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Abstract 

Massively parallel algorithms are presented for solving systems of fixed point equations, modeling state-depen- 
dent routing in large asymmetric circuit-switched networks. Our focus is on the Aggregated Least Busy Alternative 
(ALBA) routing policy of Mitra, Gibbens and Huang. On a 16384 processor MasPar parallel computer, about a 
minute is required to compute estimates of the call blocking probabilities for every node-pair, for realistic networks 
of over 100 nodes. A few hours are required on a high speed workstation. 

I. Introduction 

The engineering of a modern telecommunication system involves extensive performance 
evaluation, testing the system's response to a gamut of stresses, including traffic overloads and 
equipment failures such as fiber cuts. At present, the dominant tool for such performance 
evaluation is discrete event simulation. In this paper, we consider an alternative: analytic fixed 
point methods, which yield approximate performance estimates. Massively parallel algorithms 
are presented for solving the equations. The algorithms have been implemented and tested on 
a 16384 processor MasPar parallel computer. Experimental results, for realistic simulation 
scenarios for large asymmetric networks, show that accurate estimates are delivered at great 
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speed. Thus, the algorithms are fast enough to provide an interactive means for exploring 
network performance, which should serve as a useful complement to discrete event simulation. 

We consider networks of N nodes in which a stream of calls arrives to each node pair, with 
each call representing a request that a route in the network be set up to carry the call. It is 
convenient to assume that the network is fully connected; there is no loss of generality because 
we allow a link's call carrying capacity, counted in trunks, to be 0. If accepted, a call arriving to 
the stream associated with a given node pair (i, j) requires for its exclusive use one trunk on 
each link of its route between i and j. 

Mitra, Gibbens and Huang [14] introduced the Aggregated Least Busy Alternative (ALBA) 
state dependent routing scheme. This policy is simple and remarkably effective, and is closely 
related to the Real-Time-Network - Routing (RTNR) policy, used to control the A T & T  long 
distance network [2]. The number of calls in progress on each link determines the link's 
aggregate state, in the range 0 to K, where K is a small parameter (e.g., K = 2 or 3). A low 
aggregate state indicates relatively few calls in progress. Alternate routes are restricted to two 
links: {(i, k), (k, j)}, for any k 4: i, j. A link (i, j) in state > / K -  1 is reserved for the use of 
stream (i, j), and cannot be used as part of any alternate route. A call arriving to stream (i, j) 
is routed on link (i, j) unless that link is full to capacity. Otherwise, if at least one alternate 
route is not reserved, then an alternate route is chosen uniformly at random among those in the 
least aggregate state. Otherwise, the call is blocked (rejected and lost). The details are 
described in Section 2. 

Following the treatment in [14] for symmetric networks, we derive a system of 'fixed point' 
equations that estimate traffic flows under ALBA for asymmetric networks. Unfortunately, for 
large, realistic networks, the system of equations is so large and computationally burdensome to 
solve on a conventional, serial computer, that solving the equations appears to offer little 
advantage over discrete event simulation. 

Our contribution is to show that the parallelism inherent in the system of fixed point 
equations can be simply and efficiently exploited to solve the system very rapidly on today's 
massively parallel computers. Our algorithms have been implemented on a 16384 processor 
MasPar [4] single-instruction-multiple-data (SIMD) parallel computer, and have been found to 
be numerically robust as well as fast. It is a simple matter to adapt the codes to a large class of 
state-dependent routing schemes other than ALBA (Section 6). 

In Section 2, we define the network model and the ALBA routing policy. In Section 3, we 
describe the system of fixed point equations, and in the following section present our 
algorithms for the solution. A natural parallel architecture for the computational problem is 
the N x N mesh, described in Section 4. The solution method is iterative. On the N x N mesh, 
each iteration takes O(KN + Cma x) time, where Cma x is the maximum link capacity. On a serial 
computer the time needed is O(KN3 + CmaxN2). In Section 5, we report our computational 
experience. Some final remarks are given in Section 6. 

In recent years, there has been considerable research in the area of analysis of state-depen- 
dent routing policies through the solution of fixed point equations [1,3,6-11,13,15,16]. Indepen- 
dently of the work reported here, Chung, Kashper, and Ross [5] have developed, implemented, 
and tested serial algorithms for solving the fixed point equations for networks with state-depen- 
dent routing. Their results include an interesting t ime/memory tradeoff, and a new approxima- 
tion for multirate networks. 
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Our  approach  to the derivation of the equations,  which closely follows the development  in 
[14] is different.  In particular,  our  equat ions model  the uniform r andom choice of an al ternate 
two-link paths among all such paths in the least aggregate state. Chung,  Kashper,  and Ross [5] 
investigate ' least  loaded routing '  (an extreme case of ALBA,  where  the number  of aggregate 
classes K is unbounded)  in detail, and assume a determinist ic  t ie-breaking rule ra ther  than 
uniform random choice. Unde r  least loaded routing, the t ie-breaking rule may have little 
impact because ties may be infrequent .  In the case of ALBA, there are compell ing per formance  
and practical reasons for very small K [14]. Nearly all al ternate routing oppor tuni t ies  would 
require tie-breaking, and it makes sense to spread the overflow traffic uniformly over the 
al ternates in the least aggregate state. Indeed,  this is done in pseudo- random fashion in the 
A T & T  R T N R  scheme.  Handl ing uniform random,  choice turns out to be significantly more  
computat ional ly  challenging than determinist ic  tie-breaking. In Section 3.1, we propose solu- 
tions based on an integral representa t ion of the choice probabilities. 

Chung,  Kashper,  and Ross [5] assess the accuracy of the estimates under  a variety of traffic 
loads. Generally,  their experiments  show that the accuracy is quite acceptable,  and is especially 
good at modera te  and heavy loads. However,  at light loads, where  blocking is rare, the blocking 
est imates are somet imes too optimistic - predict ing that  blocking is rarer  still. (Our  experi- 
ments  - not repor ted  here  - confirm these trends.) In Section 5 we test our  algori thm on a 
realistic focused overload scenario with parameters  mode led  after the A T & T  network. (It 
turns out that  the overall call blocking probability is about  6%, and congest ion is concent ra ted  
on several hundred  of the several thousand links.) It is of critical impor tance  to investigate 
network per formance  and reliability under  such scenarios. We find in Section 5 the accuracy of 
the blocking est imates to be quite acceptable; showing remarkable  agreement  with simulation. 

2. Network model 

' N ( N -  1) We consider a fully connected,  circuit-switched network with N nodes and 
bidirectional links. It is convenient  to use the tuple (i, j)  to denote  the pair of nodes  i and j, 
keeping in mind that  (j ,  i) denotes  the same pair; 0 ~<i, j < N .  The  basic parameters  of 
node-pair  (i, j )  are 
• the capacity of link (i, j),  counted  in trunks and 
• the rate of arrival of the s tream of calls to (i, j). 
We write these two parameters  as functions of (i, j): C(i, j) and h(i, j) ,  respectively. Again, 
since (i, j )  and (j ,  i) denote  the same node-pair ,  these and all functions of (i, j )  in t roduced 
below have the same value at (j ,  i) as at (i, j).  It is assumed that  call arrival process to each 
s t ream is Poisson, and that  each call's durat ion is independent ly  and exponentially distr ibuted 
with mean  1. (Thus, rates are counted  in erlangs.) 

Aggregated Least Busy Alternative 
A call arriving to s t ream (i, j)  is routed  on the direct one-link path,  if at the t ime of arrival, 

at least one t runk on the link is free. Otherwise,  the call is ei ther routed  on some two-link path 
between i and j, or blocked. At  the t ime of its arrival, provided the call is not blocked, the call 
seizes for its exclusive use one t runk on each link of its route,  and releases those trunks at the 
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t ime of its depar ture .  We term a call routed on a one-l ink path  a direct call and one routed on 
a two-link path  an overflow call. 

Unde r  the Aggregated  Least  Busy Alternative (ALBA) routing policy [14], the choice of the 
two-link path  for an overflow call depends  on the instantaneous network state, and favors paths 
whose current  load is relatively light. Consider  link (i, j),  with capacity C = C(i, j), and state 
defined as the number  of calls in progress on the link. A key control pa ramete r  is the number  
of aggregate states K +  1 the link may assume. Aggregate  states ~'1 = ~ z ( i ,  j),  I = 0 . . . .  , K, are 
de te rmined  by parameters  rj = rj(i, j),  J = 1 , . . . ,  K - 1, as 

• o  = {0, I , . . . , C -  r l -  1}, 

"~1 = { C  - r l ,  C - r 1 + 1 , . . . ,  C - r 2 - 1}, 

~ g - 1  = { C - - r K - I ,  C - - r K - 1  + 1 , . . . , C -  1}, 

{c}. 
An aggregate ~ i  may be empty. Let t ing n denote  the link's state, the aggregate state is that  I 
such that  n ~ ¢ r  (These definit ions of sets a¢' I differ slightly f rom the definit ions in [14].) 

Al ternate  routing works as follows. The  aggregate state of a two-link al ternate path  is 
def ined to be the maximum of the aggregate states of the two links. If there  is at least one 
al ternate path  with aggregate state less than K - 1, then  the call is carried on one of the paths, 
selected uniformly at r andom from among those having the minimal  aggregate state. Otherwise,  
the call is blocked. Thus,  links with aggregate state K -  1 are available only for direct calls, 
while links in lower aggregate states are available for direct and overflow calls. In aggregate 
state K, the link is full to capacity, so no calls can be accepted.  

3. Fixed point equations 

In this section, we present  the system of fixed point  equat ions describing the network's  
equil ibrium behavior, under  the following independence  approximation:  The event that a given 
link assumes a given aggregate state is independent from link to link. The  unknowns  in the system 
of equat ions are the state dependen t  overflow rates of calls impinging on each link(i, j): 

u(i, j ) =  (Uo(i, j) ,  u,(i, j) , . . . ,UK_2(i,  j )) ,  

where 

~',(i, j )  & rate at which link (i,  j ) ,  when in aggregate state I ,  receives overflow 

calls f rom streams incident  to (i,  j ) .  

By incident  to, we mean  having a node  in common;  that  is, (i, k) or (k, j),  k 4: i, j, are incident  
to (i, j).  Note  vi(i, j )  -- 0 if I >~ K - 1. 

In Sections 3.1 and 3.2, we relate these overflow rates to the equil ibrium distributions 
describing the aggregates states of the individual links (i, j): 

P ( i ,  j ) =  (Po(i ,  j ) ,  PI( i ,  j )  . . . .  ,PK( i ,  j ) )  
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where 

Pi(i, j) ~= Pr{link (i,  j )  has aggregate state I}. 

The  equat ions p resen ted  in Sections 3.1 and 3.2 define a mapping  from overflow rates to 
overflow rates. Taking the fixed point  of this mapping  as an est imate of the real overflow rates 
in the network, we can then easily compute  the key measures  of steady state performance,  in 
particular,  the blocking probability for each stream. 

3.1. Overflow rates 

To simplify notat ion,  let us focus on a single node-pair  (i, j )  and suppress the dependence  
on (i, j )  in the notat ion whenever  possible. There  are M = N -  2 associated al ternate paths 
{(i, v), (v, j)} identified by the in termedia te  or via node v. By the link independence  assump- 
tion, for any v 4= i, j, 

45,,i ~ Pr{aggregate state of al ternate path {(i, v),  (v,  j)} is I} 
I I - 1  

=el( i ,v )  Y '~Pj (v , j )+e , (v , j )  E e j ( i , v )  (1) 
J = 0  J = 0  

since the aggregate state of the two-link path  is the maximum of the aggregate states of the two 
links. For  v = i or j, define ~,~,~ = 0 if I < K and q~,,,t¢ = 1. It is convenient  to also define 

qt~, 1 & Pr{aggregate state of al ternate path {(i, v),  (v,  j)} is > I} 

= 4~,,1+1 + "'" +q~,,,/¢. (2) 

Now, fix v 4: i, j and 0 ~< I < K - 1, and suppose that  al ternate {(i, v), (v, j)} is in aggregate 
state I. U nde r  ALBA,  this al ternate is selected to carry an overflow call if: (i) each of the o ther  
al ternates {(i, u), (u, j)} (u 4: v) has aggregate state >/I, and (ii) al ternate {(i, v), (v, j)} wins 
the uniform random selection among those with aggregate state equal to I. Let  g ,  denote  the 
probability that  among the other  alternates, n have aggregate state I, and the rest have 
aggregate states > I. Then  the probability of selecting the al ternate {(i, v), (v, j)} to carry an 
overflow call is 

M - l  1 
gn. (3) 

n=0 n + l  

Let us collect the gn in the generat ing function: 
M - 1  

O(x)= E g,x". (4) 
n = 0  

By the assumption that  the aggregate states of the links are independent ,  the aggregate states 
of the al ternates {(i, u), (u, j)} (u 4: v) are independent .  Thus,  by multiplying the two-point  
generat ing functions xq~.. t + qt., t (u ~ v), we obtain as the coefficient of x n the probability 
that  n al ternates have aggregate state I and M - n  - 1 have larger aggregate states: 

c ( x )  = I - [  q,,,,). (5) 
/ / ~ l '  
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Integrat ing (4) f rom 0 to 1 produces  (3), so 

f l  H (X(~)u,, q- ~u, , )  dx  
~0 U ~= U 

is the probability of selecting the al ternate {(i, v), (v, j)} to carry an overflow call, and the rate 
of overflow to this al ternate is 

/o 1 Y,,,l=a( i, j)Pz¢( i, j )  I-I (xq~,,i+ vltu,t) dx ,  
U4=U 

since a(i, j)Pl¢(i, j)  is the rate at which calls arrive to s tream (i, j)  that  cannot  be carried 
direct. Put t ing the last equat ion in more  general  form, and making explicit the dependence  on 
the link identity, we obtain 

Y~,. t ( i , j )= ( i , j ) P K ( i , j )  . ( X q t u . i ( i , j ) + ~ , , . t ( i , j ) ) d x  i fv - - / : i , j ,  (6) 

i f v = i o r  v = j .  

For given I and (i, j) ,  comput ing  the M quantit ies Y,,.t(i, j), v--/= i, j, is one of the more  
delicate and interesting parts of the computat ion,  and is discussed in Section 4. 

We are now in position to derive the rates of overflow z, into the links as functions of their 
aggregate state. Again, focus on a single node-pair  (i, j )  and suppose its aggregate state is I. 
Any given incident  link (k,  i), k 4= i, j, assumes aggregate state J with probability Pj(k,  i). If 
link (k,  i) is in aggregate state J then: 
• the two-link pa th  {(k, i), {i, j)} is in aggregate state I v J  ~= max{I, J}, and 
• s t ream (k,  j)  routes overflow calls to this two-link path  at rate Y~,j v f l k ,  j). 
Summing  the contr ibutions of all s treams incident  to link (i, j )  we obtain 

u+(i, j ) =  E Yi . lv , (  k,  j ) P j ( k ,  i) + Y'. ~ , i v , ( i ,  k ) P , ( k ,  j )  . (7) 
k = 0  = \ k = 0  J = 0  

Note that  all quanti t ies on the right hand  side are functions of the given parameters  and the 
unknown distributions _P(k, i) and _P(k, j) ,  for k = 0 , . . . ,  N - 1. 

3.2. Link distributions 

Consider  link (i, j).  Let n denote  the link state (number  of calls in progress) and I the 
aggregate state; n ~ 1  =Z¢l(i, J), 0 ~ n ~ C = C(i, j), 0 <~ I <~ K. In this state, direct calls arrive 
to the link at rate A = A(i, j) ,  overflow calls arrive to the link at rate v I = ui(i, j), and calls in 
progress depar t  the link at rate n. Thus,  the state of the link is a b i r t h -dea th  process, with 
transition rates 

qn,n+l = A + Z'l, 0 ~< n < C, n E,.~I, 

qn,n_l=n,  O < n ~ C .  

Solving the partial balance equat ions 

7rnqn,n+l=Trn+lqn+a,n, O<~n<C (8) 



and normalizing provides the equil ibrium 
aggregate state I is given by 

P,= E 
n ~ ¢ /  
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probability zr n of state n. The  probability of 

4. Algorithms 

In Section 3.1, we derived the overflow rates v as functions of the link distributions P. In 
Section 3.2, we derived the link distributions _P from the overflow rates __v. Viewing the 
equat ions as a mapping  from overflow rates to overflow rates, a solution is a fixed point.  The  
basic p rocedure  for finding the solution is iteration. That  is, given an old tentative solution v 
we compute  a new tentat ive solution __v'. If the old and new tentative solutions are very close, we 
stop, accepting _v'. Otherwise,  we replace the old tentative solution with the new one, and carry 
out another  iteration. Some form of damping  may be used to avoid oscillations. 

In Section 4.1 we describe the computa t ional  model.  In Sections 4.2 and 4.3, we describe the 
details of the computa t ion  that  takes the link distributions _P into the overflow rates v, and the 
computa t ion  taking the __v into the ft. 

4.1. Computational model 

In order  to make  a precise and practically meaningful  analysis of the parallel algorithms 
presen ted  below, we focus at tent ion on a particular parallel architecture: the N × N toroidally 
connected  mesh of processing e lements  (PEs). Let P E i j  denote  the PE at location (i, j )  of the 
mesh, 0 ~< i, j < N .  PEii is connected  to PE/ j+I ,  PEi,j_I, PEi+1,j, PE~_~,j, with the subscript 
ar i thmetic modulo  N. To implement  the fixed point  computat ion,  we must  first map  the data 
onto  the memor ies  of the individual PEs. We assign the data of node-pair  (i, j )  to two PEs: 
PE~,j and PEj,~. The  two PEs compute  identical results; in particular,  the quanti t ies _P(i, j)  and 
_v(i, j).  Though  duplicat ing the work in this way may seem wasteful, it pays off in very simple 
code with very efficient interprocessor  communicat ion .  

We require two basic operat ions  involving interprocessor  communicat ion .  Suppose that  each 
PE holds a copy of a variable X, with PEi,j 's copy denoted  X/,j. The  two operat ions we require 
are: 
• [Row or column broadcast]  A row broadcast,  given X and a row index i, copies Xi,j to the 

memory  of every PEk, ~, for every 0 ~< k, j < N. A column broadcast  is similar. 
N 1 • [Row or column sum] A row sum, given X and a row index i, stores ~2k=0Xkj into the 

memory  of PE~j, for every 0 ~<j < N. A column sum is similar. 
Thus,  in row sums and row broadcasts,  the columns act independent ly;  similarly for column 
sums and column broadcasts.  

In the N x N mesh, a row sum for given X and i can be carried out  in O ( N )  time as follows. 
At the first step, PEi,j sends X,, i to PEi+I, j. At the second step PEi+~, j sends X~,~ +X,+I ,  j to 
the next PE: PEi+2, j. At the third step, PEi+2, j sends Xi, j +Xi+~j + X i + z j  to PE/+3, j, and so 
forth. At the N th  step, PEi,j receives the full sum. It is a simple extension to carry out in the 
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same number  of steps a row sum for every row i = 0 , . . . ,  N - 1, by circularly shifting N partial 
sums (one for each i) through each column. Similarly, in O ( N )  t ime we can carry out  a row 
broadcast  for every row i = 0 . . . .  , N - 1, by circularly shifting the data  through the columns. 

Our  algori thms have been implemented  on a 16384 processor MasPar  MP-1 [4]. In this 
parallel compute r  the PEs are organized in an 128 x 128 mesh. The  archi tecture is Single-In- 
s t ruct ion-Mult iple-Data (SIMD), meaning  at each step each active processor  executes the same 
instruction on its local data. Though  the individual PEs are very slow, the aggregate peak 
floating point  rate is about  1 Gigaflop. There  are two interconnects:  a butterflylike [12] 
circuit-switched interconnect ,  and a packet  switched two dimensional  mesh  interconnect .  The  
butterflylike network is best suited for general,  r andom communicat ions .  On applications, such 
as ours, which embed  naturally into a mesh, communica t ions  on the mesh in terconnect  are 
much  faster. If the problem size N × N were to exceed the physical machine  size N ' x  N '  
(N '  = 128 on the MasPar)  then  the larger mesh  can be m a p p e d  onto  the smaller, slowing down 
the computa t ion  by a factor of N / N ' .  

4.2. Computing overflow rates 

At each PEi0 the data needed  are the distributions _P(i, k) and _P(k, j )  for all k :~ i, j. This 
data  is held in the PEs along the same row and column of PEid. To initialize the computa t ion  
across the machine  we need  only copy each distribution _P(i, j)  f rom PEi, j to every o ther  PE in 
the same row and column. This can be done  by N row and N column broadcasts  in the N × N 
mesh. Taking into account  that  the size of the data _P(i, j)  is O(K) ,  the total t ime needed  is 
O(KN),  using circular shift as described in Section 4.1. 

Focus on a single PE, PEi, j, and the computa t ion  for node-pair  (i, j )  and aggregate state I. 
As before,  let us suppress (i, j )  in the notat ion,  whenever  possible. We proceed in two steps: 
(1) Compu te  the probabilit ies ~m,I and *P'm,1, by equat ions (1) and (2), describing the aggregate 

states of all two-link paths  {(i, m), (m, j)}, m = 0 , . . . ,  N - 1. 
(2) C o m p u t e  the rates Ymd, describing the flow of overflow calls f rom (i, j)  to each of these 

two-link paths. 
At  this point,  no interprocessor  communica t ion  is needed.  The  first step is straightforward, and 
takes O(KN)  t ime for all m = 0 . . . .  , N - 1 ,  and all I = 0 , . . . ,  K - 2 .  We next describe two 
methods  for implement ing  step 2, each having good numerical  stability and low computa t ional  
cost. The  methods  are based on the integral representa t ion 

Ym,I  :-" I~ PK foIHm( X ) dx 

where 

I-Im(X) = + % , , ) ,  
N - I  

H ( x )  = I-I (XtTI)n,I -'l'- lIl"n,l) , 
n=O 

and take advantage of the commonal i t ies  of the integrands H m for different  m. We also 
implemen ted  'direct '  or combinatorial  me thods  for comput ing  the Ym,I, but  found those 
implementa t ions  were significantly slower and were not stable numerically. 
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(1) Compute and store H(x i )  , for i =  1 , . . . ,T ,  where T is a parameter,  and the x i form a partit ion of [0, 1]; 
e.g., x i = i / T .  

(2) Estimate each integral, f lH ,  n(X) dx ,  using the values of the function H,, on this partition. Since Hm(X) 
may increase very rapidly with x, it might be better to use an exponential rather than a linear function 
(trapezoidal rule) to interpolate between consecutive points of the partition. 

Fig. 1. Integration via uniform partit ioning of [0, 1]. 

Fig. 1 describes the first method,  which is based on the observation that the numerical  
integration of the M = N - 2 functions Hm(x) is much cheaper  if the functions are evaluated at 
a common set of points x. The time needed  to evaluate all M functions at a common point is 
of the same order,  namely O(N) ,  as that needed  to compute one of the functions. The total 
time needed  is O(TN), where  T is a tunable parameter  defining the partition used in the 
quadrature.  

Fig. 2 describes another  integration method,  which relies on an asymptotic expansion of 
Hm(X) to bring the cost of its numerical  evaluation down to O(1) for any m and x. This opens 
the way to customizing the integration of each H m to the subinterval of [0, 1] where  the mass of 
H m is concentrated.  Having done so, we can achieve accuracy comparable to the first method 
with a much coarser partition in the quadrature.  

It makes sense to expand H(x)  about x = 1 since H(x)  is increasing with x, assuming its 
largest value over [0, 1] at 1. Expanding about x = 1, it can be shown that 

H ( x ) = H ( 1 )  exp( 
E ( - 1 ) ' + ~ ( x -  1)' 1 ~ , , i  

i=1 l . = o  
) 

Truncating the first sum to S terms, where S is a parameter ,  we obtain as an approximation for 
H(x), 

/4 (x )  = H(1)  exp - ' , 
i ~ . =o q ' . ,  + q'.,l 

(9 )  

IYlm(x) = tYI(x)/(x@.,z + qrn,i). (10) 

(1) Compute and store H(1) and N 1 ~.n=o(Cl)n,l//(Cl)n,l if- l[rn.l)) i, for i = 1 . . . . .  S. Using (10) the cost of evaluating 

any lYlm(X) is now O(S). 

(2) For each m, search [0, 1] for the smallest point x = Xo(m) where 14m(X) is non-negligible. (Our 

implementat ion uses binary search, but  an interpolation search that exploits the rapid growth of f lm(X) 
with x would be better.) 

(3) For each m, estimate f;o(m)I~lm(X)dx from values IZl(xi(m)), i = 1 . . . . .  T, where the x i form a partition of 
[x0(m), l] and T is a parameter.  

Fig. 2. Integration via asymptotic expansion and non-uniform partitioning. 
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Our experience is that for large networks (N >/100) taking S = 2 yields a very accurate estimate 
I4m(X) for Hm(x). Eqs. (9) and (10) have the pleasant property that, following an O(SN) time 
precomputation; evaluating Hm(x) for any m and any x costs just O(S) time. The total time 
needed for the integration method of Fig. 2 is O(S(T + N)), where again T is the parameter 
defining the partition in the quadrature. This completes the discussion of computing the 
overflow rates Ym,I" 

We next compute, for each via k and each aggregate state I, the rate of overflow from 
stream (i, j) to each row neighbor (i, k), when that neighbor is in aggregate state I, 

K - 2  

overflow/((/, j ) ~ ( i ,  k)) ~= ~ Yk,tvj(i, j)Pj(k, j), (11) 
J=0 

and the counterpart for each column neighbor (k, j), 
K - 2  

overflowl((i, j ) ~ ( k ,  j)) A= ~ yk,lvj(i ' j)Pj(i, k). (12) 
J=0 

PEi, j can compute both sums, for all k and I, in O(KN) time in local memory. 
Finally, we sum overflows across the machine to compute the v i ( i  , j ) .  Using (11) and (12), we 

may rewrite Eq. (7) as 
N - 1  N - 1  

v,(i, j ) =  Y'~ overflow1((k, j)  ~ (i, j ))  + Y'~ overflowt((i, k) ~ (i, j ) ) .  (13) 
k = 0  k = 0  

The data of the first sum is held in the column of PEs, N- 1 (PEk,j)j,= 0 , and the data of the second 
N - I  sum in the row (PEi,k)k= 0 . Thus, we can accumulate the u l ( i  , J) ,  for all (i, j) by N row and N 

column summations of the type described in Section 4.1. In the N × N mesh, the total time 
needed is O(N). Adding together the costs of all the computations that go into the computa- 
tion of v I ( i  , j ) ,  for all (i, j) and all I, the time needed is O(KN) with the constants hidden in 
the O-notation dependent on the integration method. 

4.3. Computing link distributions 

As before, focus on a single node-pair (i, j), and the associated processing element PEij.  In 
practice, C = C(i, j) can be in the thousands, and numerical problems arise if the partial 
balance equations are solved naively. A simple robust method is described in Fig. 3, which 
scans the process drift to find a state n* about which the mass will be concentrated, and then 
telescopes recurrence (8) in both directions about n* to complete the computation. 

(1) W h e n  in state n the  drift, or expected change  in state, is A-l{n < C } +  v I - n ,  where  n ~ .a¢ 1. Recal l  tha t  
the decreas ing sequence  of values n = C, C - r K_ 1 . . . .  , C - r 1, 0 delimit  the  boundar i e s  of the aggregates.  
Take n* to be the  largest  of these  K + 1 values n such that  the  drift is nonnegat ive .  

(2) Telescope (8) upwards  from n* to de te rmine  unnormal ized  quanti t ies:  7r n for n = n* + 1 , . . . ,  C, and  PI for 
each aggregate  I whose states  are 1> n*. Similarly, te lescope downwards  to obta in  the  o the r  Pt. Normal ize  
P. 

Fig. 3. Comput ing  the  dis t r ibut ion _P(i, j) .  
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The time needed is O(C). Thus, all if(i, j') are computed in O(Cma x) time, where Cm~ x £ 
maxti.j)C(i, j). 

5. Experience 

We implemented three codes to solve the fixed point equations on a 16384 processor MasPar 
MP-1 [4]. The codes differ only in the integration technique used to compute the overflow rates 
Y: 
• [L] uniform partition, linear interpolation (the method of Fig. 1), 
• [E] uniform partition, exponential interpolation (another variant of the method of Fig. 1), and 
• [A] non-uniform partition, asymptotic expansion (the method of Fig. 2, with linear interpola- 

tion). 
The codes were written in MPL, which is based on C. The codes were extensively tested for 
speed and accuracy against a serial Monte Carlo simulation, and against published data [14] for 
symmetric networks. 

Let us discuss some results on a realistic example, derived from a fiber cut scenario in the 
A T & T  long-distance network. In this example, the number of nodes N = 114, the total number 

3 of trunks is about 3 million. Link capacities and offered loads vary widely from a few tens of a 
few thousands. As a result of the fiber cut, several hundred links are overloaded and 
experience significant blocking. In practice, a large fraction of the simulation studies used to 
assess network performance and reliability investigate similar focused overloads. It turns out 
that about 13% of the calls are not routed direct, and about 6% are blocked. Fig. 4 uses 
gray-scale to depict the blocking the stream under ALBA with K = 2 aggregates, obtained from 
simulation. Pixel (i, j) 's gray level shows the probability of blocking a call in stream (i, j), 
interpolating between white (probability 0) and black (probability 1). 

In the fixed point approximations, we initially set the overflow rates __u to 0. At each iteration 
we produce new estimates for the _u. At negligible additional cost, at each iteration we compute 
the aggregate blocking probability, 

Y'~ h(i,  j)Pr{blocking for stream (i, j ) } /  ~ h(i,  j ) ,  
(i, j) (i, j) 

and stopped the computation when the values of this quantity produced by successive iterates 
differed by less than 10 -4. In codes L and E, we evaluated the integrands H m at S = 60 points 
evenly dividing. [0, 1]. In code A, we used an S = 2 term asymptotic expansion Hm, and 
evaluated the H m at T = 15 points evenly dividing the right subinterval of [0, 1] where the mass 
of H,~ is concentrated. We found the the numerical differences between the results of the 
three codes to be negligible, and that the results to be in very good agreement with the 
simulation (obtained from a 100 million call run, which should be long enough for adequate 
comparison with the data obtained from the fixed point approximation). A gray-scale plot of 
the blocking probabilities obtained from the fixed point approximation is indistinguishable from 
the plot (Fig. 4) obtained from simulation. The scatterplot of Fig. 5 gives a closer look at the 
differences. In this figure, for each stream (i, j)  with arrival rate greater than 100 erlangs, we 
plot a point whose x-coordinate is the stream's blocking probability measured in simulation and 
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whose y-coordinate is the stream's blocking probability measured in code L. There were about 
1700 such streams, accounting for about 70% of the total traffic. If the simulation and fixed 
point approximation results were identical, all points would lie on the diagonal. 

The performance of the three codes is summarized in Table 1. Codes L and E took 15 
iterations to converge and code A took 13 iterations. To gauge speedup, we also implemented 
C language serial counterparts of codes L and E, and ran the codes on a high performance 
serial computer: a Silicon Graphics system using the MIPS RS3000 microprocessor, with 128 

ii!~i 

i~i!i! 

i!ii! 

ii!il ~ 

il~ii 

Fig. 4. Simulation results. The outer border encloses a symmetric matrix of 114 × 114 pixels, with pixel (i, j) showing 
the blocking probability of calls belonging to stream (i, j), for a realistic 114 node network under the ALBA routing 
policy, with K = 2 aggregates. The data were obtained by a 100 million call simulation, in which statistics were 
gathered over the last 99 million calls. A white pixel corresponds to a link with probability 0 of blocking, and a black 
pixel to a link with probability 1 of blocking; the gray-level interpolates between these two extremes. 
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Fig. 5. Scatterplot comparing results of the simulation and the fixed point approximation (code L) for each of the 
roughly 1700 streams with arrival rate exceeding 100 erlangs. For each such stream, we plot a point whose 
x-coordinate is the blocking probability measured in simulation, and whose y-coordinate is the blocking probability 
obtained by solving the fixed point equations. 

Table 1 
Performance of the MasPar codes on the fiber cut example. The percentages are of the total time to convergence 

Integration method # Iterations Run time (secs.) Bottlenecks 

uniform partition 15 66 
linear interpolation 

nonuniform partition 13 80 
asymptotic expansion 

uniform partition 15 143 
exponential interpolation 

row and column sums (46%) 
integration (32%) 

integration (51%) 
row and column sums (33%) 

integration (69%) 
row and column sums (22%) 
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million bytes of memory. On this system, the serial counterpart of code L took 2.76 hours (177 
times slower than the MasPar) and the serial counterpart of code E took 4.84 hours (221 times 
slower than the MasPar). Taking into account the (very slow) speed of individual PEs on the 
MasPar parallel computer, speedups between 100 x and 200 x over the serial computer are 
close to the theoretical peak. 

Some discussion of the bottlenecks in the codes is in order. We used a general, built-in 
distributed summing mechanism on the MasPar to implement the row and column summations. 
Unfortunately, we paid a significant performance penalty, because this mechanism uses the 
machine's butterflylike circuit-switched interconnect, not the mesh interconnect. Tests show 
that a customized row and column sum built on the mesh interconnect would run eight times 
faster, effectively removing this bottleneck. A simple way to speed the integration up by a 
factor of two would have been to evenly divide the integration task for stream (i, j)  evenly 
between PEij  and PE/,i instead of having the two PE's each do the complete job. For example, 
in the uniform partition method (1) one PE could integrate over [0, 1] and the other over [1, 1]. 
The overhead needed to communicate, tally, and store the sums at both PEs would be small. 
Codes E and A owe their relative slowness to the fact that within the integration each 
evaluation of the integrand involves log(. ) or exp(" ), and we used the system library implemen- 
tations of these functions. In our application, we do not need the great numerical precision that 
the library implementations provide. We could speed the integration significantly by using 
simple, customized versions of log(-) and exp(.). 

6. Final remarks 

We have have proposed, implemented, and tested efficient massively parallel algorithms for 
solving the fixed point equations modeling the Aggregated Least Busy Alternative routing 
policy, for large, asymmetric circuit-switched networks. Very high performance codes were 
implemented on a 16384 processor MasPar computer, reducing the time needed to solve a 
realistic network of over 100 nodes to about a minute, as opposed to a few hours on a 
high-performance workstation. If more processors are available then greater speedups are 
possible. In particular, using N3KCmax PEs, the inherent parallelism in the calculations can be 
exploited to bring the time per iteration down from O ( K N +  Cma x) to O(log N + l o g  K +  
log Cmax). 

In this paper, we treated the ALBA routing policy, but the same approach applies to any 
state dependent routing policy where (i) each link is assigned a state as an arbitrary function of 
the number of calls in progress on the link, (ii) the state of an alternate path is defined as a 
arbitrary function of the states of its links, and (iii) the choice of an alternate path is an 
arbitrary (random) function of the states of the candidate paths. As long as alternate paths are 
restricted to two links, the associated system of equations maps naturally onto the mesh, with 
simple data flows across rows and columns. The computational complexity depends on the 
defining functions. 

What are the implications for the fixed point approach to the approximate analysis of other 
stochastic models? To date, fixed point approximations have been applied mostly to symmetric 
models because without symmetry the computational cost of solving the equations can be 
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formidable. However, as we have demonstrated, the independence assumptions underlying the 
approximations can lead to tremendous parallelism in the equations, which can be exploited to 
dramatically reduce the computational burden. 
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