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ABSTRACT

Several theoretical and experimental problems were studied during this
period., The study of diffraction of a plane wave by a ferrite sphere was
extended to include a metal sphere enclosed within and concentric with the
ferrite sphere. Computer results showed that resonant frequencies were changed
slightly with the addition of the metal sphere, A study of plane-wave dif-
fraction by a longitudinal magnetized ferrite cylinder was begun. A computer
program is being prepared to evaluate the fields for various values of p and
t. A shielded, balanced-loop antenna loaded with ferrite material was an-
alyzed, showing that resonance of the loop could be maintained over a broad
range of frequency. Radiation patterns from a ferrite-filled waveguide were
evaluated on the computer, showing that with the use of ferrite loading the
size of a waveguide radiator can be reduced by the factor ~Nupepr without sub-
stantial change in radiation pattern. The coaxial cavity equipment used to
measure complex permeability and permittivity was improved to an accuracy of
about 10% in ¢', p' and sbout 20% in ", u". |

PURPOSE

This report summarizes the work done on Contract No. AF 33(616)-7180
during this period from April 1, 1961, to July 1, 1961.

The purpose of this task is to investigate the use of solid-state de-
vices such ag ferrites and dielectrics in their application to UHF-VHF anten-
nas. More specifically, these materials are to be considered as loading de-
vices or actual elements in the search for improvement of the following
properties: (1) radiation resistance, (2) power gain and directivity, (3)
broadbanding, (4) physical size, and (5) efficiency. Geometries now under
consideration include dipoles, rods, slots, biconical dipoles, spirals, and
yagis.






1. REPORTS, TRAVEL, AND VISITORS

During this period, no reports were issued, project personnel did not

travel and no one visited the project.

2. FACTUAL DATA

2.1 THE PROBLEM OF A PLANE WAVE INCIDENT ON A MATERAL, SPHERE

The problem of a plane wave incident on a sphere of arbitrary perme-
ability and permittivity was ermulated in Quarterly Report No. 4. The in-
terior fields were formally solved, and numerical: results obtained for the
power density at the center. A factor P was defined as the ratio of this
power density to that of the incident wave. The factor P, when plotted
against the radius of the sphere in material wavelengths, exhibits sharp
resonant peaks where the concéntration of power is very high.

This study has since been continued and extended to (1) evaluate the
effects of higher modes throughout the volume, which gives information on
the effect of the materials on the prominence of the various modes; (2) map
the lines of power flow, which provides a basis for a physical explanation
of the field distortion phenomeéna; and (3) treat the case of an enclosed,
perfectly conducting sphere, which extends the problem to more antenna-like
characteristics.

2.1.1 Higher Modes.—The basic formulas will be repeated for conven-

ience. The incident plane wave can be expressed by:l
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The interior fields are represented by a linear combination of the above
functions, where the coefficients are aﬁ and bﬁ:
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The coéfficients aﬁ and bﬁ are expressed by:
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Here, p, = py /Mg € = €1/€5, and K = ky /kg =upey , where k) is the prop-
agation constant in the material.

Plots of the coefficients vs. radius of the sphere in material wave-
lengths are shown in Figs. 1 and 2 for various value of My, and €,.. Inspec-
tion of Egs. (1) and (2) shows that the plane-wave functions can be thought
of as having the coefficients at = bﬁ = 1. The curves of Fig. 1 show that
there are critical radii where the coefficients take on very high values.
For example, for p, = €, = 10 at a/xm = .65, it can be seen that the first

mode is resonant, while the other modes have considerably smaller coefficients.
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Coefficients for ferrite sphere for p = € = 10.

Fig. 1.
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Similar resonances appear at larger radii for the higher modes, but the pre-
dominance of these higher modes at resonance is not so striking.

The resonant frequencies for a given radius can be found by minimizing
the denominator. These are the frequencies that satisfy the transcendental

equations:

KSp(ka)Cy(koa) = ppSp(kia)c)(kea)
urSi(kia)Cpy(koa) = KSp(kja)Cp(kya)

These are plotted in Fig. 3 as a function of mode number.

2.1.2 Power Flow.—Near the first resonance one can say that the field
energy is predominantly in the first mode; even the cross-terms between modes
are small. Thus the power flow distribution can be satisfactorily described
considering only the first mode. The P-factor defined earlier can be repre-

sented by:
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When broken into components, the expression in plane I is (where ¢ = o,x)
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This is shown schematically in Fig. L.

Several points are suggested by this equation. First, the shape of the
field is not affected by changes in py and €r as long as NGIEE; = kl/ko is
left constant. Second, in the regions where the above assumptions hold (i.
e., near the first resonance) the shape of the field depends on the value
of kjr, regardless of the value of kja, as long as klr.g kla. This implies
that the streamlines are not always perpendicular at the surface. In fact,
they are perpendicular only when the tangential term Sl(kleri(klr) vanishes.
Third, while the radial term must always have the sign of cos @, the tangen-
tial term alternates in sign as kjr is incfeased. Thus at @ = n/2, where
the radial term vanishes, the stremlines will be in the positive or negative
z-direction, which means that some streamlines circulate, much like the
turbulence in a high-velocity stream of fluid.

2.2 THE PROBLEM OF A PLANE WAVE INCIDENT UPON A COMPOSITE STRUCTURE CON-
SISTING OF A METAL SPHERE INCLOSED WITHIN, AND CONCENTRIC WITH, A
MATERIAT, SPHERE
To resemble the problem of an antenna more closely, the problem of a

plane wave scattered by a ferrite sphere can be modified by stipulating a

spherical conducting boundary in the ferrite's interior (see Fig. 5). This

allows one to evaluate the currents induced by the field on the surface.

.The added conditions required by this modification are two:

(1) The tangential component of E venishes at the surface of the metal-
lic sphere.

(2) since the ferrite region does not now include the origin, the co-

efficient of the Neumann function is not zero. The most general formulation
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Fig. 5. Conducting sphere problem.

includes both Bessel and Neumann functions, the latter of which becomes in-
finite at the origin. This is not physically permissible in the original

problem, so the original coefficient must be zero. The expressions for the

-

interior fields are now
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These give rise to six simultaneous equations:
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The coefficients can be solved explicitly. The interior coefficients

are:
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It will be recalled that Sp, C,, and Rgl) are adaptations of spherical Bessel,
Neumenn, and Hankel functions; that is, Sp(z) = z j,(z), and similarly for

the others. As z approaches zero, Cn(z) is proportional to z'l so that for

Sy (k1b) SA (k)
an

Cn(Xk1b) CA(kpb)

a small radius of the conducting sphere, the fractions,
are small.

Thus it is evident from the above equations that, as the conducting
sphere vanishes, aﬁ and bﬁ approdach the values which they had in the original
problem, and cg and dﬁ approach zero. This is intuitively reasonable, for as
the metal sphere is shrunk, its effect on the fields vanishing in the limit
should diminish.

Curves of the coefficients are shown in Figs. 6 and 7 for My = € = 10
with an inner sphere of 0.1 ferrite wavelength. The resonant peaks are not
at the same radius for the Tm and TE coefficients. This separation between
T and TE coefficients decreases for the higher modes.

2.3 SCATTERING OF A NORMALLY INCIDENT PLANE WAVE BY A MAGNETIZED FERRITE

CYLINDER

The solution of the boundary-value problem for a normally»incident plane
wave on a dielectric or ferrite cylinder, was described in Quarterly Progress
Report No. 4, is now being explored thoroughly by computer programs. To in-
vestigate the various possible uses of a ferrite rod as a director of energy,
the electromagnetic field distributionhin and around an axially magnetized
ferrite rod is now being determined.

It is expected that, with the biased ferrite rod, the radiating and

impedance properties of solid-state cylindrical structures can be better con-

11
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trolled. One of the principal adyvantages would be a broadbanding of the
resonant-power-gathering ability of the ferrite cylinder.
The analysis shown below is an extension of the work of W. H. Eggiman,

as presented in the July, 1960, issue of the Transactions of the PGMTT (pp.

Lho-LL5) .

Only the TM case (incident field having an electric field in the z-
direction only) will give rise to nonreciprocal effects. For TE (Ex, H,
only), the time-varying magnetic field is in the direction of the applied

2
d-c magnetic field, and therefore no nonreciprocal interaction occurs. In
. . -Jot |
the following, a time dependence, e , 1s to be understood.

For the ferrite rod with d-c biasing, the permeability is a tensor

M +J
-JK M

Wy
o= Mg [} + 5 5

[

quantity:

=l
il

with u and K given by

Wy (10)

K = po agjaz
where yuoMy = @ and yuoHy = @y, Hp 1s the effective internal magnetic

field. For a thin rod, magnetized along its axis, Hy = Happ‘ For cylindrical
rods with a length-to-width ratio not much over one, Hy = Happ - N,;M;, where
Happ = applied field in the z-direction, N, = demagnetization factor in the

z-direction, and M, = demagnetization in the z-direction.

Since our problem is two-dimensional, we can write (for a time de-

1k
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The equation for the H field in ferrite becomes:
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which gives in cylindrical coordinates:
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To solve the problem completely, we need expressions for the field quant-
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ifiers inside and outside the cylinder. H, and H¢ can be derived from E, for
a TM wave according to the equations given above. Inside the cylinder, E, is
given as the solution of the homogeneous wave equation in cylindrical co-
ordinates; i.e., Ey = Z CnJh Br)e jn¢ Outside the cylinder, E, is given by
the sum of the homogeneous wave solution (representing a wave traveling out-
ward) and of the expansion of the incident travelingplane wave in cylindrical

Scat i
wave form; i.e., By = E + E;nc =

15
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The expansion coefficients 8y and bn are obtained by matching the tan-

gential H(= Hy), and the normal E(= E,) at r = a:

16
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D,(pa) = u::fg_o EJﬁ(aa) n

IR
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The a,'s and b,'s have to be evaluated for different fa, u, and K be-
fore any field quantities can be determined. A program now in preparation
will provide the expansion coefficients for a range of different rod diameters
and a range of different ferrite parameters p and K. Then the amount of
power flow through the cylinder can be evaluated, which will allow compar-
ison of the power-gathering ability of a ferrite rod with that of a d-c
biasing magnetic field.

A more detailed study of the fields inside and Just outside the cylinder,
involving some quite lengthy calculations, is planned to determine promising
combinations of Ba, u, and K, i.e., for combinations where the energy densities
inside the cylinder are considerably greater than what they would be in the

absence of the cylinder.
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2.4 THEORY OF LOOP ANTENNA

2.4,1 Analysis of the Shielded, Balanced-Loop Antenna.—The resonance con-

dition for the shielded, balanced-loop antenna immersed in a ferrite medium
has been analyzed. The method follows closely that given by Libby5 for a loop
in air. The antenna, shown in Fig. 8, consists of a coaxial line bent into a
loop. There is a small gap in the outer conductor at one point and a balanced
feed directly across from the gap. As derived in Libby's paper, this config-
uration can be reduced to the equivalent circuit shown in Fig. 9. Basically,
what has been done is that the outer shield has been transformed into the
equivalent length of the two-wire transmission line shown in the left part of
the figure. Assuming that the frequency is high enough, the fields inside the
coaxial line are independent of the fields induced on the outer legs of the
shield. This allows us to treat the inner coaxial line separately as an ad-
"ditional length of line, as shown at the center of the figure., The terms
shown on the figure are:

ZOO

characteristic impedance of the equivalent two-wire line
replacing the outer shield

V)

Zoo = }—59 276 log D
€ d
ro

D = diameter of the outer shield

d = diameter of the outer shield wire
Zn; = characteristic impedance of the inner coaxial line

o _ 138 '
21 loglO ET

NEri .

D' = inside diameter of the coaxial line: out conductor
d' = diameter of the coaxial line: inner conductor

18



Fig. 8. ©Shielded balanced-loop antenna.
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By = relative permeability of the medium surrounding the antenna

€po = Trelative permeability of the medium surrounding the antenna

Zpy,Zyp = ‘the terminating impedances

€p; = relative permittivity of the medium in the coaxial line.

\

SHORT

oi A Z
(‘Z (— rH

2,6
(emf Zoo) 5 cr_(f' (9_
9

AN VAN VAN

D
Zyi J ZHD
A

'—'——P/Z—’I g pP/2

Fig. 9. Equivalent circuit of shielded loop antenna.

The shielded loop receives energy through the induction, by the propagated
field, of electromotive forces on the outside surface of the shield, along its

legs, causing current to flow and thus producing voltage V.

G across shield gap.

Letting 8, be the electrical length of the equivalent two-wire line and
®; be the electrical length of the coaxial line, the total length (®t) of the
transmission line can be found. Z,g and Zyp will be assumed open circuits for
the following derivation.

Were Zg, 1s equal to twice Zgyj, @, would be the sum of 6, and ®;. This
1s not true, so an equivalent electrical length 8¢q of the outside transmis-
sion line with target to the inner line must be found. This 1s done by equat-
ing the impedance to the left of BC (Fig. 9) in terms of Z.o to the same

impedance in terms of twice Zoi' Then

20



3 Zoo tan 8, = 2] Zy; tan Ogq (15)

Solving for ©

eq’
o
B = erctan <Z—-———-——-°° ten c) (16)
2 Zoi
Then
Z~~ tan @
B = 8 +8q = B4 + arctan <_o_9________o> (17)
2 Zoi

The frequency at which this transmission line network goes through resonance
1s found by setting @, equal to 90° and solving for the wavelength, A.

From Eq. (5),

tan @ = tan E + arctan <0° ten G)j (18)

Using the identity

+
ten (A + B) = tan A+tan B (19)
1l-tan A tan B
then
Zoo
tan @3 + 57 _ tan Oy
ol
tan @t = (20)
1l - tan @O tan @i
oi
Z : Zoo
tan 6, - tan @ tan O, tan © = tan @, + tan ©;  (21)
t t o) i o) i
Dividing through by tan @, and letting @, be 90°,
Zoo
1- tan @, tan ©; = O (22)

2 Zoi

21



or

tan @, tan @y = ol (23)

where
Bi 1s the propagation constant in the coaxial line

— 60
Py = 350 _ %08 Hpi€pi < if— Hri€ri
0

A c ri~ri
{ = P/2, the length of coaxial line, the length of the two-
wire line
8 = Bul

Bo is the propagation constant in the medium surrounding the antenna

360 = 360t N H.n€ = é§9_~EEQE£9
c

Bo = . roro N

Mpy = relative permeability of the medium in the coaxial line
A = free space wavelength of antenna

Ai = wavelength in coaxial line

Mo = wavélength in the two-wire line

Equation (23) becomes

60 | P 0 P 2 Zoi
'ban<—§-;\— Vlpo€ro 3 ) ten <5—i— N pi €pd 5) = (24)
oo

Equation (24) is the design equation for resonance. An illustrative design

has been calculated as follows:

Assume:
Zgy = 50 ohms
€pg = 10
D = L in,

22



d = .1lk2 in,

p/2 = 6.28 in.

Gri = 2,1
Bpi = 1
bpo = frequency-dependent (to be determined)
then
275
e, = 220
* A
o, = IO -
Mo

Zoo = NHro

Equation (24) then becomes

con <7_129___m Vi )tan5_2_7_5_ _ 1790 (25)
Mo Mo VHro

As can be seen from the equation, the resonant wavelength depends on the value
of upg. This transcendental equation was solved graphically for u,, vs. A. The
wavelength is converted to frequency and plotted in Fig, 10, which shows, for

a particular loop antenna, the value of p,, needed to resonate at any frequency
in the range 1 Mc to 200 Mc. Tt also reveals that a broadband antenna can be
realized if the permeability varies with frequency according to the curve. In
the given frequency range, the ferrite materials exhibit a dispersion charac-
teristic similar to the curve. The do£ted line in the figure exemplifies the
frequency characteristic for an experimental ferrite.lL The major problem in

constructing a model of this antenna is the high loss presently associated

23
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antenna of Fig. 8.
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with ferrites of this character. Derivations of this type indicate the need
for improved materials. For the design given above, a reasonable bandwidth
would be from 5 Me to 100 Me (20 to 1 bandwidth), since values of p., greater
than 500 and less than .9 are unlikely in this frequency range.

A shielded loop similar to the one described above has been constructed.
It will be tested, insofar as possible with available material, and the re-
sults will be compared with the theory.

2.4.2 Broadbanding Discussion.—The method of broadbanding described in

Section 2.4.2 can also be applied to other antenna structures. The basis of
the theory is that the wavelength in the medium either (1) remains constant

over a given frequency range, or (2) changes more slowly than the frequency

variation according to some calculated curve.

For (1), the wavelength is given by

o= L= ———= (26)
£ uper
where:
v = velocity of propagation in the medium
f = frequency of operation
¢ = velocity of light in free space
Mo = relative permeability, frequency-dependent
€p = relative permittivity

For constant wavelength, we then need

fNupe, = constant (e7)
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Among the antennas that could use this type of broadbanding are horns, slots,
dipoles, and simple arrays.

An example of an antenna utilizing the second type of permeability
characteristic is given in Section 2.4.1 on the shielded loop.

Although materials are not now available to test the theory properly,
we will continue our efforts along this line to increase the bandwidth of

antennas.

2.5 WAVEGUIDE RADIATORS

2.5.1 General Discussion.—Derivations of the characteristics of mate-

rial-filled waveguide radiators have been undertaken. The same type of

antenna filled with air, has high efficiency, is easy to construct, and has
been built in a number of forms, some of which might benefit by using solid-
state materials in their construction. It is expected that a practical antenna
will evolve from these derivations.

One disadvantage of Wavegﬁide radiators at the frequencies of interest
(around 150 Mc) is their large size. Filling the waveguide with a high u, €
material will reduce the wavelgnth considerably and thus reduce the cutoff
frequency and over-all size of the waveguide. As an example, considér the
rectangular waveguide shown in Fig. 11. For the dominant TE,, mode, the
cutoff wavelength is given by A. = 2a. For a cutoff frequency of 100 Mc, the
dimension "a" must be 59 in. If, however, the waveguide is filled with
material of p = € y 10, the wavelength is reduced by a factor of 10 and thus

"a" is reduced to 5.9 in.
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(b)

Fig. 11. (a) Open-end rectangular waveguide radiator.
(b) Coordinate system for the representation of the far fields.
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While the size advantage is readily apparent, changes in antenna charac-
teristic such as gain, efficiency, bandwidth, etc., must be investigated using
a detailed analysis. Of several derivations now in progress, one has been
completed, and is presented in the next section.

2.5.2 Theoretical Results.—The antenna to be discussed in this section

is the open-ended waveguide radiator shown in Fig. 11. The waveguide is as-
sumed filled with a material of relative permeability u,. and relative permit-
tivity e€,.. The derivation for the radiated fields is similar to that of
Silver5 for an air-filled waveguide. Huygens principle is used to replace
the source by the fields in the aperture. To simplify the solution, higher-
order modes and the current distribution over the exterior surface of the
‘waveguide are neglected.

As shown by Silver, the radiated fields from an aperture are given by:

ER = O

-JkR
Eg = Jke [ Q ) cos O] (Nycos & + Nysin )
)—I-nfR +L (28)
..~ JKR _ ,
ﬁ%_ Eos e + 9‘_@@_\@ (Nysin ¢ - Nycos )
nR : wu

Epy =

where
_ . . + . .
T - J/\ , eJk(x sin ® cos @ + y sin @ sin Q)ds
aperture
(29)
: - jk(x sin ® cos & + y sin © sin @)
aperture
and
i& = resultant electric field of the dominant mode over the aperture
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(E)y = incident electric field of the dominant mode over the

aperture
I' = reflection coefficient of the open-end waveguide
k = wNpgeg = 2n » Ay = free space wavelength.
A
(o}

Only TE modes in the wavegulde are considered in the above equations. For

TE modes, the expressions for the incident fields at the aperture are:

- Jou mry sin X cos 2

(Ey); 2y

4 a a b
(30)
A Jou nmy myx nry
(E)s 2, = cos — sin —%
o)1 O 7 b a b
where
_(mm2 nm 2
K = (—é-) + (-5-)
From Eq. (29), N, and l\Ty are computed
jomou( 1+T) mx _(Jkx sin @ cos @) b nrry (Jky sin @ 'sin @)
1\Tx = S——r cos —= e dx | sin dy
K2b ~o o
(31)
a . b . . .
N o= - Jmoreou(1+T) fsin me(,jkx sin @ cos @)dx cos BT e(Jky sin © sin @)dy
v Ka “o & ~o b
Performing the integration, we obtain
222 (14T) 1. ej(kasin ® cos @ + mn) |

N, = ——————% Kk sin ® cos 0@

x K2 2
b .2 2 m _
_K281n ® cos~d - (ar()
[1 _ &J(kbsin © sin ¢ + ngx)

__ K2sin2@ sin0 - C“D

E oJ(kasin © cos @ + m | (32)

K2sin2® cos2d - C—E—? _

E- - ¢J(kbsin © sin ¢ + nn]

' 2
|__ K2s1n2® sin2<I> - GEI)E ]
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By substituting into Eq. (29), we get for the far fields

ur-\lgg %\2—% sin @ (1 + — -‘}—-— cos © + I‘< _‘fzz cos @

&%2 sin°0 - (--Iirﬂ)2 cos°o qun(@,cb)}

: 2
iy ’ﬂg <(Tf&b) sin ® sin @ cos 3
o 2\IR

_ (34)
‘ Bmn ’“o [Fo
[c'os®+@— -e-g+l“<os®-——— )]‘I’mn(a@
where
Sin(%z-‘ sin © cos @ + ?) sin(% sin © sin ¢ + %)
Vi (8,0) =
e [-@ sin © cos 0)° - (m)] (I sin © sin 0)2 - (BHZ
Mo 2 o .
(35)

]

ol ]

e-j[kR - xgsin ®(a cos @ +b sin @) - (m + n + 1)

Equations (33), (34), and (35) can be simplified when only the TElO mode

propagating in the waveguide. Lettingm =1, n = 0, we obtain

2

b B p

By = —ur_Fia-é—sinQ 1+—20 4 1-————1—O———>-
€o 2M\oR Wpp N o €p NTRENITANCN

(36)
eos (JT sin @ cos <I> sin -;;— sin © sin @)
(2 sin@coscb - ( sin@sincb

Mo

-i[kR - & sin @ (a cos & +Db sin 0) ]
e Mo
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" o2 p
Ecp = '“r'\lg‘g.naebcosd) cos®+————]—'9——~+r‘ cos@-——-—s-]-‘p—-—>
€0 20oR WHp N Ho€o Oy NV Ho€o

(37)

-@ sin ©® sin @
0

os (—J;\% sin ® cos @) :l 5in (XE sin ® sin @]

('-;\Ez‘- sin © cos <I>)2 - (g)2

-j[kR-%zgsin@ (a cos & +Db sin @) ]
e

The phase factor, kR - -J-;\-; sin ©(a cos ® + b sin 0), can be simplified for the
far field by shifting the origin to the center of the aperture. The phase
factor then becomes kR where R is now measured from the center of the aperture.

Since the electric field is polarized in the'y-direction in the waveguide,
the yz-plane is the E-plane of the system and the xz-plane is the H-plane.

The patterns are:

A, E-plane, ¢ = zr/2

P10 B
1) + Uy “oEabE_l_ cos®+PQ-———~1‘Q———cos® .
T‘7\0 Wy N Ho€o Wy NV Ko €o

(38)
nb
sin (57— sin © s
(}\'O ) ) e-JkR
l@ sin @

2o
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B. H-plane, & =0

n
[2s}

B
By = - Hp Ho EE?P cos O + ___EEQ___ + T (cos © - ————Efl——i> .
o 2Xg oy Voo apy. N o€
(39)

cos (%% sin @) :J _JkR
)2

o st ©)® - (3

The radiation patterns were calculated from Eqs. (38) and (39) using the
IBM 704 computer. For this calculation I' was assumed to be zero. Referring

to Fig. 11, the plot was made for the following conditions:

a/b = 2

a/ho = .625/Vppep
b/he = .312/ Vurer
f/f, = 1.25

where:

fo 1s the cutoff frequency in the waveguide,

f is the frequency of operation, and
Ao 1s the free-space waﬁelength of operation.
The pattern is shown in Fig. 12 for several combinations of pp, €p values.

As can be seen from the graph, there is a small broadening of the pattern com-
pared to the same antenna filled with air for py equal to 3, e, equal to 3,
and for uy = 10, €, = 10. The patterns are changed more radically for u, dif-

ferent from ep. For pp >> €., the H-plane pattern is similar to the air case

for 0 < ® < 90° and exhibits radiation in the reverse direction. For the E-
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Fig. 12. Theoretical patterns for material-filled rectangular waveguide radiator.
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plane, the pattern is practically omni-directional. For the case of e, >> .,
the situation is reversed with a narrow beam in the E-plane and a broad beam
in the H-plane.

An open-ended waveguide antenna is being constructed and will soon be

tested.

2.6 MATERIALS

2.6.1 Powdered Ferrite.—Date were received for the powdered ferrite char-

acferistics from the manufacturer. The measurements were taken for a sample
in the solid form. A large difference characteristics exists between the mate-
rial ordered and that received. Reproduction of the original material is a
problem requiring additional time and funds. Data on the original sample and

the new sample as measured by the manufacturer are given in Table T.

TABLE I

MANUFACTURER'S DATA ON POWDERED FERRITE

100 Me 200 Mc

B p w' "
Original Sample 7.1 0.028 6.1 | <0.01
New Sample 10.5 2.1 8.0 3.6

The high losses associated with this material make use in experimental
testing of the antennas of doubtful value.
Tests have been made in our laboratory of the properties of this ferrite

in the powdered and in the solid form. Results are shown in Table IT.
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TABLE IT

RESULTS OF LABORATORY TESTS

Measurement 1

Sample Method Frequency ut i €' e"
Solid Resonant

Cavity 260Me 8.06 3.3k 8.2 0.53
Solid VSWR 260Mc 7.6 3.k 7.0 0.k
Powder Resonant

Cavity 260Mc 3.27 .55 - ——

As was expected, the permeability (u') of the powder is roughly half of
the permeability of the solid, while the magnetic Q(p'/u") of the powder is
greater than the Q of the solid ferrite.

2.6.2 Experimental Results on Material Measurements.--Measurements of

permeability and permittivity have been made using the Perturbation method
described in the second Quarterly Progress Report. Results of measurements

made on several materials are given in Table IIT.
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MEASURED VALUES OF PERMEABILITY AND PERMITTIVITY

TABLE IIT

Material W'

G

.€'

Qe

Ceramag 22 5A 14,45
Ceramag 22 5A 12.83
Ceramag 22 5A

Ceramag 22 5A

MOT2

M2

Mi12

M469 8.02
M+69 8.06
M4+69

M469

Powder 3.27
Stycast Hi-K-U

Stycast Hi-K-L

Frequency: 260Mc

2.01
2.16

2.41

5.95

O\O N O~

7.12

19.21
15.29

3. ACTIVITIES FOR THE NEXT PERIOD

(1) Experimental work on the ferrite-loaded biconical antenna, the shield-

ed-loop antenna, and the waveguide radistor will be completed.

(2) The theoretical studies of plane-wave diffraction by a ferrite sphere

and a ferrite cylinder will be extended to analyze the power flow near res-

onance.

(3) A theoretical study of plane-wave diffraction by a ferrite spheroid

will be initiated.

(4) Theoretical results of radiation from sectoral horns will be analyzed

on the computer.

(5) Experimental work on the ferrite-loaded spiral will be initiated.
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L, SUMMARY

The theoretical study of plane-wave diffraction by a ferrite sphere has
been extended to (1) evaluate the effect of higher modes, (2) map the lines
of power flow, and (3) treat the case of an enclosed, perfectly conducting
sphere.

The theoretical study of plane-wave diffraction by a ferrite cylinder
has been extended to treat the longitudinally magnetized case.

An analysis of the resonance condition for the shielded, balanced-loop
antenna immersed in a ferrite medium has been made. Conditions for maintenance
of resonance over a broad frequency range have been obtained and found to be
fairly consistent with the published properties of known ferrite materials.
The analysis suggests the possibility of tailoring ferrite properties for
broadband use in microwave components and antennas.

Radiation from a ferrite-filled rectangular waveguide has been analyzed.
The results show that, for p = €, the radiator size can be decreased with
very little change in beam pattern.

Experimental results of the measurement of ferrite materials are given.
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