
ELSEVIER Performance Evaluation 20 (1994)67-81

PERFORMANCE
EVALUATION
An International
Journal

Fast parallel solution of fixed point equations
for the performance evaluation of circuit-switched networks

Alber t G. G r e e n b e r g ,,a A n d r e w M. Odlyzko a, Jenni fer Rexford b,1
David Espinosa c,2

a Mathematical Sciences Research, AT&TBell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
b Electrical Engineering and Computer Science Department, University of Michigan, 2220 EECS, 1301 Beal Avenue,

Ann Arbor, MI 48109-2122, USA
c Computer Science Department, Columbia University, 450 Computer Science, New York, N Y 10027, USA

Abstract

Massively parallel algorithms are presented for solving systems of fixed point equations, modeling state-depen-
dent routing in large asymmetric circuit-switched networks. Our focus is on the Aggregated Least Busy Alternative
(ALBA) routing policy of Mitra, Gibbens and Huang. On a 16384 processor MasPar parallel computer, about a
minute is required to compute estimates of the call blocking probabilities for every node-pair, for realistic networks
of over 100 nodes. A few hours are required on a high speed workstation.

I. Introduction

The engineering of a modern telecommunication system involves extensive performance
evaluation, testing the system's response to a gamut of stresses, including traffic overloads and
equipment failures such as fiber cuts. At present, the dominant tool for such performance
evaluation is discrete event simulation. In this paper, we consider an alternative: analytic fixed
point methods, which yield approximate performance estimates. Massively parallel algorithms
are presented for solving the equations. The algorithms have been implemented and tested on
a 16384 processor MasPar parallel computer. Experimental results, for realistic simulation
scenarios for large asymmetric networks, show that accurate estimates are delivered at great

* Corresponding author.
Jennifer Rexford's research was supported by a grant from the AT&T Graduate Research Program for Women.

2 David Espinosa's research was supported by an AT&T graduate fellowship.

Elsevier Science B.V.
SSDI 0166-5316(94)00006-6

68 A.G. Greenberg et aL /Performance Evaluation 20 (1994) 67-81

speed. Thus, the algorithms are fast enough to provide an interactive means for exploring
network performance, which should serve as a useful complement to discrete event simulation.

We consider networks of N nodes in which a stream of calls arrives to each node pair, with
each call representing a request that a route in the network be set up to carry the call. It is
convenient to assume that the network is fully connected; there is no loss of generality because
we allow a link's call carrying capacity, counted in trunks, to be 0. If accepted, a call arriving to
the stream associated with a given node pair (i, j) requires for its exclusive use one trunk on
each link of its route between i and j.

Mitra, Gibbens and Huang [14] introduced the Aggregated Least Busy Alternative (ALBA)
state dependent routing scheme. This policy is simple and remarkably effective, and is closely
related to the Real-Time-Network - Routing (RTNR) policy, used to control the A T & T long
distance network [2]. The number of calls in progress on each link determines the link's
aggregate state, in the range 0 to K, where K is a small parameter (e.g., K = 2 or 3). A low
aggregate state indicates relatively few calls in progress. Alternate routes are restricted to two
links: {(i, k), (k, j)}, for any k 4: i, j. A link (i, j) in state > / K - 1 is reserved for the use of
stream (i, j), and cannot be used as part of any alternate route. A call arriving to stream (i, j)
is routed on link (i, j) unless that link is full to capacity. Otherwise, if at least one alternate
route is not reserved, then an alternate route is chosen uniformly at random among those in the
least aggregate state. Otherwise, the call is blocked (rejected and lost). The details are
described in Section 2.

Following the treatment in [14] for symmetric networks, we derive a system of 'fixed point'
equations that estimate traffic flows under ALBA for asymmetric networks. Unfortunately, for
large, realistic networks, the system of equations is so large and computationally burdensome to
solve on a conventional, serial computer, that solving the equations appears to offer little
advantage over discrete event simulation.

Our contribution is to show that the parallelism inherent in the system of fixed point
equations can be simply and efficiently exploited to solve the system very rapidly on today's
massively parallel computers. Our algorithms have been implemented on a 16384 processor
MasPar [4] single-instruction-multiple-data (SIMD) parallel computer, and have been found to
be numerically robust as well as fast. It is a simple matter to adapt the codes to a large class of
state-dependent routing schemes other than ALBA (Section 6).

In Section 2, we define the network model and the ALBA routing policy. In Section 3, we
describe the system of fixed point equations, and in the following section present our
algorithms for the solution. A natural parallel architecture for the computational problem is
the N x N mesh, described in Section 4. The solution method is iterative. On the N x N mesh,
each iteration takes O(KN + Cma x) time, where Cma x is the maximum link capacity. On a serial
computer the time needed is O(KN3 + CmaxN2). In Section 5, we report our computational
experience. Some final remarks are given in Section 6.

In recent years, there has been considerable research in the area of analysis of state-depen-
dent routing policies through the solution of fixed point equations [1,3,6-11,13,15,16]. Indepen-
dently of the work reported here, Chung, Kashper, and Ross [5] have developed, implemented,
and tested serial algorithms for solving the fixed point equations for networks with state-depen-
dent routing. Their results include an interesting t ime/memory tradeoff, and a new approxima-
tion for multirate networks.

A.G. Greenberg et al. /Performance Evaluation 20 (1994) 67-81 69

Our approach to the derivation of the equations, which closely follows the development in
[14] is different. In particular, our equat ions model the uniform r andom choice of an al ternate
two-link paths among all such paths in the least aggregate state. Chung, Kashper, and Ross [5]
investigate ' least loaded routing ' (an extreme case of ALBA, where the number of aggregate
classes K is unbounded) in detail, and assume a determinist ic t ie-breaking rule ra ther than
uniform random choice. Unde r least loaded routing, the t ie-breaking rule may have little
impact because ties may be infrequent . In the case of ALBA, there are compell ing per formance
and practical reasons for very small K [14]. Nearly all al ternate routing oppor tuni t ies would
require tie-breaking, and it makes sense to spread the overflow traffic uniformly over the
al ternates in the least aggregate state. Indeed, this is done in pseudo- random fashion in the
A T & T R T N R scheme. Handl ing uniform random, choice turns out to be significantly more
computat ional ly challenging than determinist ic tie-breaking. In Section 3.1, we propose solu-
tions based on an integral representa t ion of the choice probabilities.

Chung, Kashper, and Ross [5] assess the accuracy of the estimates under a variety of traffic
loads. Generally, their experiments show that the accuracy is quite acceptable, and is especially
good at modera te and heavy loads. However, at light loads, where blocking is rare, the blocking
est imates are somet imes too optimistic - predict ing that blocking is rarer still. (Our experi-
ments - not repor ted here - confirm these trends.) In Section 5 we test our algori thm on a
realistic focused overload scenario with parameters mode led after the A T & T network. (It
turns out that the overall call blocking probability is about 6%, and congest ion is concent ra ted
on several hundred of the several thousand links.) It is of critical impor tance to investigate
network per formance and reliability under such scenarios. We find in Section 5 the accuracy of
the blocking est imates to be quite acceptable; showing remarkable agreement with simulation.

2. Network model

' N (N - 1) We consider a fully connected, circuit-switched network with N nodes and
bidirectional links. It is convenient to use the tuple (i, j) to denote the pair of nodes i and j,
keeping in mind that (j , i) denotes the same pair; 0 ~<i, j < N . The basic parameters of
node-pair (i, j) are
• the capacity of link (i, j), counted in trunks and
• the rate of arrival of the s tream of calls to (i, j).
We write these two parameters as functions of (i, j): C(i, j) and h(i, j) , respectively. Again,
since (i, j) and (j , i) denote the same node-pair , these and all functions of (i, j) in t roduced
below have the same value at (j , i) as at (i, j). It is assumed that call arrival process to each
s t ream is Poisson, and that each call's durat ion is independent ly and exponentially distr ibuted
with mean 1. (Thus, rates are counted in erlangs.)

Aggregated Least Busy Alternative
A call arriving to s t ream (i, j) is routed on the direct one-link path, if at the t ime of arrival,

at least one t runk on the link is free. Otherwise, the call is ei ther routed on some two-link path
between i and j, or blocked. At the t ime of its arrival, provided the call is not blocked, the call
seizes for its exclusive use one t runk on each link of its route, and releases those trunks at the

70 A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81

t ime of its depar ture . We term a call routed on a one-l ink path a direct call and one routed on
a two-link path an overflow call.

Unde r the Aggregated Least Busy Alternative (ALBA) routing policy [14], the choice of the
two-link path for an overflow call depends on the instantaneous network state, and favors paths
whose current load is relatively light. Consider link (i, j), with capacity C = C(i, j), and state
defined as the number of calls in progress on the link. A key control pa ramete r is the number
of aggregate states K + 1 the link may assume. Aggregate states ~'1 = ~ z (i , j), I = 0 , K, are
de te rmined by parameters rj = rj(i, j), J = 1 , . . . , K - 1, as

• o = {0, I , . . . , C - r l - 1},

"~1 = { C - r l , C - r 1 + 1 , . . . , C - r 2 - 1},

~ g - 1 = { C - - r K - I , C - - r K - 1 + 1 , . . . , C - 1},

{c}.
An aggregate ~ i may be empty. Let t ing n denote the link's state, the aggregate state is that I
such that n ~ ¢ r (These definit ions of sets a¢' I differ slightly f rom the definit ions in [14].)

Al ternate routing works as follows. The aggregate state of a two-link al ternate path is
def ined to be the maximum of the aggregate states of the two links. If there is at least one
al ternate path with aggregate state less than K - 1, then the call is carried on one of the paths,
selected uniformly at r andom from among those having the minimal aggregate state. Otherwise,
the call is blocked. Thus, links with aggregate state K - 1 are available only for direct calls,
while links in lower aggregate states are available for direct and overflow calls. In aggregate
state K, the link is full to capacity, so no calls can be accepted.

3. Fixed point equations

In this section, we present the system of fixed point equat ions describing the network's
equil ibrium behavior, under the following independence approximation: The event that a given
link assumes a given aggregate state is independent from link to link. The unknowns in the system
of equat ions are the state dependen t overflow rates of calls impinging on each link(i, j):

u(i, j) = (Uo(i, j) , u,(i, j) , . . . ,UK_2(i, j)) ,

where

~',(i, j) & rate at which link (i, j) , when in aggregate state I , receives overflow

calls f rom streams incident to (i, j) .

By incident to, we mean having a node in common; that is, (i, k) or (k, j), k 4: i, j, are incident
to (i, j). Note vi(i, j) -- 0 if I >~ K - 1.

In Sections 3.1 and 3.2, we relate these overflow rates to the equil ibrium distributions
describing the aggregates states of the individual links (i, j):

P (i , j) = (Po(i , j) , PI(i , j) ,PK(i , j))

A.G. Greenberg et al. /Performance Evaluation 20 (1994) 67-81 71

where

Pi(i, j) ~= Pr{link (i, j) has aggregate state I}.

The equat ions p resen ted in Sections 3.1 and 3.2 define a mapping from overflow rates to
overflow rates. Taking the fixed point of this mapping as an est imate of the real overflow rates
in the network, we can then easily compute the key measures of steady state performance, in
particular, the blocking probability for each stream.

3.1. Overflow rates

To simplify notat ion, let us focus on a single node-pair (i, j) and suppress the dependence
on (i, j) in the notat ion whenever possible. There are M = N - 2 associated al ternate paths
{(i, v), (v, j)} identified by the in termedia te or via node v. By the link independence assump-
tion, for any v 4= i, j,

45,,i ~ Pr{aggregate state of al ternate path {(i, v), (v, j)} is I}
I I - 1

=el(i ,v) Y '~Pj (v , j)+e , (v , j) E e j (i , v) (1)
J = 0 J = 0

since the aggregate state of the two-link path is the maximum of the aggregate states of the two
links. For v = i or j, define ~,~,~ = 0 if I < K and q~,,,t¢ = 1. It is convenient to also define

qt~, 1 & Pr{aggregate state of al ternate path {(i, v), (v, j)} is > I}

= 4~,,1+1 + "'" +q~,,,/¢. (2)

Now, fix v 4: i, j and 0 ~< I < K - 1, and suppose that al ternate {(i, v), (v, j)} is in aggregate
state I. U nde r ALBA, this al ternate is selected to carry an overflow call if: (i) each of the o ther
al ternates {(i, u), (u, j)} (u 4: v) has aggregate state >/I, and (ii) al ternate {(i, v), (v, j)} wins
the uniform random selection among those with aggregate state equal to I. Let g , denote the
probability that among the other alternates, n have aggregate state I, and the rest have
aggregate states > I. Then the probability of selecting the al ternate {(i, v), (v, j)} to carry an
overflow call is

M - l 1
gn. (3)

n=0 n + l

Let us collect the gn in the generat ing function:
M - 1

O(x)= E g,x". (4)
n = 0

By the assumption that the aggregate states of the links are independent , the aggregate states
of the al ternates {(i, u), (u, j)} (u 4: v) are independent . Thus, by multiplying the two-point
generat ing functions xq~.. t + qt., t (u ~ v), we obtain as the coefficient of x n the probability
that n al ternates have aggregate state I and M - n - 1 have larger aggregate states:

c (x) = I - [q,,,,). (5)
/ / ~ l '

72 A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81

Integrat ing (4) f rom 0 to 1 produces (3), so

f l H (X(~)u,, q- ~u, ,) dx
~0 U ~= U

is the probability of selecting the al ternate {(i, v), (v, j)} to carry an overflow call, and the rate
of overflow to this al ternate is

/o 1 Y,,,l=a(i, j)Pz¢(i, j) I-I (xq~,,i+ vltu,t) dx ,
U4=U

since a(i, j)Pl¢(i, j) is the rate at which calls arrive to s tream (i, j) that cannot be carried
direct. Put t ing the last equat ion in more general form, and making explicit the dependence on
the link identity, we obtain

Y~,. t (i , j)= (i , j) P K (i , j) . (X q t u . i (i , j) + ~ , , . t (i , j)) d x i fv - - / : i , j , (6)

i f v = i o r v = j .

For given I and (i, j) , comput ing the M quantit ies Y,,.t(i, j), v--/= i, j, is one of the more
delicate and interesting parts of the computat ion, and is discussed in Section 4.

We are now in position to derive the rates of overflow z, into the links as functions of their
aggregate state. Again, focus on a single node-pair (i, j) and suppose its aggregate state is I.
Any given incident link (k, i), k 4= i, j, assumes aggregate state J with probability Pj(k, i). If
link (k, i) is in aggregate state J then:
• the two-link pa th {(k, i), {i, j)} is in aggregate state I v J ~= max{I, J}, and
• s t ream (k, j) routes overflow calls to this two-link path at rate Y~,j v f l k , j).
Summing the contr ibutions of all s treams incident to link (i, j) we obtain

u+(i, j) = E Yi . lv , (k, j) P j (k , i) + Y'. ~ , i v , (i , k) P , (k , j) . (7)
k = 0 = \ k = 0 J = 0

Note that all quanti t ies on the right hand side are functions of the given parameters and the
unknown distributions _P(k, i) and _P(k, j) , for k = 0 , . . . , N - 1.

3.2. Link distributions

Consider link (i, j). Let n denote the link state (number of calls in progress) and I the
aggregate state; n ~ 1 =Z¢l(i, J), 0 ~ n ~ C = C(i, j), 0 <~ I <~ K. In this state, direct calls arrive
to the link at rate A = A(i, j) , overflow calls arrive to the link at rate v I = ui(i, j), and calls in
progress depar t the link at rate n. Thus, the state of the link is a b i r t h -dea th process, with
transition rates

qn,n+l = A + Z'l, 0 ~< n < C, n E,.~I,

qn,n_l=n, O < n ~ C .

Solving the partial balance equat ions

7rnqn,n+l=Trn+lqn+a,n, O<~n<C (8)

and normalizing provides the equil ibrium
aggregate state I is given by

P,= E
n ~ ¢ /

A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81 73

probability zr n of state n. The probability of

4. Algorithms

In Section 3.1, we derived the overflow rates v as functions of the link distributions P. In
Section 3.2, we derived the link distributions _P from the overflow rates __v. Viewing the
equat ions as a mapping from overflow rates to overflow rates, a solution is a fixed point. The
basic p rocedure for finding the solution is iteration. That is, given an old tentative solution v
we compute a new tentat ive solution __v'. If the old and new tentative solutions are very close, we
stop, accepting _v'. Otherwise, we replace the old tentative solution with the new one, and carry
out another iteration. Some form of damping may be used to avoid oscillations.

In Section 4.1 we describe the computa t ional model. In Sections 4.2 and 4.3, we describe the
details of the computa t ion that takes the link distributions _P into the overflow rates v, and the
computa t ion taking the __v into the ft.

4.1. Computational model

In order to make a precise and practically meaningful analysis of the parallel algorithms
presen ted below, we focus at tent ion on a particular parallel architecture: the N × N toroidally
connected mesh of processing e lements (PEs). Let P E i j denote the PE at location (i, j) of the
mesh, 0 ~< i, j < N . PEii is connected to PE/ j+I , PEi,j_I, PEi+1,j, PE~_~,j, with the subscript
ar i thmetic modulo N. To implement the fixed point computat ion, we must first map the data
onto the memor ies of the individual PEs. We assign the data of node-pair (i, j) to two PEs:
PE~,j and PEj,~. The two PEs compute identical results; in particular, the quanti t ies _P(i, j) and
_v(i, j). Though duplicat ing the work in this way may seem wasteful, it pays off in very simple
code with very efficient interprocessor communicat ion .

We require two basic operat ions involving interprocessor communicat ion . Suppose that each
PE holds a copy of a variable X, with PEi,j 's copy denoted X/,j. The two operat ions we require
are:
• [Row or column broadcast] A row broadcast, given X and a row index i, copies Xi,j to the

memory of every PEk, ~, for every 0 ~< k, j < N. A column broadcast is similar.
N 1 • [Row or column sum] A row sum, given X and a row index i, stores ~2k=0Xkj into the

memory of PE~j, for every 0 ~<j < N. A column sum is similar.
Thus, in row sums and row broadcasts, the columns act independent ly; similarly for column
sums and column broadcasts.

In the N x N mesh, a row sum for given X and i can be carried out in O (N) time as follows.
At the first step, PEi,j sends X,, i to PEi+I, j. At the second step PEi+~, j sends X~,~ +X,+I , j to
the next PE: PEi+2, j. At the third step, PEi+2, j sends Xi, j +Xi+~j + X i + z j to PE/+3, j, and so
forth. At the N th step, PEi,j receives the full sum. It is a simple extension to carry out in the

74 A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81

same number of steps a row sum for every row i = 0 , . . . , N - 1, by circularly shifting N partial
sums (one for each i) through each column. Similarly, in O (N) t ime we can carry out a row
broadcast for every row i = 0 , N - 1, by circularly shifting the data through the columns.

Our algori thms have been implemented on a 16384 processor MasPar MP-1 [4]. In this
parallel compute r the PEs are organized in an 128 x 128 mesh. The archi tecture is Single-In-
s t ruct ion-Mult iple-Data (SIMD), meaning at each step each active processor executes the same
instruction on its local data. Though the individual PEs are very slow, the aggregate peak
floating point rate is about 1 Gigaflop. There are two interconnects: a butterflylike [12]
circuit-switched interconnect , and a packet switched two dimensional mesh interconnect . The
butterflylike network is best suited for general, r andom communicat ions . On applications, such
as ours, which embed naturally into a mesh, communica t ions on the mesh in terconnect are
much faster. If the problem size N × N were to exceed the physical machine size N ' x N '
(N ' = 128 on the MasPar) then the larger mesh can be m a p p e d onto the smaller, slowing down
the computa t ion by a factor of N / N ' .

4.2. Computing overflow rates

At each PEi0 the data needed are the distributions _P(i, k) and _P(k, j) for all k :~ i, j. This
data is held in the PEs along the same row and column of PEid. To initialize the computa t ion
across the machine we need only copy each distribution _P(i, j) f rom PEi, j to every o ther PE in
the same row and column. This can be done by N row and N column broadcasts in the N × N
mesh. Taking into account that the size of the data _P(i, j) is O(K) , the total t ime needed is
O(KN), using circular shift as described in Section 4.1.

Focus on a single PE, PEi, j, and the computa t ion for node-pair (i, j) and aggregate state I.
As before, let us suppress (i, j) in the notat ion, whenever possible. We proceed in two steps:
(1) Compu te the probabilit ies ~m,I and *P'm,1, by equat ions (1) and (2), describing the aggregate

states of all two-link paths {(i, m), (m, j)}, m = 0 , . . . , N - 1.
(2) C o m p u t e the rates Ymd, describing the flow of overflow calls f rom (i, j) to each of these

two-link paths.
At this point, no interprocessor communica t ion is needed. The first step is straightforward, and
takes O(KN) t ime for all m = 0 , N - 1 , and all I = 0 , . . . , K - 2 . We next describe two
methods for implement ing step 2, each having good numerical stability and low computa t ional
cost. The methods are based on the integral representa t ion

Ym,I :-" I~ PK foIHm(X) dx

where

I-Im(X) = + % , ,) ,
N - I

H (x) = I-I (XtTI)n,I -'l'- lIl"n,l) ,
n=O

and take advantage of the commonal i t ies of the integrands H m for different m. We also
implemen ted 'direct ' or combinatorial me thods for comput ing the Ym,I, but found those
implementa t ions were significantly slower and were not stable numerically.

A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81 75

(1) Compute and store H(x i) , for i = 1 , . . . ,T , where T is a parameter, and the x i form a partit ion of [0, 1];
e.g., x i = i / T .

(2) Estimate each integral, f lH , n(X) dx , using the values of the function H,, on this partition. Since Hm(X)
may increase very rapidly with x, it might be better to use an exponential rather than a linear function
(trapezoidal rule) to interpolate between consecutive points of the partition.

Fig. 1. Integration via uniform partit ioning of [0, 1].

Fig. 1 describes the first method, which is based on the observation that the numerical
integration of the M = N - 2 functions Hm(x) is much cheaper if the functions are evaluated at
a common set of points x. The time needed to evaluate all M functions at a common point is
of the same order, namely O(N) , as that needed to compute one of the functions. The total
time needed is O(TN), where T is a tunable parameter defining the partition used in the
quadrature.

Fig. 2 describes another integration method, which relies on an asymptotic expansion of
Hm(X) to bring the cost of its numerical evaluation down to O(1) for any m and x. This opens
the way to customizing the integration of each H m to the subinterval of [0, 1] where the mass of
H m is concentrated. Having done so, we can achieve accuracy comparable to the first method
with a much coarser partition in the quadrature.

It makes sense to expand H(x) about x = 1 since H(x) is increasing with x, assuming its
largest value over [0, 1] at 1. Expanding about x = 1, it can be shown that

H (x) = H (1) exp(
E (- 1) ' + ~ (x - 1)' 1 ~ , , i

i=1 l . = o
)

Truncating the first sum to S terms, where S is a parameter , we obtain as an approximation for
H(x),

/4 (x) = H(1) exp - ' ,
i ~ . =o q ' . , + q'.,l

(9)

IYlm(x) = tYI(x)/(x@.,z + qrn,i). (10)

(1) Compute and store H(1) and N 1 ~.n=o(Cl)n,l//(Cl)n,l if- l[rn.l)) i, for i = 1 S. Using (10) the cost of evaluating

any lYlm(X) is now O(S).

(2) For each m, search [0, 1] for the smallest point x = Xo(m) where 14m(X) is non-negligible. (Our

implementat ion uses binary search, but an interpolation search that exploits the rapid growth of f lm(X)
with x would be better.)

(3) For each m, estimate f;o(m)I~lm(X)dx from values IZl(xi(m)), i = 1 T, where the x i form a partition of
[x0(m), l] and T is a parameter.

Fig. 2. Integration via asymptotic expansion and non-uniform partitioning.

76 A.G. Greenberg et al. / Performance Eualuation 20 (1994) 67-81

Our experience is that for large networks (N >/100) taking S = 2 yields a very accurate estimate
I4m(X) for Hm(x). Eqs. (9) and (10) have the pleasant property that, following an O(SN) time
precomputation; evaluating Hm(x) for any m and any x costs just O(S) time. The total time
needed for the integration method of Fig. 2 is O(S(T + N)), where again T is the parameter
defining the partition in the quadrature. This completes the discussion of computing the
overflow rates Ym,I"

We next compute, for each via k and each aggregate state I, the rate of overflow from
stream (i, j) to each row neighbor (i, k), when that neighbor is in aggregate state I,

K - 2

overflow/((/, j) ~ (i , k)) ~= ~ Yk,tvj(i, j)Pj(k, j), (11)
J=0

and the counterpart for each column neighbor (k, j),
K - 2

overflowl((i, j) ~ (k , j)) A= ~ yk,lvj(i ' j)Pj(i, k). (12)
J=0

PEi, j can compute both sums, for all k and I, in O(KN) time in local memory.
Finally, we sum overflows across the machine to compute the v i (i , j) . Using (11) and (12), we

may rewrite Eq. (7) as
N - 1 N - 1

v,(i, j) = Y'~ overflow1((k, j) ~ (i, j)) + Y'~ overflowt((i, k) ~ (i, j)) . (13)
k = 0 k = 0

The data of the first sum is held in the column of PEs, N- 1 (PEk,j)j,= 0 , and the data of the second
N - I sum in the row (PEi,k)k= 0 . Thus, we can accumulate the u l (i , J) , for all (i, j) by N row and N

column summations of the type described in Section 4.1. In the N × N mesh, the total time
needed is O(N). Adding together the costs of all the computations that go into the computa-
tion of v I (i , j) , for all (i, j) and all I, the time needed is O(KN) with the constants hidden in
the O-notation dependent on the integration method.

4.3. Computing link distributions

As before, focus on a single node-pair (i, j), and the associated processing element PEij. In
practice, C = C(i, j) can be in the thousands, and numerical problems arise if the partial
balance equations are solved naively. A simple robust method is described in Fig. 3, which
scans the process drift to find a state n* about which the mass will be concentrated, and then
telescopes recurrence (8) in both directions about n* to complete the computation.

(1) W h e n in state n the drift, or expected change in state, is A-l{n < C } + v I - n , where n ~ .a¢ 1. Recal l tha t
the decreas ing sequence of values n = C, C - r K_ 1 , C - r 1, 0 delimit the boundar i e s of the aggregates.
Take n* to be the largest of these K + 1 values n such that the drift is nonnegat ive .

(2) Telescope (8) upwards from n* to de te rmine unnormal ized quanti t ies: 7r n for n = n* + 1 , . . . , C, and PI for
each aggregate I whose states are 1> n*. Similarly, te lescope downwards to obta in the o the r Pt. Normal ize
P.

Fig. 3. Comput ing the dis t r ibut ion _P(i, j) .

A.G. Greenberg et al. / Performance Eealuation 20 (1994) 67-81 77

The time needed is O(C). Thus, all if(i, j') are computed in O(Cma x) time, where Cm~ x £
maxti.j)C(i, j).

5. Experience

We implemented three codes to solve the fixed point equations on a 16384 processor MasPar
MP-1 [4]. The codes differ only in the integration technique used to compute the overflow rates
Y:
• [L] uniform partition, linear interpolation (the method of Fig. 1),
• [E] uniform partition, exponential interpolation (another variant of the method of Fig. 1), and
• [A] non-uniform partition, asymptotic expansion (the method of Fig. 2, with linear interpola-

tion).
The codes were written in MPL, which is based on C. The codes were extensively tested for
speed and accuracy against a serial Monte Carlo simulation, and against published data [14] for
symmetric networks.

Let us discuss some results on a realistic example, derived from a fiber cut scenario in the
A T & T long-distance network. In this example, the number of nodes N = 114, the total number

3 of trunks is about 3 million. Link capacities and offered loads vary widely from a few tens of a
few thousands. As a result of the fiber cut, several hundred links are overloaded and
experience significant blocking. In practice, a large fraction of the simulation studies used to
assess network performance and reliability investigate similar focused overloads. It turns out
that about 13% of the calls are not routed direct, and about 6% are blocked. Fig. 4 uses
gray-scale to depict the blocking the stream under ALBA with K = 2 aggregates, obtained from
simulation. Pixel (i, j) 's gray level shows the probability of blocking a call in stream (i, j),
interpolating between white (probability 0) and black (probability 1).

In the fixed point approximations, we initially set the overflow rates __u to 0. At each iteration
we produce new estimates for the _u. At negligible additional cost, at each iteration we compute
the aggregate blocking probability,

Y'~ h(i, j)Pr{blocking for stream (i, j) } / ~ h(i, j) ,
(i, j) (i, j)

and stopped the computation when the values of this quantity produced by successive iterates
differed by less than 10 -4. In codes L and E, we evaluated the integrands H m at S = 60 points
evenly dividing. [0, 1]. In code A, we used an S = 2 term asymptotic expansion Hm, and
evaluated the H m at T = 15 points evenly dividing the right subinterval of [0, 1] where the mass
of H,~ is concentrated. We found the the numerical differences between the results of the
three codes to be negligible, and that the results to be in very good agreement with the
simulation (obtained from a 100 million call run, which should be long enough for adequate
comparison with the data obtained from the fixed point approximation). A gray-scale plot of
the blocking probabilities obtained from the fixed point approximation is indistinguishable from
the plot (Fig. 4) obtained from simulation. The scatterplot of Fig. 5 gives a closer look at the
differences. In this figure, for each stream (i, j) with arrival rate greater than 100 erlangs, we
plot a point whose x-coordinate is the stream's blocking probability measured in simulation and

78 A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81

whose y-coordinate is the stream's blocking probability measured in code L. There were about
1700 such streams, accounting for about 70% of the total traffic. If the simulation and fixed
point approximation results were identical, all points would lie on the diagonal.

The performance of the three codes is summarized in Table 1. Codes L and E took 15
iterations to converge and code A took 13 iterations. To gauge speedup, we also implemented
C language serial counterparts of codes L and E, and ran the codes on a high performance
serial computer: a Silicon Graphics system using the MIPS RS3000 microprocessor, with 128

ii!~i

i~i!i!

i!ii!

ii!il ~

il~ii

Fig. 4. Simulation results. The outer border encloses a symmetric matrix of 114 × 114 pixels, with pixel (i, j) showing
the blocking probability of calls belonging to stream (i, j), for a realistic 114 node network under the ALBA routing
policy, with K = 2 aggregates. The data were obtained by a 100 million call simulation, in which statistics were
gathered over the last 99 million calls. A white pixel corresponds to a link with probability 0 of blocking, and a black
pixel to a link with probability 1 of blocking; the gray-level interpolates between these two extremes.

A.G. Greenberg et aL / Performance EL'aluation 20 (1994) 67-81

Blocking Probability

79

t-"
._o
t'l:l
E
X
o
Q..

<

O
T -

O

¢.D
O

(5 -

O

O
(:5

o

I I

0.0 0.2

I I I

0.4 0.6 0.8 1.0

S i m u l a t i o n

Fig. 5. Scatterplot comparing results of the simulation and the fixed point approximation (code L) for each of the
roughly 1700 streams with arrival rate exceeding 100 erlangs. For each such stream, we plot a point whose
x-coordinate is the blocking probability measured in simulation, and whose y-coordinate is the blocking probability
obtained by solving the fixed point equations.

Table 1
Performance of the MasPar codes on the fiber cut example. The percentages are of the total time to convergence

Integration method # Iterations Run time (secs.) Bottlenecks

uniform partition 15 66
linear interpolation

nonuniform partition 13 80
asymptotic expansion

uniform partition 15 143
exponential interpolation

row and column sums (46%)
integration (32%)

integration (51%)
row and column sums (33%)

integration (69%)
row and column sums (22%)

80 A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81

million bytes of memory. On this system, the serial counterpart of code L took 2.76 hours (177
times slower than the MasPar) and the serial counterpart of code E took 4.84 hours (221 times
slower than the MasPar). Taking into account the (very slow) speed of individual PEs on the
MasPar parallel computer, speedups between 100 x and 200 x over the serial computer are
close to the theoretical peak.

Some discussion of the bottlenecks in the codes is in order. We used a general, built-in
distributed summing mechanism on the MasPar to implement the row and column summations.
Unfortunately, we paid a significant performance penalty, because this mechanism uses the
machine's butterflylike circuit-switched interconnect, not the mesh interconnect. Tests show
that a customized row and column sum built on the mesh interconnect would run eight times
faster, effectively removing this bottleneck. A simple way to speed the integration up by a
factor of two would have been to evenly divide the integration task for stream (i, j) evenly
between PEij and PE/,i instead of having the two PE's each do the complete job. For example,
in the uniform partition method (1) one PE could integrate over [0, 1] and the other over [1, 1].
The overhead needed to communicate, tally, and store the sums at both PEs would be small.
Codes E and A owe their relative slowness to the fact that within the integration each
evaluation of the integrand involves log(.) or exp("), and we used the system library implemen-
tations of these functions. In our application, we do not need the great numerical precision that
the library implementations provide. We could speed the integration significantly by using
simple, customized versions of log(-) and exp(.).

6. Final remarks

We have have proposed, implemented, and tested efficient massively parallel algorithms for
solving the fixed point equations modeling the Aggregated Least Busy Alternative routing
policy, for large, asymmetric circuit-switched networks. Very high performance codes were
implemented on a 16384 processor MasPar computer, reducing the time needed to solve a
realistic network of over 100 nodes to about a minute, as opposed to a few hours on a
high-performance workstation. If more processors are available then greater speedups are
possible. In particular, using N3KCmax PEs, the inherent parallelism in the calculations can be
exploited to bring the time per iteration down from O (K N + Cma x) to O(log N + l o g K +
log Cmax).

In this paper, we treated the ALBA routing policy, but the same approach applies to any
state dependent routing policy where (i) each link is assigned a state as an arbitrary function of
the number of calls in progress on the link, (ii) the state of an alternate path is defined as a
arbitrary function of the states of its links, and (iii) the choice of an alternate path is an
arbitrary (random) function of the states of the candidate paths. As long as alternate paths are
restricted to two links, the associated system of equations maps naturally onto the mesh, with
simple data flows across rows and columns. The computational complexity depends on the
defining functions.

What are the implications for the fixed point approach to the approximate analysis of other
stochastic models? To date, fixed point approximations have been applied mostly to symmetric
models because without symmetry the computational cost of solving the equations can be

A.G. Greenberg et al. / Performance Evaluation 20 (1994) 67-81 81

formidable. However, as we have demonstrated, the independence assumptions underlying the
approximations can lead to tremendous parallelism in the equations, which can be exploited to
dramatically reduce the computational burden.

References

[1] J.M. Akinpelu, The overload performance of engineered networks with nonhierarchical and hierarchical
routing, AT&TBell Laboratories Technical Journal 63 (September 1984) 1261-1281.

[2] G.R. Ash, J.-S. Chen, A.E. Frey and B.D. Huang, Real-time network routing in a dynamic class-of-service
network, In: Thirteenth International Teletraffic Congress (ITC-13), Copenhagen, June 1991.

[3] G.R. Ash and B.D. Huang, An analytic model for adaptive routing networks, IEEE Transactions on Communi-
cations, to appear.

[4] T. Blank, The MasPar MP-1 architecture, In: Compcon Spring 1990 (IEEE Computer Society Press, San
Francisco, CA, 1990).

[5] S.-P. Chung, A. Kashper and K.W. Ross, Computing approximate blocking probabilities for large loss networks
with state-dependent routing, preprint (revised September, 1992) July 1991.

[6] A. Girard, Blocking probability of noninteger groups with trunk reservation, IEEE Transactions on Communica-
tions COM-33 (February 1985) 113-120.

[7] A. Girard and M.-A. Bell, Blocking evaluation for networks with residual capacity adaptive routing, IEEE
Transactions on Communications COM-37 (December 1989) 1372-1380.

[8] S. Katz, Statistical performance analysis of a switched communication network, In: International Teletraffic
Congress ITC-5, New York, 1967, 566-575.

[9] F.P. Kelly, Blocking probabilities in large circuit-switched networks, Advances in Applied Probability 18 (1986)
473-505.

[10] F.P. Kelly, Loss networks, The Annals of Applied Probability 1(3) (August 1991) 319-378.
[11] R.S. Krupp, Stabilization of alternate routing networks, In: Proceedings of the IEEE International Conference on

Communications, Philadelpha, 1982, Paper 31.2.
[12] F.T. Leighton, An Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan

Kaufman, San Mateo, CA, 1992).
[13] P.M. Lin, B.J. Leon and C.R. Stewart, Analysis of circuit switch networks employing originating office control

with spill, IEEE Transactions on Communications COM-26 (1978) 754-765.
[14] D. Mitra, R.J. Gibbens and B.D. Huang, Analysis and optimal design of aggregated-least-busy-alternative

routing on symmetric loss networks with trunk reservations, In: 13th International Teletraffic Congress, Copen-
hagen, Denmark (North Holland, Amsterdam, 1991).

[15] W. Whitt, Blocking when service is required from several facilities simultaneously, AT&T Technical Journal
(1985) 1807-1856.

[16] E.W.M. Wong and T.-S. Yum, Maximum free circuit routing in circuit-switched networks, In: Proceedings of
IEEE INFOCOM '90 (IEEE Computer Society Press, San Francisco, June 1990) 934-937.

