GENOMICS 21, 92103 (1994)

Multipoint Radiation Hybrid Mapping: Comparison of Methods,
Sample Size Requirements, and Optimal Study Characteristics

KATHRYN L. LUNETTA AND MICHAEL BOEHNKE'

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109

Received September 13, 1993; revised February 14, 1994

There are several statistical methods available for
analyzing radiation hybrid (RID) data, but little is
known about the ordering accuracy we can expect un-
der common study conditions. Using analytic methods
and computer simulation, we compared the ordering
accuracy of three multipoint statistical methods: mini-
mum breaks (MB), maximum likelihood (ML), and
maximum posterior probability (PP), For 8, 12, and 16
markers and all combinations of numbers of hybrids,
retention patterns, and marker spacings considered,
the probabilities that the true order is identified as
the best order were considerably higher with the ML
and PP methods than with the MB method. ML and
PP performed similarly, but PP {ended to give slightly
greater support for the best order than did ML. OQur
results can be used as guidelines for determining sam-
ple size requirements and optima) marker spacing for
future RH mapping experiments. For equally spaced
markers, intermarker spacing of 30 to 50 ¢R gave the
highest probability of correctly ordering all the mark-
ers. For randomly spaced markers, 10-20 cR average
intermarker spacing resulted in the highest propeor-
tion of markers being placed in a 1000:1 framework
map. Assuming equal retention in the analysis when a
centromeric model would be more appropriate did not
affect the ability of the ML method to accurately order
the markers, but did influence the distance estimates
obtained. o 1954 Acndemic Press, Ine.

INTRODUCTION

Radiation hybrid (RH} mapping, developed in the
early 19703 by Goss and Harris (1975, 1977) and
adapted and refined by Cox and colleagues (Cox ef al.,
1990; Burmeister ef al., 1991), has proven to be a valu-
able tool for ordering loci along human chromosomes.
In RH mapping, a lethal dose of radiation is used to
break a human chromosome in rodent—human somatic
cell hybrids into multiple fragments. The cells con-
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taining the fragmented chromosomes are rescued by
fusion with a normal rodent cell line that is deficient
in HPRT. Growth in HAT medium then selects for the
fused rodent cells containing the chromosomal frag-
ments from the rodent—human hybrid. Each resulting
hybrid clone contains a unique set of human chromo-
some fragments. The clones can be screened for the
presence or absence of markers present on the human
chromosome. RH mapping makes use of the principle
that the closer two markers are on a chromosome, the
less likely it is that they will be separated by a radia-
tion-induced break. By analyzing the patterns of pres-
ence and absence of the various loci in the hybrid
clones, the order of the markers can be inferred.

RH mapping is now a widely used method of gene
mapping, and muliipoint statistical metheds are be-
coming a standard analytic approach. However, few
attempts have been made (1) to compare the multipoint
methods for ordering markers using RH data or (2) to
determine the accuracy of these methods under typical
study conditions: number of hybrids, number of mark-
ers, spacing of markers, and marker retention pal-
terns.

In this paper, we compare the ordering accuracy of
the nonparametric minimum breaks method (Boehnke
et al., 1991; Bishop and Crockford, 1992; Boehnke,
1992; Weeks ef al., 1992) and two model-based meth-
ods: maximum likelihood (Boehnke ef al., 1991; Chak-
ravarti and Reefer, 1992; Green, 1992) and maximum
posterior probability {Lange and Boehnke, 1992). We
use analytic methods to obtain results for three mark-
ers, assuming all fragments are retained with probabil-
ity 0.5, and computer simulation to obtain results for
more realistic situations. We examine the accuracy of
the three multipoint methods under a variety of condi-
tions characteristic of RH data found in the literature.
In so doing, we provide sample size guidelines that may
be useful in designing RH mapping studies.

MATERIALS AND METHODS

Notation

Suppose the markers A,, Ay, ..., Ay are typed on H radiation
hybrids. The observation vector for a hybrid given a specific locus
order is X = (xq, x2, . . ., X3}, where
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1 if marker { is typed and retained

x; = { 0if marker [ is typed and not retained
? if marker { is untyped.
We define the breakage probability 6, = 1, ..., M — 1) as the

probability of at least one chromosome break between markers A;
and A;.,. We assume that breakage occurs at random along the
chromosome, so that breakage can be modeled as a Poisson process.
In this situation, a breakage probability 4 can be converted to an
additive distance d using the formula d = —log{1l — &) (Cox et al,
1990). This function is analogous to Haldane’s (1919) no-interference
mapping function used in linkage analysis. The distance d can also
be interpreted as the e¢xpected number of chromosome breaks per
hybrid between the two loci.

We define the retention probability (i < j) as the probability that
a fragment including markers A;, Ai.y, . .., A;is retained in a hybrid.
Here we consider two fragment retention models: equal retention,
where r;; = r for all i, j; and centromeric retention, where ry; = ry for
allj, ry = ry for 2 = { < j. The centromeric model with ry > r; results
in a gradient of marker retention along the chromosome, with highest
retention r, near the centromere and retention decreasing to r; far
from the centromere,

Methods of Multipoint Analysis

A number of multipeint methods for ordering radiation hybrids
have been developed; we compare three; minimum breaks (Boehnke
et al., 1991; Bishop and Crockford, 1992; Boehnke, 1992; Weeks e
al., 1992), maximum likelihood (Boehnke et ai., 1991; Chakravarti
and Reefer, 1992; Green, 1992), and maximum posterior probability
(Lange and Boehnke, 1992},

Minimum breaks. The minimum breaks (MB) method selects as
best the marker order that requires the fewest obligate chromosome
breaks and is analogous to inferring order by minimizing the number
of obligate recombinants in linkage mapping (Thompsen, 1987). MB
is based on the idea that the farther apart two loci are on a chromo-
some, the more likely it is that the radiation will cause a break
between them. The only assumption required is that the markers
are ordered linearly along the chromosome. For any particular order,
the number of obligate breaks is summed over all hybrids; the best
orders are those that require the fewest obligate breaks. As a simple
example, if we have three markers typed in one hybrid, then the
order (1,0,1) implies two obligate breaks —the first between markers
1 and 2, the second between markers 2 and 3. Two other possible
orders, (1,1,0) and (0,1,1), require only one break each. Barrett (1992)
showed that the MB method is consistent, in the sense that as the
number of hybrids increases, the probability of inferring the correct
order converges to one.

Maximum likelihood. For the maximum likelihood (ML) method,
we construct a model for the RH data and estimate model parameters
by maximizing the likelihood for each possible order. The best orders
are those that have the largest maximum likelihood. The ML method
provides the advantage of allowing estimation of distances between
loci, but requires a model for chromosome breakage and fragment
retention. We assume random breakage along the chremosome and
that fragments are retained independenily within the hybrids. In
most of the analyses in this paper, we assume that retention proba-
bilities are equal for all fragments. We also examine the effect of
assuming equal retention when retention actually is greater near
the centromere, an effect observed by several investigators (Cox et
ai., 1990; Burmeister ef al., 1991; Ceccherini et al., 1992; Gorski et
al., 1992).

Since different locus orders are not nested models, significance
levels for comparisons among orders cannot be obtained. In practice,
a difference in log likelihood of 8 between the best order and all other
orders (i.e., the best order has maximum likelihood 1000 times that
of any other order) is taken as strong evidence that the maximum
likelihood order is correct.

Maximum posterior probability. The Bayesian approach of maxi-
mum posterior probability (PP) provides a direct means for compari-

son of orders by answering the question: what is the probability that
a particular locus order ig correct? We compute an approximation of
the posterior probability developed by Lange and Boehnke (1992),
which assumes random marker distribution on the chromosome,
equal fragment retention probability, and equal prior probability for
each order of 2/M!. Under these assumptions, the posterior probabil-
ity that a specific order i is the true order given the observed hybrid
data is

P(data|order i)
=M P(data|order j)

Plorder {|data) = [1]

The approximation to [1] that we use requires two steps. First, we
approximate P{data|order ) by approximating the beta distributions
of the marker spacing by expenential distributions with the same
mean. This approximation also relies on the assumption that the
distribution of the spacings between adjacent loei is approximately
independent; this assumption is reasonable if M is large enough. See
Lange and Boehnke (1992) for a detailed deseription of this computa-
tion. When this first approximation is used, computing P(data|order
i) for all M!/2 possible orders would be computationally impractical
even for modest M. Therefore, we further approximate the denomina-
tor in [1] by summing only over the set of all orders with maximum
likelihood within 10% of the ML order, rather than all M!/2 possible
orders in the denomipnator. We obtain this set of orders from the
ML analysis using the branch-and-bound or stepwise locus ordering
algorithms described below. In cases in which we used stepwise locus
ordering, we cannot be sure that all orders within 10° of the best
order were identified. However, our experience with this algorithm
leads us to believe that we have identified nearly all of these orders.
Since there i no obvious prior distribution for the retention prebabil-
ity r, and since it tends to be well estimated by ML, we hold the
retention probability fixed at its ML estimate in our calculations
{Lange and Boehnke, 1992).

Methods for Identifying Best Locus Orders

Due to the time-intensive computational efforts required, it is not
practical to evaluate the number of obligate breaks, maximum likeli-
hood, and posterior probability for all M!/2 possible locus orders un-
less the number of loci M is small. For MB and ML with M = 8, we
used the branch-and-bound strategy to identify the best locus orders
(e.g., see Nijenhuis and Wilf, 1978). In our implementation, branch-
and-bound requires a candidate locus order and then builds locus
orders one locus at a time, keeping under consideration only those
partial locus orders that are within K units (of minimum breaks or
log likelihood) of the candidate order. All complete orders consistent
with a partial order that are not within K units of the candidate
order are eliminated. Branch-and-bound guarantees that the best
order and all orders within K units of the best order will be identified
and substantially decreases the number of orders that must be evalu-
ated. However, the number of orders to be evaluated still may scale
exponentially with the number of markers M (Boehnke et al., 1991).

For M = 12, branch-and-bound often requires the evaluation of
an impractical number of orders; in these situations we used the
related strategy of stepwise locus ordering (Boehnke et al., 1991).
Stepwise locus ordering builds locus orders one marker at a time
and at each stage keeps under consideration only those partial orders
that are within X units of the current best partial locus order. If a
partial order of the same length as the current hest partial order is
eliminated, all complete orders consistent with that partial order are
eliminated as well. This strategy can result in the elimination of
many more orders than branch-and-bound, but does not absclutely
guarantee that the best locus order will be identified. Larger values
of K increase the probability that the best order will be found, but
also increase the number of orders that must be evaluated. In most
of gur analyses, we use the criterion K = 8 breaks or log,, likelihood
units. In a few cases K = 8 did not allow identification of the true
MB order. In these cases, we used K = 20, Our strategy here is
possible only because we already knew the correct order. For a real
RH mapping problem, we might first order the markers using the
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faster criterion K = 8 and then rerun the analysis with a larger K
to ensure that the same results were obtained. These strategies are
deacribed in detail in Boehnke et al. (1991} and implemented in the
RH mapping software package RHMAP (Boehnke et al., 1992).

Study Variables

The three ordering methods we examined can make use of partially
typed hybrids. However, to simplify comparisons, we simulated RH
data in which all markers were typed on all hybrids; hence, x; = 0
or 1. For each combination of study variables considered, we gener-
ated 500 replicate data sets. In our simulated data, we varied four
characteristics to study the ability of the methods to order markers
under a wide range of circumstances that may be found in actual
RH mapping studies.

Typiecal RH studies have typed 10 to 20 markers in 100 or fewer
hybrids (e.g., Cox et al., 1990; Burmeister ef al., 1991; Richard et al.,
1991, 1993; Warrington et al., 1991; Frazer ef al., 1992; Gorski et
al., 1992). To reflect this range while dealing with manageable num-
bers of orders, we simulated M = 8, 12, or 16 markers in data sets
of H = 50 or 100 hybrids. We also simulated data sets of H = 200
hybrids under some conditions to determine the benefit of greater
sample sizes. In some cases, observed retention probabilities are
well-approximated by an equal-retention model, but often fragment
retention follows a pattern. For example, investigators have observed
greater retention near the centromere on chromosomes 21 {(Cox et
al., 1990; Burmeister et al,, 1991), 16 (Ceccherini et al.,, 1992), and
X (Gorski et al., 1992). We simulated fragment retention either under
the equal retention probability model with retention probability r =
(.2 or 0.5 or under the centromeric retention model with retention
probabilities r; = 0.8 or 0.5 and r; = 0.2. When a RH mapping study
begins, the relative spacing of markers within a length of chromo-
some is often unknown and can be assumed to be approximately
random; if we wish to build a framework map, we want to have
spacing as nearly equal as possible between markers, To represent
these two situations, we simulated either equal spacing of markers,
with interlocus distances of d = 20, 30, 40, or 50 cR, or random
spacing of markers along a section of chromosome D = d X (M + 1)
cR long, so that the average interlocus distance was d = 10, 20, 30,
40, or 50 ¢R. OQur choice of range of interlocus distances reflects
typical interlocus distances found in RH studies and our beliefs about
what the optimal marker spacing might be.

Criteria for Evaluation

We employed three main criteria for comparing the three ordering
methods and for determining optimal circumstances for accurately
ordering markers. First, we compared the three methods by estimat-
ing the probability that the true order is identified as the unique
best order. In situations in which that probability was low, we used
a second criterion: the estimated probability that the true order is
equivalent to the best order, that is, that the true order is one of one
or more equivalently good best orders. A large difference between
these two probabilities implies that the ordering method is not capa-
ble of discriminating between a number of equally good orders, often
because no obligate breaks are present between pairs of markers in
the data. For all situations that we considered, the ML. and PP meth-
ods performed similarly under these criteria (see Results). Thus, for
these methods we also compared the maximum likelihood ratio of
the two best ML locus orders to the posterior probability ratio for
these orders.

For our study of sample size and optimal study characteristics for
RH mapping, we concentrated on results for the ML method. To
examine the effects of the number of hybrids H, the number of mark-
ers M, the retention probability r, and the intermarker distance d,
we used the two criteria described above and also compared methods
based on a third criterion: the probability that the true order has
maximum likelihood at least 1000 times the maximum likelihood of
the next best order. For randomly spaced markers, we examined the
distribution of the number of markers that could be placed in a
1000:1 framework map. A 1000:1 framework map is a set of loci that
can be ordered with respect to each other at 1000:1 relative maximum
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likelihood; that is, the best order has maximum likelihood at least
1000 times that of any other order. For H = 100 and 200 and r =
0.2 and 0.5, we simulated M = 16 markers spaced randomly on
chromosome segments with total distances of D = 170, 340, 510, 680,
and 850 cR, corresponding to average marker spacings of d = 10,
20, 30, 40, and 50 cR. We obtained framework maps using stepwise
locus ordering, adding a new locus to a partial order only if it could
be ordered with 1000:1 relative likelihood. This method does not
guarantee that the resulting framework map will contain the largest
possible number of markers. However, limited experience suggests
that the approach often generates nearly maximal framework maps
(Boehnke et al., 1992).

RESULTS

Comparison of Methods

Three locus results. For M = 3 markers, complete
typing, and retention probability r fixed at r = 0.5, the
ML and MB methods are eguivalent. This fact is di-
rectly analogous to Thompson’s (1887) result for the
equivalence of the ML and minimum obligate recombi-
nant methods for ordering three loci in linkage analy-
sis. Following Thompson’s argument, if M = 3, then
there are only three possible orders: ABC, ACB, and
BAC. The maximum log likelihood for the order ABC,
given H completely typed hybrids, is

log[L{8, r = 0.5)]

= %{ [g(Aap) + gBsc)] — HIM log(2)], 12]

where g(d) = (2 — ®log(2 — #) + 6 log() and 9,; is twice
the observed proportion of obligate breaks per hybrid
between markers ¢ and j. For orders ACB and BAC,
the maximum log likelihoods are analogous, with f4c
substituted for #,5 and &nc, respectively. Hence, the
maximum log likelihoods for each pair of orders have
one breakage probability that is not in common. Since
£(f) is monotonic decreasing for increasing 0 < 8 < 1.0,
the order with the smallest pair of breakage probability
estimates, and hence the fewest obligate breaks, will
be the order with maximum likelihood. If r + 0.5 or M
> 3, ML and MB are not equivalent (see Appendix).

Figure 1 displays analytically calculated probabili-
ties that the true order is the unique best order for M
= 3 equally spaced markers and fixed retention r = 0.5
for a range of interlocus distances d and number of
hybrids H. When calculating these probabilities, we
assume that there is evidence for linkage, i.e., that 6,¢
and fgc are less than 1.0. Except when H < 20, the
highest probability of correctly ordering the markers
occurred for d =~ 40 cR, but remained close to its peak
from 30 to 70 cR.

Figure 2 shows the effect of unequal marker spacing
for H = 50 hybrids and M = 3 markers. Given a fixed
total distance D = d; + ds, the probability that the
true order is the unique best order increased as d,, the
distance between the first two markers, approached D/
2. That is, for M = 3 markers, the more nearly equal
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FIG. 1. Analytically calculated probabilities under the ML and MB methods that the true order is the unique best order by distance d
between equally spaced markers and by number of hybrids H. M = 3 markers and fixed r = 0.5 retention.

the intermarker spacing, the higher the probability as the unique best order for equally spaced markers
that the markers could be ordered correctly. were virtually identical for every combination of H, M,

Multilocus results: Equally spaced markers. The r, and d considered; these probabilities were generally
probabilities that ML and PP identify the true order higher than those with MB (Table 1), although the dif-
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TABLE 1

Estimated Probability That the True Order Is the Unique Best Order and That the True Order Has Maximum
Likelihood at Least 1000 Times That of All Other Orders (Equally Spaced Markers)

P{true order is unique best)

d P(true order has ML
H M r (cR} MB ML PP 1000x any other order})

50 8 0.2 20 0.458 0.506 0.508 0.010
30 0.626 0.710 0.712 0.010
40 0.644 0.760 0.760 0,004
50 0.586 0.716 0.720 0.000
0.5 20 0.768 0.810 0.814 0.092
30 0.880 0.816 0916 0.094
40 0.906 0.922 0.924 0.042
50 0.868 0.918 (0.918 0.020
100 8 0.2 20 0.884 0.920 0.920 0.402
30 0,958 0.968 0.968 0.516
40 0.956 0.986 0.986 0.454
50 0.964 0.980 0.980 0.328
0.5 20 0.984 0.994 0.994 0.814
30 0.996 0.998 0.998 0.878
40 0.998 1.000 1.000 0.824
50 0.996 0.998 0.998 0.726
12 0.2 20 0.862 0.896 0.896 0.330
30 0.922 0.960 0.928 0.432
40 0.940 0.966 0.966 0.384
50 0.934 0.966 0.966 0.224
0.5 20 0.996 0.950 0,990 0.802
30 1.000 1.000 1.000 0.866
40 0.998 1.000 1.000 0.842
50 0,994 0.996 0.996 0.686
16 0.2 20 0.854 0.892 0.892 0.252
30 0.932 0.966 0.966 0.414
40 0,944 0.954 0.952 0.348
50 0.930 0.964 0.962 0.174
0.5 20 0,990 0.994 0.994 0.776
30 0.994 0.996 0.996 0.834
40 0.994 0.996 0.990 0.808
50 0.998 1.000 1.000 0.698

ferences were not always statistically significant, par-
ticularly for r = 0.5.

Since ML and PP appeared to correctly order equally
spaced markers with essentially the same probability,
we compared the level of support for the best order
provided by the two methods by comparing the maxi-
mum likelihood ratio (MLR) and posterior probability
ratio (PPR). The MLR is the ratioc of the maximum
likelihoods of the best ML order and the next best or-
der, The PPR is the ratio of the posterior probabilities
of these two best orders. ML and PP always identified
the same two orders as the best two orders for equally
spaced markers using the combinations of study vari-
ables we considered. Log(MLR) and log(PPR) had a
nearly perfect linear relationship for each combination
of H, M, r, and d considered; the Pearson correlations
ranged from 0.942 to 0.999. The linear regression line
with zero intercept, log(PPR) = b X log{MLR) + error,
fit the data very well for all combinations of H, M, r,
and equally spaced d that we considered. The slope b
was always slightly greater than 1.0, ranging from 1.03
to 1.23. Randomly spaced markers result in similar
conclusions.

Since for all cases considered the correlations were
near 1.0 and the regression slopes were always slightly

greater than 1.0, it appears that the log(MLR) for the
best and next best order can be used as an accurate,
slightly conservative approximation for the log(PPR).
Hence, for a log,(MLR) of 3 (or 1000:1 MLR), we can
reasonably predict that the posterior probability of the
best order is at least 1000 times the posterior probabil-
ity of the next best order (see Discussion).

Effects of Study Variables on Accuracy of Ordering

Numbers of hybrids and markers. Typing H = 100
hybrids for M = 8, 12, or 16 markers equally spaced at
d = 20-50 cR intervals with retention » = 0.5 resulted
in very high probability thai the true order was the
unique best order (>>0.98) for all three methods (Table
1). For retention r = 0.2 and d = 30-50 cR, this proba-
bility was still always greater than 0.92 (Table 1). Typ-
ing H = 50 hybrids resulted in substantially lower
probabilities, even for just M = 8, particularly for reten-
tion » = 0.2, in which case even for d = 40 cR the
probability for ML was only 0.76. In general, for fixed
r and d, M = 8 markers resulted in the highest proba-
bilities, followed by M = 12 and M = 16. The decrease
in probability from M = 8 to M = 12 generally was
greater than that from M = 12 to M = 16.
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TABLE 2

Estimated Probability of Correctly Ordering M Randomly Spaced Markers with
Average d = 40 cR (H = 100, r = 0.5)

P(true order is unique best)

P(true order is a best order)

Average number of orders
equivalent to true order®

M MB ML FP MB ML PP MB ML PP
8 0.546 0.602 0.602 0.892 0.826 0.826 1.574 1.329 1.131

12 0.392 0.462 0.462 0.870 0.808 0.804 2.264 1.829 1.231

16 0.274 0.334 0.334 0.790 0.710 0.708 3.499 2.335 1.285

¢ Average listed for when the true order is equivalent to the best order. The overall average number of orders equivalent to the true order

is higher,

Equal marker spacing. For all three methods and
for all combinations of H, M, and r, equal between-
marker distances of d = 30-50 cR produced the highest
probability that the true order is the unique best order.
This probability increased the most from 20 to 30 cR
and remained more constant between 30 and 50 cR.
Forty centirays most often resulted in the highest prob-
ability for most combinations of H, M, and r considered
(Table 1). When we used the more stringent require-
ment that the maximum likelihood of the true order
must be at least 1000 times the maximum likelihood
of any other order, spacing of d = 30 cR produced the
highest probabilities of confidently ordering the mark-
ers for the cases considered (Table 1). These results
suggest an optimal marker spacing that is somewhat
more dense than the 55 cR suggested by minimizing
the average coefficient of variation or standard error
of the maximum likelihood estimate of the distance
between two markers (Lange and Boehnke, 1992).

Retention probability. Consistent with Lange and
Boehnke (1992), who showed that » = 0.5 results in
the greatest amount of mapping information, we found
that r = 0.5 gave substantially greater probability than
r = 0.2 that the true order is the unigue best in all
situations tested (Table 1). The difference between r =
0.5 and r = 0.2 for the probability that the true order
is equivalent to the best order was less substantial
(data not shown).

Random marker spacing. When markers were ran-
domly spaced, the probability that the true order is the
unique best order was substantially decreased compared
to that when markers were equally spaced given the
same H, M, r, and average spacing d. H = 100 and r =
0.5 were insufficient to order correctly with high probabil-
ity even M = 8 markers spaced at an average distance
d = 40 cR (Table 2). While the probability of identifying
the true order as the unique best order was relatively
low even for M = 8, the probability that the true order
was one of the equally good best orders remained greater
than 0.7, even for M = 16. ML and PP produced slightly
lower probabilities than MB that the true order was
equivalent to the best order, but the average number of
orders equivalent to the true order when the true order
was the best order was substantially greater for MB than
for ML or PP (Table 2). This result is explained by the
fact that the MB method produces discrete-valued scores

that can range from 0 to H X (M — 1) obligate breaks,
while ML and PP are continucus-valued scores with in-
finitely many possible values. Since there are fewer possi-
ble values for orders under MB, the true order is more
likely to have the same number of obligate breaks as the
“best” MB order, particularly when the number of obli-
gate breaks is small.

Building a framework map. Since the three meth-
ods appeared to have the same relative merits for or-
dering randomly spaced markers as for ordering
equally spaced markers, we concentrated on the ML
method for randomly spaced markers. Consider a situa-
tion in which we have a number of new markers to be
ordered, and we have some knowledge aboeut the total
Iength of the chromosome segment on which the mark-
ers are located. We may wish to know how many mark-
ers we can reasonably hope to place in a framework
map using ML so that all the markers are mapped with
1000:1 relative maximum likelihood. Figure 3 displays
the estimated probabilities of ordering at least n mark-
ers (3 = M = 16) at MLR of at least 1000 for H = 100
and 200, r = 0.2 and 0.5, and a range of total distances
D corresponding to average marker spacings of d = 10,
20, 30, 40, and 50 cR. Total distances of D = 170 and
340 cR, corresponding to average spacings of 10 and
20 cR, appeared to give the highest probabilities of or-
dering at least 13 markers in a 1600:1 framework map.
With H = 100 hybrids, retention » = 0.5, and total
distances of 170 to 340 cR, we can expect to be able to
include at least 9 markers in a 1000:1 framework map
with probability near 0.90 and at least 10 markers with
probability greater than 0.70. With H = 200 hybrids,
we can expect to be abie to include at least 12 markers
in a 1000:1 framework map with probability greater
than 0.90. Even with A = 200 and r = 0.5, the probabil-
ity of ordering all 16 markers in a 1000:1 framework
map is low.

Maximum Likelihood Breakage Probability Estimates

One of the benefits of the ML approach to ordering
RH marker data is that it provides estimates of the
breakage probabilities, and hence distances, between
the markers. Table 3 lists the actual and ML-estimated
total map lengths (distance between most distant
markers) for the true order for the equal spacing case.
The map lengths were consistently overestimated for
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the conditions we considered, with proportional bias [(8
— 6)/6] ranging from 0.007 to 0.098. Holding all other
study variables constant, the bias generally was more
severe for H = 50 than for H = 100, for r = 0.2 than
for r = 0.5, and for larger d than for smaller d. Bias
also appeared to be more severe for larger M, particu-
larly when r = 0.2. Limited simulations and analyses
of data sets with H = 1000 hybrids suggest that the

bias observed in Table 3 is a consequence of relatively
small hybrid sample size.

Centromeric Retention Effect

Often investigators observe that marker retention is
not uniform, but shows a gradient with higher values
near the centromere. In this situation we can attempt

TABLE 3
Equal Retention Data: ML, Map Length Estimates for Equally Spaced Markers

r=102 r=05
Actual map Map length Map length

length estimate SE estimate SE
H M d (cR) (cR) {cR) (cR) (cR) (cR:
50 8 20 140 150.0 1.8 145.2 1.2
30 210 2259 24 220.4 1.9
40 280 307.4 3.1 291.3 2.0
50 350 3814 33 3675 2.3
100 8 20 140 144.3 1.2 143.9 0.9
30 210 216.3 1.5 214.6 1.1
40 280 280.8 1.9 284.7 1.3
50 350 362.2 24 360.5 16
100 12 20 220 225.1 1.4 2215 1.1
30 330 344.2 2.0 339.3 1.5
40 440 455.2 24 450.9 1.7
50 550 572.7 2.8 560.4 2.0
100 16 20 300 308.6 15 303.6 1.2
30 450 465.5 2.3 458.6 1.7
40 600 620.2 2.8 613.2 2.0
50 750 778.0 3.3 763.5 2.3
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TABLE 4

Centromeric Retention Data: Comparison of Probabilities of Correct Ordering for Analysis under the Equal
Retention Model and under the Centromeric Retention Model (H = 100, M = 12, r, = 0.2)°

d Analysis P(true order is P(true order has ML
r (cR) model unigue best) 1000x any other order}
0.8 20 Centromeric 0.994 0.818
Equal 0.990 0.774
40 Centromeric 0.994 0.674
Equal 0.988 0.740
0.5 20 Centromeric 0,992 0.660
Equal 0.992 0.640
40 Centromeric 0.992 0.650
Equal 0.992 0.656

¢ For the centromeric model, if the same order is present in both orientations to the centromere, then only the order that is most likely

is considered.

to model the retention gradient in the analysis, or we
can incorrectly assume equal retention. Recall that un-
der the centromeric retention model, fragments that
included the most centromeric marker have retention
probability r,, while all other fragments have retention
probability ro (r; = ry). This results in a gradient of
marker retention probabilities, with the highest reten-
tion nearest the centromere, as seen in some RH data.
The assumption of equal retention allows the consider-
ation of (1) only half as many orders, since orientation
along the chromosome is not important in the equal
retention case, and (2) one less retention parameter,
simplifying the analysis for each order. For the cases
we considered for centromeric data (r; = 0.5 or 0.8, rs
= 0.2, equally spaced markers, d = 20 or 40 cR), the
probability that the true order is the unique best order
given analysis under the centromeric model was virtu-
ally equal to the probability given analysis under the
equal retention model. The differences between analy-
sis under the centromeric model and analysis under
the equal retention model in the probability that the
true order has maximum likelihood at least 1000 times
greater than the next best order were not statistically
significant, although it is interesting to note that for d
= 40 ¢cR, the probability appeared to be slightly lower
for the centromeric model than for the equal retention
model (Table 4), while for d = 20 cR, the probability
appeared to be higher for the centromeric model than
for the equal retention model.

The assumption of equal retention for centromeric
model data affected the estimates of the breakage prob-
abilities of centromeric data more severely than the
probability of ordering the markers correctly (Table 5).
As for the equal retention data (Table 3), analysis of
the centromeric retention data under the centromeric
model resulted in overestimates of the actual map
length for the true order. Analyzing the centromeric
model data under the equal retention model resulted
in underestimation of the map length for all cases con-
sidered. In each case considered, the bias was of sub-
stantially greater magnitude for analysis under the
equal retention model than for analysis under the cor-
rect centromeric model,

For the centromeric data, the estimates of the break-
age probabilities assuming equal retention formed a
gradient, with the larger estimates near the centro-
mere. In general, the first few breakage probability es-
timates were overestimates of the true probability, and
the rest were underestimates. This phenomenon can
be explained by examining the expected number of obli-
gate breaks under the two models.

Under any analysis model, the expected number of
obligate breaks between two markers should approxi-
mate the observed number of obligate breaks. Let R;
be the probability of retaining locus i. If we assume
equal breakage probabilities 4, under the centromeric
model, R, = (r, — ro}{(1 — 8)"! + r;. The expected num-
ber of obligate breaks between markers { and { + 1 for
centromeric data and for equal retention data are

B, =0IR;(1 - R;.1) + R;.a(1 — R;)]
= 0lry — rol1 — Y H2 — )1 - 2rp)
~ 2(ry = ra)¥(1 — OE Y + 2ry(1 — ry)]

and

B, = 6{2r{1 — r}}, {3]
respectively. Substituting the average retention r* =
(UMYZM R = ry + {(ry — rod1 — (1 — 8MVYMB) for r
in [3] gives an estimate for the expected number of
breaks for centromeric data analyzed under the equal
retention model. A comparison of the retention R; ver-
sug the average retention r* shows that for the first
few markers, R; is greater than r*. For B, and B, to
agree, the estimate of 6 between these markers would
have to be inflated by the equal retention analysis. For
the remaining intervals, r* is greater than R;, so that
the estimate of § by the equal retention analysis would
have to be less than the true 8.

Evaluating o Possible Sample Size Approximation

1t is tempting to estimate hybrid sample size require-
ments for RH mapping by using the fact that to distin-
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TABLE 5

Centromeric Retention Data: Map Length Estimates under Centromeric and Equal Retention Analysis
Models, Equally Spaced Markers (H = 100, M = 12, r; = 0.2)

Centromeric model

Equal retention model

Actual map Map length Map length
d length estimate SE estimate SE
1 (cR) (cR) (cR) (cR) {cR) {(cR)
0.8 20 220 222.5 1.1 214.2 0.9
40 440 450.1 1.9 384.5 15
a5 20 220 226.1 1.3 189.8 11
40 440 453.7 2.1 400.6 1.8

guish the possible marker orders with any analysis
method, at least one obligate break must be observed
between each pair of adjacent markers. Given H hy-
brids and retention probability r, the number of obli-
gate breaks between two loci separated by breakage
probability # follows a binomial distribution on H trials
with probability of success p = 26r(1 — r}). Hence, the
probability of observing at least B obligate breaks be-
tween each of the M — 1 adjacent marker pairs is

H
[2 Ghp¥(l — py Pt

y=B

Table 6 lists the probability of at least B = 1, 2, or 3
obligate breaks between each pair of markers and the
estimated probability that the true order is the unique
best ML order. As expected, the probability of observing
at least one obligate break between each pair of mark-
ers is always greater than the ML probability of correct
ordering. However, this is often a very crude upper
bound, and there does not appear to be a clear relation-
ship between the probability of identifying the true or-
der as the unique best order using ML and the probabil-

ity of observing at least B = 1, 2, or 3 breaks. Hence,
the probability of at least one obligate break between
each pair of adjacent markers does not appear tobe a
reliable substitute for the probability that the true or-
der is the unique best order for estimating sample size.

DISCUSSION

Multipoint methods for RH mapping make efficient
use of information from all leci simultaneously and
take advantage of information contained in incom-
pletely typed radiation hybrids. We compared three
multipoint methods for ordering genetic loci using radi-
ation hybrid data and determined the limits of ordering
accuracy of RH mapping under conditions characteris-
tic of recent RH mapping experiments. A variety of
other strategies have been developed, including the
methods of Falk (1991, 1992), Wilson (1992), and Cox
et al. (1990), which combine two-locus results to build
a multipoint map, and the multipoint methods of Green
{1992) and Lawrence and Morton (1992), which are
very similar to the maximum likelihood approach of
Boehnke et al. (1991). Guerra et al. (1992) developed

TABLE 6

Probability of Observing at Least B Obligate Breaks between Each of M - 1 Adjacent Marker Pairs
Compared to the ML Estimated Probability That the True Order Is the Unique Best Order

P(at least B cbligate breaks)

P(true order ig

H M r d (cR) B = B=2 B=3 unique best)
50 8 0.2 20 (.6963 0.1997 0.0173 0.5060
30 0.9113 0.5892 0.2010 0.7100
40 0.9737 0.8306 0.5135 0.7600
b0 0.9917 0.9333 0.7503 0.7160
0.5 20 0.9410 0.6894 0.3026 0.8100
30 0.9932 0.9441 0.7822 0.9160
40 0.9991 0.9907 0.9508 0.9220
50 0.9999 0.9984 0.9894 0.9180
100 16 0.2 20 0.9626 0.7594 0.3599 0.8920
306 0.9974 0.9741 0.8761 0.8660
40 0.9998 0.9972 0.9825 0.9540
50 1.0000 0.9997 0.9975 0.9640
0.5 20 0.9989 0.9878 0.9346 0.9940
30 1.0000 0.9998 0.9982 0.9960
40 1.0000 1.0000 1.0000 0.9960
50 1.0000 1.0000 1.0000 1.0000




RH MAPPING METHODS

an alternative Bayesian approach, but it is apparently
limited to the analysis of three loci at a time.

The three multipoint methods that we compared
each have advantages and disadvantages. The mini-
mum breaks method demands only minimal assump-
tions about the data and requires the simplest compu-
tations; it is the fastest of the three methods to use.
However, it cannot supply estimates of intermarker
distances and does not provide a meaningful way to
compare the relative probabilities of competing orders.
The maximum likelihood method provides distance es-
timates between markers, but requires both the as-
sumption that fragments are retained independently
and the specification of a model for fragment retention.
In addition, ML demands more complex computation
than the minimum breaks method and is therefore con-
siderably slower. ML allows the comparison of orders
via relative maximum likelihoods, but there can be no
formal tests to determine the probability that an order
is the true order. The Bayesian maximum posterior
probability method allows direct comparison of orders
through their posterior probabilities and can also be
used to estimate distances between markers (Lange
and Boehnke, 1992). Its main failings are that it re-
quires a set of predetermined best orders, and therefore
requires the use of an alternative method to determine
the best orders, and that it is computationally complex
and therefore slow.

The positive and negative aspects of the ML and PP
methods are partially reconciled by our finding that we
can use the log{MLR) as a slightly conservative approx-
imation of the log(PPR). Our approximation for the de-
nominator of the posterior probability will cause the
posterior probabilities to be slightly overestimated.
However, the denominator approximation does not af-
fect the probability ratio. Therefore, our result that the
slope of the regression line for log(PPR} and log{(MLR)
is always slightly greater than 1.0 is not an artifact
of this part of the approximation of the posterior proba-
bility.

The advantage of the PPR over the MLR is its simple,
direct interpretation: PPR = 1000 means that the pos-
terior probability of the best order has posterior proba-
bility 1000 times greater than that of any other order.
Using the MLR as an approximation for the PPR elimi-
nates the need for the additional complex computations
of the PP method, but allows us to make a simple,
direct comparison of the best order to the other orders.
In addition, since the MLR can be used to approximate
the PPR, it would be reasonable to approximate the
posterior probability of a particular order by the maxi-
mum likelihood of that order divided by the sum of
the maximum likelihoods of the set of best ML orders.
Hence, we can approximate the actual posterior proba-
bilities using the maximum likelihoods. Rogatko and
Zacks (1993) demonstrate an analogous result in the
context of linkage analysis.

In most RH mapping prejects to date, the number of
hybrids H has been near 100. We simulated samples
of sizes H = 50, 100, and 200 in different situations to
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determine the range of accuracy that can be expected.
The retention models and ranges of retention values
we have simulated approximate the values seen in data
from many RH mapping projects. We chose to simulate
equally spaced markers because this represents a best-
case scenario and because when we build a framework
map, we generally want to produce a map with approxi-
mately equally spaced markers. If there are enough
markers, it may be possible to choose a subset of mark-
ers that are approximately equally spaced; our results
suggest that these markers will be ordered correctly
with high probability under many conditions common
to recent RH mapping experiments. Generally, mark-
ers are not equally spaced. Our random-spacing results
should serve as an indication of what can be expected
in these situations.

We have assumed complete marker typing in all of
our simulations. While incomplete marker typing may
affect the performance of the ordering methods we com-
pared and will lessen the power to determine marker
order accurately, results for complete marker typing
should be similar when the percentage of untyped loci
is low, as has generally been the case in recent studies
{e.g., Warrington et al., 1991; Gorski et al., 1992; Rich-
ard et al., 1993).

For randomly spaced markers, total distances corre-
sponding to average marker spacings of 10 to 20 cR
gave the highest probability of mapping the largest
proportion of markers in a 1000:1 framework map (Fig.
3). One of the attractive features of RH mapping is that
some elements of experimental design can be used to
increase the probability that the correct order will be
inferred (Goss and Harris, 1975, 1977; Lange and
Boehnke, 1992). In theory, the dose of radiation applied
to the chromosome can be adjusted to increase or de-
crease the average number of breaks per chromosome
and hence between markers. For example, suppose we
want to order 16 markers that lie within an interval
approximately 34 Mb in length so that the average
distance between markers is approximately 2 Mb. If
previous RH experiments in similar situations suggest
that 50 kb =~ 1 cR under 8000-rad radiation, then we
would expect an average of 0.40 breaks or 40 cR be-
tween markers. We would want to decrease the radia-
tion dose somewhat for our experiment to decrease the
average number of breaks between markers and hence
increase the probability of being able to map a large
proportion of the markers in a 1000:1 map.

Since in most cases we simulated RH data and then
analyzed the data under the model we knew to be cor-
rect, our results may tend to overestimate the ordering
accuracy of the three methods we compared. However,
our results concerning data with a gradient of retention
probabilities confirm that, as a number of researchers
have already noted (Boehnke et al., 1991; Chakravarti
and Reefer, 1992; Lange and Boehnke, 1992), the reten-
tion model that is assumed does not strongly affect
which orders are inferred to be the best. It is important
to note that the map length and intermarker distance
estimates may be more strongly influenced by the re-
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tention model assumed, particularly when a strong
centromeric effect is present.

We have shown that typing 100 hybrids results in a
high probability of accurate ordering of up to 16 mark-
ers, given fragment retention probabilities in the range
0.2 to 0.5 and approximately equal marker spacing
with intermarker distances between 30 and 50 cR. If
markers are not approximately equally spaced, 100 hy-
brids still give high probability that a fairly large pro-
portion of the loci can be placed into a 1000:1 maximum
likelihood framework map, provided that the fragment
retention is near 0.5 and the markers are spaced at
average distances of 10 to 20 cR. These findings should
be useful in planning future RH mapping studies.

APPENDIX

We demonstrate in the text that if the number of
markers M = 3 and the retention probability r is fixed
at 0.5, then the minimum breaks and maximum likeli-
hood methods are equivalent. We now show that both
of these conditions are necessary to guarantee this
equivalence. If M = 3 but r = 0.5, then the likelithood
does not have the simple form of [2], and the breakage
parameter estimates are not a simple function of the
number of obligate breaks, The RH data

A B C Number of hybrids observed
0 1 1 1
1 0 1 1
1 0 0 1
0 0 1 2
0 0 0 5

10

yield the following results under the maximum likeli-
hood estimates #:

Order  Obligate breaks  Maximum log likelihood
ABC 6 -6.995
ACB 7 —6.985
BAC 7 —7.068

For MB, the best order is ABC, followed by ACB and
BAC, which are equally good. But for ML evaluated at
the maximum likelihood estimate 7, the order ACB is
best, followed by ABC and BAC.

When r = 0.5 but M = 4, the log likelihood has a form
analogous to [2]. For example, for the order ABCD, the
maximum log likelihood is

log[L(8, r = 0.5)]

= %{ [g(Ban) + g(frc) + g(Bcp)] — HIM log(2)].

However, there are cases where M = 4 for which com-
parisons must be made between orders having zero or
having one breakage probability in common. For exam-
ple, orders ABCD and ADBC have only #p¢ in common;
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orders ABCD and BDAC have no breakage probabili-
ties in common. When there is one probability in com-
mon, the log likelihood will depend on the two esti-
mates 8; and 9 not held in common through [g(5;) +
g(B )), while the number of obhgate breaks will depend
on (9 + ;). Since [g(8;) + g(9 7] is not monotonic in (4,
+ 9 s sﬂ:uatlons exist in which the MB and ML ranking
of orders will not agree. A similar argument holds if’
no estimates are in common. For example, the RH data

A B C D Number of hybrids observed
0 0 0 0 1
1 0 0 0 2
1 1 0 0 1
1 1 1 0 1
1 1 1 1 5

10
give the following results for the three best orders:

Maximum log

likelihood
Order Obligate breaks r=Ff r=0.50
ABCD 4 —-7.434 —8.007
BCDA 6 -7.731 —8.757
ABDC 5 —8.025 —8.769

Using MB, we would rank ABCD as the best order,
ABDC as second best, and BCDA as third best. Using
ML with » = 0.5 or the maximum likelihood estimate
F, we would reverse the rank of the second and third
orders.
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