1 - h icS 

Pi(n)(C H + nC s)  

oo oo  

Y'. Pi( n ) + C s • nPi( n ) . 
n = l  n = l  

AiWOi, we have 

- P i ( O ) ]  C/H 

(3.8) 

Note that we had determined p by assuming that qi~ represents the probability that the output queue 
of station i is empty at an arbitrary instant in time. Hence, P/(0) is approximated by qif. Therefore, to 
estimate WOi, the values of x/, C I, C~, cBi, and C s need to be determined. Since the probability that 
the device is busy is p, the expression for x i is derived by conditioning on the number of jobs present at 
output queue i when the tagged job arrives as follows: 

p = Probability that the device is busy 

=P(device  busy In = 0)Pi(0 ) +P(device  busy In > 0)(1 -P i (O))  

=xiPi(O ) + 1 -P i (O) ,  

(3.9) 
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since the device cannot be idle when n > 0. Hence, 

1 - p  1 - p  
x i = 1  - - - 1  (3.10) 

Pi(O) qi~. 

The expected time for the device to arrive at station i from the idle state, C], is determined by 
assuming that the location of the idle device is proportional to the rate at which a device delivers jobs at 
the input queue of station i, that is, 

Ci' = E (AJAT)%i .  (3.11) 
J 

Consider next, C~, that is, the expected time required for the device to pick up the H O L job. In this 
case, the tagged job always finds the device busy, i.e., traveling either loaded or empty. Let @~k (2~k) 
denote the event that the device is traveling empty (loaded) from j to k at the time of arrival of the 
tagged job at station i. Let ~H denote the time required for the device to pick up the H O L  job at output 
queue i. Then 

ciH = E[ ~ '1 = ~_, E [ E[ ~H I @~k] P{@~.k} + E[ ~iH I .gJ.kI P{~.~k}] . (3.12) 
j k 

Note that af/p is the probability that the device is traveling loaded since the tagged job always finds 
the device busy. Oiven that the device is traveling loaded, the proportion of time that it is traveling 
( loaded) from j to k is obtained as A~P)kZjk/a f. Therefore, P{~}k} is given by 

P{~'jk} elf Ayp, k'r2~ _ AjPikZ2~ (3.13) 

p af p 
The term P{@~k} is obtained in a similar manner. Since the tagged job finds the device traveling 

loaded with probability Olf/p, it is clear that it finds the device traveling empty with probability 1 - af/p. 
To determine the proportion of time that the tagged job finds the device traveling empty from j to k, we 
proceed as follows. Each time the device delivers a job at station m (which occurs at a rate Am), it checks 
the output queue of that station and with probability qmf, it finds the output queue empty. Consequently, 
an empty trip is initiated from m at a rate of Amqm,. With probability Ap/(A T -Am),  the device next 
moves to station p to pick up a waiting job and the expected travel time to station p is °'mR" 

Note that we are considering the case where the tagged job finds n > 0 jobs in the output queue of 
station i. Hence, if the tagged job finds the device moving empty out of station i, this implies that the n 
jobs must have all arrived during the empty trip out of station i (to some other station). Since the 
probability of this is small, we exclude this case from further consideration and set P{@ik} =0 .  
Therefore,  given that the device is traveling empty, the probability, H}k, that the tagged job arriving at 
station i finds the device moving (empty) from j to k is 

Ak 
Ajqjf (A T _ Aj) ~k 

i _ (3.14) HJk - Ap 

Z E A m q m f  O'mp 
m ~ i  p (aT-- a,~) 

The term P{~k} is now determined from 

P{@jk} P--Olfn;k , j -~i .  (3.15) 
P 

We next develop an expression for E[~/H I i t2jk]. Recall that this is the case where the tagged job finds 
the device traveling loaded from station j to station k and there are n > 0 jobs in output queue i ahead 
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I Loaded device arrives 
at station k. 

Finds a job at k. 
(Event 1) 

1 ~ . . . " " " ~  ~ No job in the system 
[ o job at k. except for HOL job at i. 

(Event 2) 

Some jobs to 
pick up in addition to ~ The job at m is 
HOL job at i the oldest job. 

(Event 3) 
Figure 2. The possible events encountered by a loaded device arriving at station k 

of the tagged job. Let B~ denote the expected time for the device to first visit station i from the instant 
at which the loaded device arrives at station k. With this definition, we set B / = 0. The term E[~H I 2jk] 
is then simply obtained as 

E[  ~ I g~k ] = r~2)/(2 rjk) + Bik. (3.16) 

Equation (3.16) follows since the tagged job interrupts a loaded trip from j to k. 
The expression for E[g/u I @jk] is obtained in a similar manner. Let F~ denote the expected time for 

the device to first visit station i from the instant at which the device arrives at station k and picks up a 
job waiting there. (We are implicitly considering two possible situations here: either the device arrives 
empty at station k to pick up a job waiting there, or the device arrives at station k loaded and finds a job 
in the output queue of the station.) Note that Fi i = 0, by definition. Since the tagged job interrupts an 
empty trip from j to k, we have 

E[  g/n I @Sk ] = %~2)/(2 %k) + F~, (3.17) 

The term B~ is obtained by conditioning on the possible events that can occur when the (loaded) 
device delivers a job at station k: (1) there is a job in the output queue of station k; (2) there is no job in 
the system except the HOL job (at output queue i); (3) there are one or more jobs to pick up at output 
queue m, m 4= k (in addition to the HOL job), and the oldest job is located at output queue m. Figure 2 
depicts the above events graphically. 

We obtain the probabilities of the above events, and the expected time for the device to return to 
station i for each event, as follows: 
Event 1: The expected time for the device to return to station i is F~. Recall that qkf is the conditional 
probability that the device finds a job in the output queue of station k, given that it just delivered a job at 
its input queue. Hence, Event 1 occurs with probability q~c 
Event 2: The expected time for the device to return to station i is o'ki, since the HOL job is the only job 
in the system. The probability of this event is approximated by l q , ,  iqnf- 

Event 3." The expected time for the device to return to station i is O'km + F i .  To determine the 
probability of this event, let Qn denote the expected queue length at output queue n, and let Q* denote 
the expected queue length at output queue i, given that there is at least one job at output queue i. The 
term Q* is approximated as follows: 

Q* = Q J ( 1  - Pi(0)) = Qi/qif. (3.18) 

i _ _  Let Ri~ - Q*/(Y'.,  ~i,kQ, + Q*) denote the conditional probability that the HOL job is the oldest job, 
given that output queue k is empty, and there is at least one job at output queue n, n 4=i,k. Let 
R i k  = Qm/(S.n~i,kQ, + Q*) denote the conditional probability that the job at station m, m 4= i, is the 
oldest job, given that output queue k is empty, and there is at least one job at output queue n, n 4= i,k. 
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(Clearly, output queue i is non-empty.) In other words, the above conditional probabilities are assumed 
to be proportional to the length of the output queues. Then the probability that output queue k is 
empty, at least one job is present at station n, n ~ i,k, and the job at output queue m is the oldest job to 

Rmk.  Hence, we obtain serve, is approximated by ( % , -  [ In ,sqnf)  i 

B [ , = -  i ( ) E R m k (  +F,~), k • i .  (3.19) qkfFk + I-I qnfO'ki + qkf -- 1--I qnf i O.km i 
n4-i n4:i " m4-k 

Conditioning on the destination of the device which is arriving at station k, F~ is obtained from 

F~ = EPkj(Tk] + Bj). (3.20) 
J 

Recall that Fi i = 0 by definition. So, from (3.19) and (3.20), we have a system of M -  1 independent 
equations in the M - 1 unknown variables, F~, k 4: i, which can be solved to obtain these values for a 
given i. Following this, (3.19) can be used to obtain B~. 

The term C/B is obtained, analogous to C H, as 

< = e[  = E 2 [E[ I ] + e[  I ] (3.21) 
j k 

where E [ ~ [  i E [ ~ [  i i ~k] ,  ~jk], and P{~ik} are given by (3.16), (3.17) and (3.13) respectively, and ~ is 
the time required for the device to pick up the tagged job. 

In (3.21), the term P{@}k} is obtained using similar arguments as were used to derive (3.14) and (3.15). 
When the tagged job arrives at output queue i, no empty trip toward this station is in progress. This is 
because the tagged job sees no jobs waiting at output queue i. Hence iP{~}i} = 0. As a consequence, we 
should also modify the probability that the device moves from station m to station p as Ap/(A x - Ag - Am), 
where m 4: i, to account for the fact that if the device becomes empty at station m, then it will not move 
to station i. Hence, the term Hjik is obtained as 

Ak 

Ajqjf (A v _ 6(i, j)Aj - Ai) °)k 
Hj~ = , (3.22) Ap 

~m ~ a m q m ' l "  - 6 ( i  m)A m-Ai )  ~rmp pvai ~AT , 

where ~(i, m) = 0 if m = i, and is equal to 1 otherwise. The t e r m  P{(~}k} is now obtained as 

P{@}k} p -- af  " jk ,  k 4~ i. (3.23) 
P 

Finally, the term C s is estimated as follows. Since the device picks up a job from output queue i, it 
travels loaded to station j with probability p~j, following which it takes a time Bj to next return to i. 
Hence, 

C s =  EP~j(% + Bj). (3.24) 
J 

Substituting (3.10)-(3.12), (3.21), and (3.24) into (3.9), we may obtain the expected waiting times in the 
output queues. However, to compute the conditional probabilities for event 3 in (3.19), we assumed that 
the expected output queue length at each station was known. Therefore,  we propose the following 
iterative method to find the expected waiting times in the output queues: 

Step O. Assign the initial values of the expected output queue lengths, that is, old Qg, i = 1 . . . . .  M. 
Step 1. Compute the expected waiting times, WOi, i = 1 , . . . ,  M, from (3.9). 
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Step 2. Compute new set of expected output queue lengths, new Qi, i = , . . . ,  M, using Little's law. 
Step 3. If I old a i  - new Qil < e for i = 1 . . . . .  M, then 

the WOi's obtained in Step 1 are the expected waiting times, stop; 
else 

set old Qi = new a i  for i = 1 , . . . ,  M, and go to Step 1; 
endif. 

In order  to test the conditions under which the above algorithm converges, we randomly generated 
500 problems. From these problems we observed empirically that the above algorithm fails to converge 
only if the estimated fraction of time that the device is busy, p, is very high, i.e., p is approximately 
greater than or equal to 0.99. We also observed that the above algorithm, if it converges, always returns a 
unique set of expected waiting times, regardless of the initial values for the expected output queue 
lengths. 

4. Numerical  results 

In order to test the performance of the analytical model, we simulated two different layouts with 
various processing time and travel time distributions. The first layout, namely, L1, is shown in Figure 3 
where stations 1 and 2 are the I / O  stations. Note that no jobs are received through station 2. The 
routing matrix and the distance matrix for L1 are presented in Table 1 and Table 2, respectively. The 
interarrival time for jobs received through station 1 is equal to 30 minutes. Similar data for layout 2, that 
is, L2 (shown in Figure 4), are presented in Table 3 and Table 4. In L2 we have four I / O  stations 
numbered one through four. The interarrival time is equal to 4.9, 9.8, and 14.7 minutes for stations 1, 2, 
and 4, respectively. Note that no jobs are received through station 3. In both layouts, it is assumed that 
the arrival of jobs from outside the system follows a Poisson process. 

It is also assumed that the device travels at a speed of 15 and 75 distance units per minute in L1 and 
1 L2, respectively. The pick-up or deposit time is assumed to be equal to g and 1 minutes in L1 and L2, 

respectively. While a device is allowed to move in only one direction in L1, a device in L2 can move in 
both directions. Both loaded and empty travel times are computed by assuming that the device always 
follows the shortest path. The travel time from the input queue to the output queue of a station is 
assumed to be negligible. The first layout could represent a single-vehicle AGV system (that operates as 
part of a tandem AGV system), while the second layout can be viewed as a shop which is served by an 
overhead crane. Obviously, these are only examples of potential single-device applications. 
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For both layouts, we examine three empty travel time distributions: deterministic, uniform with a 
coefficient of variation (CV) equal to 0.4, and exponential. (The loaded travel time is obtained by simply 
adding the constant pick-up and deposit times.) The expected processing time at each processor station is 
always set equal to that value which yields an expected processor utilization of 0.75. Although we 
assumed exponential processing times for the analytical model, to test its robustness, we present 
numerical results for uniform processing times as well. We used a CV of 0.4 for uniform processing 
times. 

In order to obtain steady state statistics, we first make a single simulation run starting with an empty 
system and the device idling at an I / O  station. For 'warm-up' purposes, appropriate statistics are cleared 
when 10000 loaded trips are performed. After the warm-up period, ten observations (i.e., replications) 
on each measure of performance are recorded. Each observation is based on 10 000 loaded trips. 

Table 5 shows oLf, ae, af  "{-O/e obtained from the simulation model under different combinations of 
travel and processing time distributions. As one might anticipate, the results indicate that the expected 
device utilization is not affected by either the processing time or travel time distributions. 

The expected waiting times in the output queues obtained from the analytical model and the 
simulation model are shown in Table 6. Figure 5 graphically depicts the results obtained for several 
problems selected from Table 6 for both layouts. The simulation results indicate that the analytical 
model performs reasonably well for both layouts and travel t ime/process ing time distributions examined. 
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Figure 5a. Expected waiting time in the output queues. Deterministic travel time and exponential processing. (Layout 1) 
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Figure 5c. Expected waiting times in the output queues. Uniform travel time and exponential processing time. (Layout 2) 
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Figure 5d. Expected waiting times in the output queues. Uniform travel time and uniform processing time. (Layout 2) 
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Station No. 1 2 3 4 5 6 7 

1 0.0 0.0 0.5 0.5 0.0 0.0 0,0 
2 0.0 0.0 0.0 0.0 0.0 0.0 0,0 
3 0.5 0.0 0.0 0.0 0.5 0.0 0,0 
4 0.0 0.0 0.0 0.0 0.3 0.7 0,0 
5 0.0 0.5 0.1 0.0 0.0 0.4 0.0 
6 0.2 0.0 0.5 0.0 0.0 0.0 0,3 
7 0.0 0.3 0.1 0.6 0.0 0.0 0.0 

Table 2 
Travel distance matrix for Layout 1 (distance units) 

Station No. 1 2 3 4 5 6 7 

1 0 62 16 42 36 28 48 
2 58 0 38 64 44 36 16 
3 64 46 0 26 50 42 62 
4 38 50 18 0 24 16 36 
5 50 26 30 56 0 28 42 
6 22 84 38 64 58 0 70 
7 42 54 58 84 28 56 0 

Table 3 
Routing matrix of jobs in Layout 2 

Station No, 1 2 3 4 5 6 7 8 9 10 11 

1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 
2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.2 0.1 0.1 0.2 
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.1 0.1 0.1 0.1 
5 0.1 0. I 0.1 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.1 
6 0.0 0.0 0.1 0.1 0.1 0.0 0.2 0.1 0.2 0.2 0.0 
7 0.0 0.1 0.2 0.1 0.0 0.2 0.0 0.1 0.2 0.0 0.1 
8 0.2 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.2 0.1 0.1 
9 0.0 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.0 

10 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.2 
11 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.2 0.0 

Table 4 
Tavel distance matrix for Layout 2 (distance units) 

Station No. 1 2 3 4 5 6 7 8 9 10 11 

1 0 22 47 30 14 32 46 8 27 3l 17 
2 22 0 36 29 23 24 38 14 16 20 14 
3 47 36 0 33 37 19 12 39 27 16 41 
4 30 29 33 0 16 14 21 25 13 28 27 
5 14 23 37 16 0 18 32 16 17 32 18 
6 32 24 19 14 18 0 14 27 8 23 29 
7 46 38 12 21 32 14 0 41 22 18 43 
8 8 14 39 25 16 27 41 0 19 23 9 
9 27 16 27 13 17 8 22 19 0 15 21 

10 31 20 16 28 32 23 18 23 15 0 25 
11 17 14 41 27 18 29 43 9 21 25 0 
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Table 5 
Simulated device utilization with various combinations of processing and travel time distributions 

Layout Utilization De te r /  De te r /  Unifo /  Unifo /  Expon/  Expon/  
Expon a Unifo Expon Unifo Expon Unifo 

L1 a f 0.433 0.433 0.433 0.433 0.432 0.432 
af  0.270 0.270 0.268 0.269 0.262 0.260 
af  + a e 0.703 0.703 0.701 0.701 0.694 0.693 

L2 off 0.564 0.563 0.565 0.565 0.566 0.566 
a~ 0.314 0.322 0.313 0.321 0.305 0.311 
otf+ 0% 0.877 0.885 0.878 0.886 0.871 0.877 

Processor util. = 0.75. 
a A/B:  A is the travel time distribution and B is the processing time distribution. The travel time distribution applies to both 

empty and loaded travel. For example, a uniform 'travel time' distribution implies uniformly distributed empty travel times and 
uniformly distributed loaded travel times; the two travel times are independent. 

Note that, in addition to the overall (weighted) expected waiting time, the analytical model provides 
reasonably accurate estimates for each output queue. 

Not surprisingly, Table 6 also indicates that the analytical model provides relatively more accurate 
estimates if the processing times are exponentially distributed. Since the analytical model does not 
explicitly consider the processing time distribution, the expected waiting times predicted by the model 
remains the same for alternative processing time distributions. As seen from Table 6, when the 
processing time distribution is changed from exponential to uniform (while the travel time distribution is 
kept the same), the analytical model generally overestimates the expected waiting times. The same is not 
true for the travel time distribution since the analytical model accounts for both the first and second 
moments of the empty and loaded travel time distributions. 

Based on the numerical results presented in Table 6, several additional observations can be made. 
First, for both layouts, the analytical and the simulation results indicate that the expected waiting times 
show only small variations from one station to another, for a given combination of travel time and 
processing time distributions. Perhaps, this can be attributed to the MOD FCFS rule which allocates the 
device capacity more equitably and uniformly among the stations. Second, the results show that the 
expected waiting times increase with the coefficient of variation of travel times. Third, the simulation 
results suggest that the expected waiting times are slightly more sensitive to the processing time 
distribution than they are to the travel time distribution. 

5. Conclusions 

In this paper we developed an approximate analytical model to estimate the expected waiting times 
for move requests that occur in a manufacturing system served by a single-device, trip-based material 
handling system. We assume that the empty device is dispatched according to the Modified First-Come- 
First-Served (MOD FCFS) rule which is comparable in performance to the Shortest-Travel-Time-First 
(STTF) rule. 

In an earlier study (see Srinivasan, Bozer and Cho, 1992), we derived an approximate analytical model 
to estimate the expected device utilization. Using this model, one can evaluate a proposed system to 
determine whether the single device will be able to satisfy all the move requests, that is, whether the 
system is 'stable'. Although system stability is the primary concern in designing material handling 
systems, given that a proposed design is stable, the device utilization alone does not fully explain the 
performance of the system. Obviously, as the expected device utilization increases, the expected waiting 
times (and the corresponding mean queue lengths) will increase as well. This relationship is usually 
highly non-linear and 'predicting' the expected waiting times directly from the expected device utilization 
can generate misleading results. 
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Hence ,  we be l ieve  the  analyt ica l  wai t ing  t ime m o d e l  p r e s e n t e d  here  can be  used  to fur ther  eva lua te  
the  p e r f o r m a n c e  of  s table  systems by examin ing  the  expec ted  wai t ing  t imes  at  each  s tat ion.  In  fact, even 
if the  system is said to be  ' s t ab le ' ,  the  expec ted  wai t ing t imes  (and  the c o r r e spond ing  m e a n  queue  
lengths)  can  be  unaccep t ab ly  long. D u e  to the  non - l i nea r  r e la t ionsh ip  m e n t i o n e d  above,  a re la t ively  small  
inc rease  in the  expec ted  device  u t i l i za t ion  may  very well  r e n d e r  the  system p e r f o r m a n c e  ' u n a c c e p t a b l e '  
even though  it may  be a ' s t ab l e '  system. Thus,  in our  view, the  expec ted  wai t ing  t ime express ions  de r ived  
in this s tudy a re  not  only  useful  f rom a theo re t i ca l  po in t  of  view, bu t  they  may  also p lay  a s ignif icant  role  
in prac t ice .  Us ing  our  wai t ing  t ime model ,  c o m b i n e d  with the  ea r l i e r  m o d e l  which d e t e r m i n e s  the  
expec ted  device  ut i l iza t ion,  the  analys t  can  rap id ly  eva lua te  a large  n u m b e r  of  layout  and  handl ing  
a l t e rna t ives  at  an ear ly  s tage  of  the  des ign  process .  
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