JOURNAL OF COMBINATORIAL THEORY, Series B 61, 71-82 (1994)

On the Decomposition of Cayley Color Graphs
into Isomorphic Oriented Trees

Joun FrEDERICK FINK

Department of Mathematics and Statistics, University of Michigan-Dearborn,
Dearborn, Michigan 48128

Received August 14, 1990

We prove that if 4 is a minimal generating set for a nontrivial group I"and T
is an oriented tree having |4] edges, then the Cayley color graph D,(I") can be
decomposed into |} edge-disjoint subgraphs, each of which is isomorphic to T; we
say that D, (I") is T-decomposable. This result is extended to obtain a result
concerning fH-decompositions of Cayley graphs for weakly connected oriented
graphs H. The first result is then used to derive several theorems concerning
decompositions of Cayley color graphs into prescribed families of oriented trees.
Applications of some of these theorems to the verification of statements about
decompositions of the n-dimensional hypercube @, are also discussed.  © 1994

Academic Press, Inc.

INTRODUCTION

Except where stated otherwise, the graphs and directed graphs
considered in this paper may be finite or infinite, but will contain neither
multiple edges nor loops. Where necessary, we have assumed the axiom of
choice. An oriented graph is a directed graph that contains no symmetric
pair of edges; that is, if («, v) is an edge of the digraph D, then (v, u) is not
an edge in D. Throughout the paper, we use the notation V(D) and E(D)
to denote respectively the vertex set and edge set of a digraph D; the size
of D is |E(D)|, the cardinality of E(D). A u—v semipath P in a digraph D
is a finite sequence u, e, u,, €5, Us, ..., €,, U, such that each u,e V(D), each
e;€ E(D), u=uy, v=u,, and for each i=1, .., n, either e,=(u, ,,u;) or
e;=(u;, u;_,); the edge ¢, is called a forward edge of P if e;= (u,_, u;) and
a backward edge of P if e,=(u;, u;_,). A digraph D is weakly connected if
it contains a » — v semipath for every pair of distinct vertices » and v.
A weak component of D is a subdigraph of D that is maximal with respect
to the property of being weakly connected.

An oriented tree is an oriented graph whose underlying graph is a tree
(finite or infinite). Since a tree contains a unique ¥ — » path for every pair
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of its vertices u and v, it follows that if 7 is an oriented tree, then T
contains a unique u — v semipath for every pair of vertices u and v in T.
This property of oriented trees will be used extensively.

A decomposition of a directed graph D with at least one edge is a set #
of pairwise edge-disjoint subdigraphs of D such that the set { E(P)|Pe 2}
is a partition of the edge set of D. Each member subdigraph of a decom-
position of D is called a part of the decomposition. A decomposition in
which all of the parts are isomorphic to a particular digraph H is called an
H-decomposition of D. Furthermore, a digraph D that admits an H-decom-
position is said to be H-decomposable. If each part of a decomposition of
D is isomorphic to an element of a specified set & of digraphs and each
element of & is isomorphic to a part of the decomposition, we call the
decomposition an ¥ -decomposition and say that D is ¥-decomposable. The
obvious analogous definitions apply to graphs (rather than digraphs), and
much work has been done relating to decompositions of graphs (see, e.g.,
[4,6,7,9,10, 13, 15]).

Let I” be a nontrivial group and let 4 be a generating set for /. The
Cayley color graph of I' with respect to A, denoted D (I'), is the digraph
whose vertex set is /" and whose edge set is defined as follows: for «, feI”
the (directed) edge («, f) is in D, (") if and only if ag=p§ for some
generator ge 4. We often regard 4 as a set of colors and say that edge
(2, f) has color g (e 4) if and only if xg=p. If K is a subgroup of I we
use the standard notation [/ : K] to denote the index of the subgroup
in I If A<T, the notation (A4 ) denotes the subgroup of I" generated
by A. Note that we shall also use (A4 ) to denote the subdigraph induced
by a subset A of either the edge set or vertex set of the digraph under
discussion ; the meaning will be clear from the context.

For the meanings of graph theoretic terms not defined here and for basic
graph-theoretic results used herein, we refer the reader to [2, 12, 14]. For
basic group theoretic terms and results we suggest [5, 8§, 11].

As indicated by the title of this paper, we shall be interested in 7-decom-
positions of Cayley color graphs where T is an oriented tree. This line of
investigation seemed natural in light of the following theorem which was
obtained independently and nearly simultaneously by Fink [6] and
Ramras [13].

THEOREM A. The n-cube (i.e., hypercube) Q,, is T-decomposable for every
{undirected) tree T of size n. Furthermore, there is a T-decomposition of
each part of which is an induced subgraph of Q,,.

One may see the connection between the n-cube @, and decompositions
of Cayley color graphs by observing that Q, is the underlying (simple)
graph of the Cayley color graph D (I") when I'=(Z,)" and 4= {(1,0,
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0,..0),(0,1,0,..,0), (0,0, 1, ..., 0),.., (0,0, 0, ..., 1) }. Note that the above
theorem gives a best possible answer to one instance of the following
question: If G is a specified graph that contains as a subgraph every tree
T of size n, and » divides the size of G, is G T-decomposable for every tree
T of size n? It is well known that any graph whose minimum degree is n
contains every tree of size n. It is also true that if D is a digraph whose
minimum indegree and minimum outdegree are each at least »n, then D
contains every oriented tree of size . When 4 is an n-element generating
set for a group [, the Cayley color graph D, (/") is regular with indegree
and outdegree both equal to n. Thus, it seems natural to ask whether
D,(I'}) is T-decomposable for every tree T of size n. We shall show that,
regardless of whether |I'| is finite or infinite, the Cayley color graph D ,(I")
is 7-decomposable whenever 4 is a minimal generating set for 7" and T is
any oriented tree having size |4|. We shall then prove several related results.

DecomMposING THE CAYLEY COLOR GRAPHS

In the proofs of the decomposition theorems that follow, we will make
use of the following two basic results about Cayley color graphs (see White
[14] for similar statements).

LemMa 1. For any given element g of a group I" with generating set 4,
the mapping @,. V(D (') > V(D4(I')) defined by ¢,(v)=gv is an
automorphism of D ,(I") that preserves edge colors. Moreover, the corre-
spondence g «» @, determines an isomorphism of I" with the color-preserving
automorphism group of D ((I').

Lemma 2. If A is a nonempty subset of a minimal generating set 4 for
a nontrivial group I, and D, is the subdigraph induced by those edges of
D ,(I') whose colors belong to A, then D, is a disconnected digraph with
[I:{A>] weak components, each of which is isomorphic to the Cayley
color graph D (({A)). Moreover, the vertex sets of these weak components
are the left cosets of {A).

The following theorem will serve as the foundation for all other results
in this paper.

THEOREM 1. If I' is a nontrivial group with minimum generating set 4,
and T is an oriented tree of size |A|, then the Cayley color graph D (I") is
T-decomposable. Furthermore, a T-decomposition exists for which, if b is any
specified vertex of T, then each vertex of D (I') assumes the role of b in
exactly one part of the T-decomposition.
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Proof. Let x: E(T)— A4 be a bijection; thus, y colors the edges of 7" in
such a way that each edge e of T receives a distinct color y(e), and all
colors of 4 are used. For each pair of vertices # and v, let P, , denote the
unique u — v semipath in 7. Let b be a fixed vertex of 7. We define a vertex-
labeling mapping A: V(T') — I" as follows. If ve V(T') and P, , has the form
b=ug, e,, u,, e, Uy, .., &,, U, =0, define A(v)=g,g,--- g,, where g, = x(e;)
if e; is a forward edge of P, and g,=[x(e;)] ' if ¢, is a backward edge
of P, ,; define 2(h) = e, where e denotes the identity element of I'". Since the
mapping y is one-to-one and A4 is a minimal generating set for I, the
mapping A is one-to-one; i.e., each vertex v of 7 has a distinct label A(v).
Note that we may interpret A as a color-preserving mapping from the
edge-colored digraph T into the edge-colored digraph D ,(I"). Under this
interpretation, T2 A(T). Let T, denote the subdigraph A(T).

Now, for each ge I' define T, to be the subdigraph that is the image of
T, under the automorphism ¢, defined by ¢, (v)=gv for all vel. We
claim that if g # h, then E(T,)n E(T,) is empty. To see this, we note that
for each de 4, each of T, and T, contains exactly one edge colored with
the generator d. If u is the terminal vertex of the edge labeled 6 in T, then
the terminal vertices of the edges colored  in T, and T, are gu and hu,
respectively. Thus, if T, and T, share an edge of color J, we have gu = hu,
whence g=h. Thus {T,: gel'} is a sct of edge-disjoint subgraphs of
D ,(I") each isomorphic to the oriented tree 7. Also, if (v, v,) is an edge
of D,(I") that has color é and (u,, u,) is the unique edge of 7, having
color 8, then (v, v;) =@, (u,, u,), where g=v,u;"'; thus {E(T,)|gel'} is
a partition of E(D,(I")). We conclude that {T,:geI'} is a T-decom-
position of D,(I'). Note also that for each vertex gel  we have
g=¢,(A(b)); ie., g assumes the role of vertex b in exactly one part of the
T-decomposition. |

The techniques used in proving Theorem 1 can be extended somewhat to
answer a more general question. Several authors (see e.g,, [6,9, 14]) have
asked whether, for a given graph (digraph) H, there exist regular graphs
(digraphs) of a given type that are H-decomposable. The following result
answers the question for weakly connected oriented graphs H# and Cayley
color graphs.

THEOREM 2. If H is a weakly connected oriented graph of size o, then
there is a group I having a generating set A of cardinality o such that the
Cayley color graph D ,(I") is H-decomposable.

Proof. Let T be a spanning oriented tree of H, and let I" be a group
having a minimal generating set 4, such that |4y|=|E(T)|. Let b be a
vertex of T, and for each pair of vertices # and v of T let P, . be the unique



DECOMPOSITION OF CAYLEY GRAPHS 75

u—v semipath in 7. Define a bijection y: E(T)— 4, and the one-to-one
function A: V(T) — I as in the proof of Theorem 1. We extend the mapping
x to the larger domain E(H) and a larger range 4 as follows: For each pair
of vertices # and v in 7, if the semipath P, , has the form (1= Ju,, e, u,,
ey, Us, ..., &,, u,( =v), define p(P, )=g,8, - g,, Where g;=y(e,) if ¢, is a
forward edge of P, , and g;,= [x(e;)] " if e; is a backward edge of P, . For
each edge (u, v)e E(H), define y(u, v)=p(P,,). Let 4= {x(u, v)|(u, v)e
E(H)}.

We claim that y: E(H)— 4 is an injection. Let (u,, v,) and (u,, v,) be
distinct edges in H and suppose that y(u,, v,)= y(u,, v,). Letting P, and
P, denote respectively the unique u, — v, and u, — v, semipaths in 7, we
then have p(P,)=p(P,). Assume without loss of generality that P,
contains an edge not on P,. Since T is an oriented tree, either the first edge
or the last edge of P, is not on P,. If the first edge f, of P, is not on P,
and f, = (uy, x), then p(P,)= (/) p(Py..,) and p(P;)=p(P,), so x(f1)=
p(P)p(P,,,)]17"; that is, x(f1)e {4o\{x(f1)}), a contradiction to the
minimality of 4. If the first edge f; of P, is not on P, and f; = (x, u,), we
obtain the same contradiction since, in this case, x(f,)=p(P, ) p(P)]"
Similar contradictions arise in the cases when the last edge of P, is not
on P,. Thus, x: E(H)— 4 is an injection.

Now, as in the proof of Theorem 1, we interpret the mapping 4 as a
color-preserving mapping of the oriented graph H into the Cayley color
graph D ,(I"), and we let H, denote the subgraph that is the image of H.
Now, we again consider the images of /A, under the automorphisms ¢,
and show, as in the proof of Theorem 1, that the set of subgraphs
{@,(H,)| geI'} is a decomposition of D,(I"). Again we remark that each
vertex of D ,(I") assumes the role of any specified vertex of H in exactly one
part of the decomposition. |

We now turn to the question of &-decompositions for various families
& of trees. To simplify the discussion, we introduce a few new definitions.

For a subdigraph H of a digraph D, we define the boundary of H,
denoted J(H), to be the set of all vertices in A that are adjacent with at
least one vertex of D not in H. We define the interior of H to be the set
int(H)=V(H)—0H. If F is an oriented tree and % is a family of oriented
trees for which

(i} each element T, of & has a subdigraph F; isomorphic with F and
(ii) F has a vertex b, called the bud, such that if b, is the vertex of F,
corresponding to b, then 0(F,)= {b,},

then we say that the oriented trees of & have common rootstock F. Figure 1
shows an oriented tree F of size three and two oriented trees T, and 7,
that have common rootstock F.
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THEOREM 3. Let I’ be a nontrivial group having a nonsingleton minimal
generating set A and let {A, B} be a partition of 4. Let ¥ = {T,|iel} be
a family of oriented trees, each of size |A|, having a common rootstock F of
size |B|, and assume further that the indexing set I of & has cardinality
[Il=[I:<A)]. Then D {I') is &¥-decomposable.

Proof. For each edge f of D,(I") let x(f) denote the color of f.
Furthermore, define the subdigraphs D,= {{fe E(D ()| x(f)eA}>
and Dy= {{fe E(D,(I"))|x(f)e B} > of D(I'). Note that {D,, Dy} is a
decomposition of D, (I"). For each T,e %, let F, denote the subgraph
isomorphic to F, and let b, denote the vertex of F; corresponding to &; we
will refer to F; as the rootstock of 7, and to b, as the bud of T,. Define
Tk}=T,—int(F,) for each iel, and set ¥*={T¥|iel}.

By Lemma 2, D, is disconnected and has [I: {A)>]=|I| weak com-
ponents C;, iel, each isomorphic to D ({A)). Thus, by Theorem 1, C,
is T ¥-decomposable for each ie [; furthermore, this can be done in such
a way that each vertex of C, assumes the role of b, in exactly one part
of the decomposition. Thus, D, is ¥ *-decomposable in such a way that
each vertex assumes the role of the bud b, of exactly one oriented tree 7}
in %,

Also by Lemma2, D, has [[I":{(B)] weak components, each
isomorphic with D,({(B)). Thus, by Theorem 1, D, is F-decomposable in
such a way that each vertex of D, assumes the role of the bud b of exactly
one part of the F-decomposition.

Now, each vertex ve /" assumes the role of a bud b, in exactly one part
of the ¥ *-decomposition of D, (and for exactly one ie[); call this part
T¥*. Also, v assumes the role of the bud 4 of F in exactly one part, say F,,
of the F-decomposition of D,. Thus, we can adjoin the (necessarily edge-
disjoint) parts T* and F, at vertex v to obtain a subdigraph T, of size |A4|
in D ,(I). Since 4 is a minimal generating set for I” and since T, is weakly
connected and has exactly one edge labeled & for each de4, T, is an
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oriented tree. Furthermore, T, is isomorphic with a tree in &. Also, for
each T,e ., there is a vertex veI” such that 7, is isomorphic with T,.
Since T¥, T¥ F,, and F, are edge-disjoint for all vertices u# v, we see
that 7, and T, are edge-disjoint. Thus, since {D,, D,} is a decomposition
of D,(I'), we conclude that {T,|lvel'} is an %-decomposition of
D,(I). 1

Although the hypothesis of Theorem 3 seems somewhat restrictive, we
note that in many cases it actually allows a good bit of freedom in our
choice of a family .. A particular case that illustrates this is the following:
Let & be a countably infinite family of oriented trees, each of size X,, and
assume only that each of these oriented trees has an end-vertex of indegree
one (so that F is an orientation of K,). Let I” be the group @ * of positive
rationals under multiplication, and let 4 be the set of all primes. If we take
B=1{2} and 4 =4\{2} and then apply Theorem 3, we see that D ,(I') is
&-decomposable. In fact; since D, (I} is itself an oriented graph in this
case, we see that its underlying undirected graph G is &-decomposable for
any countable family & of trees of size R, so long as each tree has an
end-vertex.

The hypothesis of Theorem 3 required that each tree 7, in the family &%
have a common weakly connected subdigraph F that is “attached to 7,” in
a particular way. In the hypothesis of Theorem 4 we will relax the restric-
tions on the “mode of attachment” of certain subdigraphs, but we will
impose other restrictions on the structural complexity of the subdigraph
being attached. Let ¥ be a family of oriented trees, each of size », and let
s, and s, be nonnegative integers such that 1 <s, + 5, <n We say that &
is an (s,, s,)-similar family if from each oriented tree T in & we can
identify a set U consisting of s, end-vertices of indegree one (each such is
called a sink-leaf) and s, end-vertices with outdegree one (each of these
being a source-leaf’); each vertex of V(T)\U will be called a core vertex
of T.

THEOREM 4. Let A be a minimal generating set for a finite group I,
let B be a nonempty proper subset of A, let A= A\B, and let s, and s, be
nonnegative integers such that s,+s,=|B|. Then, if ¥={T,li=1, ..,
[T:<{A>1} is an (s, 5,)-similar family of oriented trees, each of size |4|,
the digraph D ,(I') is &-decomposable.

Proof. We proceed by induction on |B|, proving the statement Q(k):
For any choices of 4, I, 4, B, s,, 5,, and % satisfying the above
hypotheses and the condition that | B| =k, there is an &-decomposition of
D, (I') satisfying the condition “K” below:

K. Corresponding to each vertex u of the digraph, there is a unique
value of i such that, for each core vertex x of T;, u assumes the role of x
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in exactly one part of the decomposition and, furthermore, if j#i, then u
assumes the role of no core vertex of any part isomorphic to 7.

If |B| =1, then the oriented trees in % have a common rootstock F of
size one (namely an oriented K,). Thus, by Theorem 3, D, (I") is &-decom-
posable. A review of the proof of Theorem 3 will convince the reader that
the &-decomposition constructed in that proof satisfies condition K. Thus,
Q(1) is true.

Assume now that Q(n— 1) is true (n>2), and let 4, F, 4, B, 5,, 5., and
& be chosen to satisfy both the required hypotheses and the condition that
|B| =n.

Let ge B and define B'=B\{g}, 4'=4\{g}, and "= (4’). Also, let
D be the subdigraph of D ,(I") induced by those edges whose color is in 4.
By Lemma 2, D is disconnected and has y=[7":7I"] weak components
C,, .., C,, each isomorphic with D, (/). For each T, in &, let U, be a
collection of s, sink-leaves and s, source-leaves. Without loss of generality,
assume that each oriented tree 7, in & has a sink-leaf v; in U,; let u, be
the unique vertex of 7, adjacent to v,. Define T}¥=T,—v;, and let
Fr={Trli=1,.,[I":{A>]}. Then &* is an (s, — 1, 5,)-similar family
of oriented trees, each of size |4’|. Since [I':<{A)]=[I:T"]-
[17:¢A>], there is a partition {F¥*|j=1,.., [ : ']} of &* where
|} =[I":<{a)] for each j. Since |B’| =n— 1, the induction hypothesis
guarantees that there is, for each j, an & *-decomposition of component C;
of D that satisfies condition K (with 4 and I replaced by 4" and I"’). Thus,
there is an % *-decomposition of D that satisfies condition K.

Now, for each vertex u of D, let i be the unique corresponding value dis-
cussed in condition K and let P*(u) be the part of the ¥ *-decomposition
in which u assumes the role of u,. Also, let v be the unique vertex of D ,(I)
such that edge (u, v) has color g. Since 4 is a minimal generating set for I,
the vertices # and v are in different components of D. Thus, we may append
the edge (w, v) and the vertex v to P*(u) to obtain a subdigraph P(u)
isomorphic to T,. Now, the set {P(u)|uecl'} is an &-decomposition of
D ,(I') satisfying condition K. Thus, Q(#) is true and the theorem follows
by the principle of mathematical induction. ||

In each of Theorems 3 and 4, the decompositions obtained satisfied the
property that, for each member 7T of &, there were at least two (and for
Theorem 3, perhaps infinitely many) parts isomorphic to 7. In our final
theorem we look at a situation where we conjecture that, under suitable
cardinality conditions, each pair of parts could be nonisomorphic;
counting arguments might show this is not possible if the Cayley color
graph in question is finite.

Recall that the (external}) weak direct product of a family & =
{I',1kel} of nontrivial groups, denoted IT"#, is the set of all functions
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f:1- U & such that (i) f(k)e I', and (ii) f(k)=e, (the identity element
of I',) for all but finitely many kel. If the indexing set I is finite, the
weak direct product and the Cartesian product are identical. Also, if
9 ={4,|kel} is a family of minimal generating sets for the groups in &,
then the set 4= {fell*F|f(k)ed, for exactly one value kel and
f(j)=e, for all j#k} is a minimal generating set for IT*% ; we shall call
A the standard minimal generating set for II*F determined by 2.

For each kel define the relation ~, on I*¥ as follows: for
all f, ge II*#, we write f ~, g if and only if f(i)= g(/) for all ieI\{k}.
Then ~, is an equivalence relation on IT"%. Furthermore, the set
A.={glglk)=e,} is a system of distinct representatives of the set of
equivalence classes determined by ~ .. For each fe IT"# and each k€1, let
[ /1. denote the equivalence class of f determined by ~, and let 4,(f) be
the unique element of [f], that is in A4,. Note that the subdigraph
L[S 1> of D,(IT*%) is isomorphic to D4 (I,). Moreover, the subdigraph
Gy =Ugea <[g]1e> is a spanning subdigraph of D ,(IT"#), each compo-
nent of which is isomorphic to D, (I').

Now, for each ke, let 7, ={T, ,|g€ A} be a family of oriented trees,
each of size |4,|, and let 7 =), .y Z. Also, for each keI and each ge 4,,
choose a vertex of T , and label it u,(g). Having done this, we construct
an oriented tree T, for each fe II"# by taking the threes in the subset
{Tw 4y k€l} of 7 and identifying the vertices {u,(A,(f))|k €I} to form
a single vertex u, which we shall call the articulation point of T,. The family
& ={T,;|feIT"F } of oriented trees constructed in this way will be called
an (F, Z)-product family.

THEOREM 5. Let F ={I|kel} be a family of nontrivial groups, let
9 ={d,|kel} be a family of minimal generating sets for the groups in F,
and let A be the standard minimal generating set for II"F determined
by%. Then D (II"F) is &-decomposable for every (% ,2)-product
Sfamily &.

Proof. We use the notation introduced prior to the statement of
the theorem. As noted earlier, for each kel, the subdigraph G,=
Uge 4, <[g1x> is a spanning subdigraph of D ,({1"# ), each component of
which is isomorphic to D, (). Furthermore, if i, jel and i#j, then G,
and G, are edge-disjoint. Thus ¥ = {G,|kel} is a decomposition of
D, (IT"F). We now use % to obtain an ¥-decomposition of D ([T % ).

By Theorem 1, there is, for each kel and each ged,, a
T, .-decomposition of the subdigraph {[g],> in which each vertex
assumes the role of «,(g) in exactly one part of the decomposition. Recall
also that the T, .-decomposition of ([ g],) has the property that the edge
labels of each part are in one-to-one correspondence with the elements

582b/61/1-6
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of 4,. Consider the 7, -decompositions of the G,’s determined by these
componentwise decompositions.

Since 4 is a minimal generating set of I7”#, at each vertex f of
D (IT"%), the parts of the G,-decompositions isomorphic to the trees
{Tx. 4,s) K €1} with each u,(A,(f)) located at f must have only the vertex
/in commony; call the union of these parts P,. Then P, is isomorphic to T,
for each fe IT*#, and the family {P,| fe [T*F } is an ¥-decomposition of
D,T"F).

APPLICATIONS TO Q,,

Several results concerning decompositions of the n-cube @, can be had
as consequences of work presented in the previous section. The central idea
behind applying these theorems to tree-decompositions of the n-cubes is
that of introducing a bipartite orientation to each tree; that is, orienting
each tree so that all vertices in one partite set are sources and all vertices
in the other partite set are sinks. One then exploits the facts that Q, is a
bipartite graph that exhibits a high degree of symmetry. We illustrate this
below, and obtain a new proof of Theorem A.

New Proof of Theorem A. Let T be a tree of size n and let b be a vertex
of T. Recall that every tree is bipartite. Orient the edges of T so that
all edges are directed from the partite set of T which contains » to the
other; call the resulting oriented tree 7,. By Theorem 1, there is a
Ty-decomposition of D4(I'), with I'=(Z,)" and 4={(1,0,0,..,0),
0,1,0,.,0), (0,0,1,..,0),..,(0,0,0,.., 1)}, such that every vertex of
D ,(I") assumes the role of & in exactly one part of the decomposition. The
subdigraph H of D (I') induced by all those edges whose initial vertex
(n-tuple) has even Hamming weight (i.c., and even number of ones) is
precisely the subdigraph induced by all the 2"~!' parts of the
T,-decomposition for which the role of b is assumed by a vertex of even
Hamming weight. Since H is merely an orientation of Q, with all edges
directed from one partite set to the other, the theorem follows. |

It is easy to modify the above proof to obtain the following result
concerning infinite trees and an infinite version of the cube. If we take I
to be the group of all binary sequences that are finitely nonzero and
define @, to be the graph having vertex set 7 and having two vertices
adjacent if and only if they differ in exactly one coordinate, then Q is
T-decomposable for every tree T having 8, edges.

As one would expect, there is also an undirected analogue to Theorem 3
that applies to &-decompositions of n-cube. This analogue can be easily
proved as a corollary to Theorem 3 using techniques similar to the above
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proof of Theorem A. We refer the reader to the second theorem in [6] for
the statement of the result and an alternate proof.

Theorem 4 also has its analogue for n-cubes. We say that a family & of
trees is s-similar if every tree in & has at least s end-vertices. Now, using
bipartite orientations, we can show that if & is an s-similar family of 2*~*
trees, each of size n, where 2 <s<n, then Q, is ¥-decomposable.

Finally, to apply Theorem 5 to Q,,, one selects a partition n, +n,+ --- +
n,=n of n, takes F = {(Z,)", (Z;)", .., (Z,)"}, 4, as the standard basis
for (Z,)™, 7, to be family of trees with bipartite orientations, and for each
ge A,, takes vertex u,(g) to be a source vertex in T ,. Then each tree 7,
has a bipartite orientation in which the articulation point u, is a source.
Now, taking & to be the family of trees underlying the oriented trees 7,
such that f is a vertex of even Hamming weight, we see that Q, is
F-decomposable. We encourage the reader to work through a nontrivial
example of such a decomposition of Q, in order to appreciate the diversity
possible among the trees in sets & constructed in this manner.

CONCLUDING REMARKS

The thoughtful reader will find that many questions remain regarding
%-decompositions of Cayley color graphs and r-cubes. In this paper, we
have restricted the investigation to decompositions in which each part
was fully chromatic in the sense that the edge set of each part was in one-
to-one correspondence with the set of colors. By doing this, we were able
to exploit the power inherent in elementary group theory. One might
reasonably ask questions about decompositions into parts of various
types that are not required to be fully chromatic. In fact this has been
done by several people who were interested in decomposing Cayley
graphs into hamiltonian cycles; e.g., see [3, 16]. Such questions may be
quite difficult to answer since some group-theoretic power may be
sacrified. Also, in [1], Alspach asked whether every circulant graph,
Cayley color graph, or vertex-transitive graph has an isomorphic decom-
position into ¢ >0 parts whenever ¢ divides the size of the graph. Perhaps
the ideas used in this paper could help answer Alspach’s question regard-
ing the Cayley color graphs. We close with three questions concerning
decompositions of Cayley color graphs into fuily chromatic parts; the first
is very general.

Question 1. Given a nontrivial group I” and a minimal generating
set 4, what (nontrivial) conditions must be satisfied by a family & of
oriented trees of size |A4| in order that the Cayley color graph D ,(I') is
F-decomposable into fully chromatic parts?
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Question 2. For a given group /" and a minimal generating set 4
for I, what are the largest cardinals x, and «x, such that D, (I') is
&-decomposable into fully chromatic parts: (a) for every set & of x,
pairwise nonisomorphic oriented trees of size |4|? and (b) for some set &
of k, pairwise nonisomorphic oriented trees of size |4|?

Question 3. For the n-cube Q,, what is the optimal way to partition n
so that the number of trees in the decomposition obtained by the methods
of Theorem 5 is as large as possible? Can the decomposition be done so
that the parts of the decomposition are pairwise nonisomorphic?

The author wishes to thank the referees for their valuable suggestions
and corrections that led to a much improved paper.
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