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Abstract 

Qualitative patterns of the non-equilibrium behavior of coupled consumer/resource 
systems, formulated as a standard circle map, are explored. Patterns of demographic 
locking, reflected as a "devil's staircase", are observed in simulations of the MacArthur 
consumer/resource equations. As coupling strength increases the steps in the staircase 
become broader, eventually overlapping to form a chaotic pattern. In addition to the 
standard form of chaos formation from overlapping Arnold tongues, a pattern of period 
doubling in the non-invertible standard circle map corresponds to the pattern observed in 
the classic consumer/resource equations. 
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1. Introduct ion 

The original form of the Lok ta -Vol te r ra  p r e d a t o r / p r e y  equations did not 
include the biological force normally associated with dissipation, density depen- 
dence, and thus the equations produced behavior that was inherently oscillatory 
yet non-dissipative (May, 1972, 1981). Adding simple terms to account for density 
dependence turns the characteristic "centers"  into stable foci. Furthermore,  May 
(1981) noted that most realistic models include forces that provided for the 
generation of an unstable focus at some local level, which usually result in a stable 
limit cycle globally. It is thus normally assumed that p r e d a t o r / p r e y  models will 
oscillate, sometimes damping to a single limit point, other times maintaining a 
permanent  oscillation on a limit cycle, depending on the exact mix of parameter  
values (May, 1981; Vandermeer ,  1993). 

The intrinsic "consumpt ion"  of the predator  in such systems implies that the 
p r e d a t o r / p r e y  pair, or, equivalently, the consumer / r e sou rce  pair, form a sort of 
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structural base for ecological communities, giving underlying meaning to both the 
classic population interactions (pa ras i t e /hos t ,  p r e d a t o r / p r e y ,  competition 
(MacArthur, 1970; Abrams, 1980, 1986; Chesson, 1990), mutualism (Levine, 1976; 
Vandermeer,  1980)), and trophic levels (by definition). As such, the details of their 
dynamics ought to be a central goal of community ecology, as has indeed been the 
case (e.g. Hsu and Hubbell, 1979; Abrams, 1975, 1980, 1986; Chesson, 1990). 

Recently it has been noted that when such consumer / resource  pairs are 
coupled together (as surely they must be in any real ecological community) some 
unexpected patterns result, including frequency entrainment, period doubling, and 
chaos (Vandermeer,  1993). Given that the elementary consumer / resource  system 
is inherently oscillatory, it makes sense to analyze a coupled pair of such systems as 
a coupled oscillator (Vandermeer and Kaufmann, 1994a,b). Assuming consumer /  
resource couplings are similar to others of nature's coupled oscillators, it is 
possible to borrow a powerful technique from physics, circle maps (Bohr et al., 
1984; Bak, 1986; Cvitanovic et al., 1990), to gain qualitative insight into the 
apparently complicated behavior that may result from coupling oscillators. The 
purpose of this note is to explore some of the emergent qualitative patterns of 
non-equilibrium behavior of coupled consumer / resource  systems, using the tool of 
the circle map. 

2. Basic theory 

Consider population densities or biomasses of two consumers, Yl and Y2 and 
two resources, x 1 and x 2, where Yi, xi ~ R+. Presume that their dynamics are 
stipulated by a set of ordinary autonomous differential equations, namely, 

d y i / d t  = f i ( y i , x i ) ,  i = 1,2, 

d x i / d t  = g i ( Y i , X i ) ,  i = 1,2. 

Assume that f and g and the parameters therein are chosen in such a way that 
each subsystem (i.e. xp  Yl and x 2, Y2), when operating in isolation, will exhibit 
limit cycles. The goal is to study what happens when such isolated oscillations are 
coupled together. 

As is standard procedure (Jackson, 1989; Arrowsmith and Place, 1990), the 
behavior of two oscillators together can be modelled as movement on a torroidal 
surface. By placing the two oscillations at right angles to one another and rotating 
one of the oscillators around the other, it is a simple matter to track out the 
relevant torus. All trajectories of the 4D system, whether coupled or independent,  
can be visualized as trajectories on the surface of this torus. 

With two identical p r e d a t o r / p r e y  systems operating independently of one 
another, the trajectory on the torus winds around both dimensions once. To 
observe the long-term behavior of the system it is convenient to construct a 
Poincar6 section at some point and observe the " re turn"  behavior of one con- 
sum e r /  resource system as determined by the other. With two totally unconnected 
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but identical systems, any arbitrary starting point winds around the torus once in 
both dimensions, and thus appears  as a single point on the shell of the Poincard 
section (Abraham and Shaw, 1988). 

In any natural setting it seems very unlikely that the periods of both c o n s u m e r /  
resource pairs are precisely the same, and indeed the situation becomes far more 
interesting when one period is slightly different than the other. Each cycle around 
the torus cuts the Poincar6 section at a slightly different point. The effect is that 
the intersection on the Poincar6 section is in a different position each cycle. 

These dynamics can be conveniently represented with a simple transformation. 
Consider 

O = t a n  ' [ ( C - C * ) / ( R - R * ) ] ,  

where the C = consumer (predator),  R = resource (prey), and the asterisk indi- 
cates the mean value of the variable in its limit cycle. The quantity 0 is thus 
proportional  to the consumer / r e sou rce  (p r eda to r / p r ey )  ratio and e ranges from 0 
to 27r radians. 

The qualitative dynamics of the overall system can be deduced by tracing 
successive values of 0 as they cut through the Poincar~ section, the equation for 
the map thus derived is 

O(t+ 1 ) = f ~ + 0 ( t ) ,  mod 1, 

where 11 is the winding number  (the excess amount of winding of one oscillator 
with reference to the other). The 1D map described above is known as a circle 
map. 

In the ideal situation with the oscillating frequency of both consumer / r e sou rce  
pairs identical, the appropriate  circle map is simply O(t + 1) = O(t), a simple 45 ° 
line in which whatever 0 is initiated on the Poincar6 section, it is returned to 
exactly, as the trajectory strikes the Poincar6 section again. If the trajectories are 
not independent  (e.g. the first consumer eats some of the second consumer 's  
resources), O(t + 1) = O(t) would no longer be true. Thus, we presume O(t + 1) = 
f(O), where f is some function not too different from O(t) alone. 

In Fig. 1 is the qualitative form of the map that in fact does emerge, for a wide 
variety of consumer / r e sou rce  equations. It is clear that there are actually two 
equilibrium points, one stable and the other unstable, indicating that there should 
be two points on the Poincar6 section, one of which repels trajectories, the other of 
which attracts them. This ar rangement  is sometimes referred to as a "braid" ,  and, 
due to a powerful theorem known as Peixoto's theorem, all such arrangements  in 
torroidal flow must have an equal number  of stable versus unstable torroidal cycles 
(Abraham and Shaw, 1988). 

The biological significance of these observations is simply that with a loose 
connection of two cons um er / r e s ou rce  pairs, trajectories that normally cover the 
torus entirely, whether  by never repeating themselves or by being defined uniquely, 
suddenly are locked together on a single stable trajectory. No mat ter  where the 
system is initiated, it always winds up on that single stable trajectory. This is the 
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Fig. 1. Dynamics of the circle map with weakly coupled consumer  resource systems with identical 
periodicity. 

parallel result of the stable equilibrium point or stable limit cycle of the classic 
Lotka Volterra equations, but with a 4-dimensional system. 

To complete the general theoretical framework, consider the distortion likely to 
be introduced to the map O(t + 1)=  O(t) if the coupling of systems is further 
increased. If  the map O(t + 1) = O(t) +f(O) + f~ is to change with coupling strength, 
we assume the change will be in the form of smooth changes in the non-linearities 
involved in f(O), that those changes in the circle map introduced through the act 
of coupling the independent  2D systems will simply be exaggerated as the coupling 
increases in strength. 

While a great many specific forms of f(O) could be imagined, it has become 
customary to examine this general phenomenon with a particularly simple form, 
the "s tandard"  circle map, 

O(t + 1) = ~ + O(t) + ( k / Z r r )  s in[27r0( t ) ] ,  

where k is taken as proportional to the coupling strength (Bohr et al., 1984; Bak, 
1986). While the arguments herein do not appear  to be dependent  on the specific 
form of f(O), it is convenient to use the standard map. 

3. Demographic locking 

Utilizing the standard circle map as a model of two consumer / r e source  
systems, it is possible to suggest generic behaviors for such systems. In particular, if 
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Pi represents  the period of the ith consumer / r e sou rce  pair, we allow f~ = Pi /Pj  to 
be the ratio of periods for the two systems operating independently of one another.  
We then examine the parameter ,  

w = lim ( f , ( 0 )  - O)/n ,  (1) 
H ---~ o o  

usually called the winding number, where f,, is the standard circle map, and n is 
the number  of iterations. The well-known result is that the periods tend to lock 
onto one another,  at rational values of w, or become distorted at irrational values 
of w. If w is rational the point where the trajectory cuts the Poincar6 section will 
eventually repeat  itself, whereas if w is irrational, the point will never repeat  itself 
in the Poincar6 section (Bohr et al., 1984). 

Selecting a specific level of coupling (a fixed value of k in the standard circle 
map) and computing w for a range of values of f~, a pat tern emerges in which the 
winding number  remains at a fixed rational value over a range of values of Ut, and 
furthermore,  an infinite number  of irrational winding numbers exist between 
rational couplings. This result has been termed the devil's staircase, since the 
staircase effect (fixed rational values over a range of fL interspersed with variable 
irrational values) has a fractal character.  If  a small section of the graph of w versus 

is blown up, it also exhibits the staircase effect. 
It is of some interest to examine the consumer / r e sou rce  equations from this 

point of view, expecting the qualitative behavior predicted from the circle map will 
be reflected in the differential equations. Allowing y to be the predator  (con- 
sumer) and x the prey (resource), we write, 

d y , / d t  = r~yl(1 - g y , / ( 1  +x,  + cx2) ), (2a) 

d Y 2 / d t  = rzY2(1 - gy2/(1  + x 2 + cx,)  ), (2b) 

d x l / d t = r 3 x l ( 1  - x J K )  - a x ( y  1 + c y 2 ) / ( 1  + x  I +cx2) ,  (2c) 

d x 2 / d t  = r4x2(1 - x z / K  ) - a x ( y :  + cYl) / ( 1  + x  2 + cxl) ,  (2d) 

where r i is the intrinsic rate of natural increase for the ith population, K is the 
carrying capacity of the resources, a and g are constants, and c is the coupling 
coefficient. Setting c = 0.01, the empirical winding number  (Eq. 1) was calculated 
for a range of values of r 4 from 2.0 to 6.5, with the other parameters  set as follows: 
r l = r  E=0.5,  r 3=7 .0 ,  K = 2 0 ,  a = 0 . 1 ,  g = 0 . 0 4 .  

As can be seen in Fig. 2, these consumer resource equations illustrate exactly 
the behavior predicted by the circle map, a devil's staircase, with rational locking 
at all the exact predicted ratios (the following ratios are clearly observable as steps 
in the devil's staircase: 3 /2 ,  4 /3 ,  5 /4 ,  7 /5 ,  6 /5 ,  9 /7 ,  11/8, and 10/7). There  is a 
pat tern of demographic locking that follows exactly the sequence observed in 
other, mainly physical, systems (Bak, 1986). While further ramifications of this 
observation remain under investigation, little doubt exists that these equations will 
likely behave similarly to the general qualitative predictions of the circle map, 
including the generation of Arnold tongues and chaos resulting from the interplay 
of competing frequencies (Bak, 1986). 



140 J. Vandermeer / Ecological Modelling 73 (1994) 135-148 

1.6 

1.4 

1.2 

1.0 
2 

i " '- , . . .  

" 4  

r4 

1 . 4 5  - 

1 . 2 -  ~ 

°. 

• , - . •  

:18  ' 310 ' 312 ' 

1 . 3 3  

1.31 

• ° 

3.1 ' 3'.3 

Fig. 2. The "devil's staircase" for the Lotka-Volterra type equations (Eqs. 2a-d, see text)• (a) The 
empirical winding number as a function of the parameter r 4. The dotted line encloses the part of the 
figure to be expanded• (b) The range of r 4 as stipulated by the dotted lines in a. (c) The range of r 4 as 
stipulated by the dotted lines in b. The fractal nature of the structure is thus revealed by the self 
similarity evident in comparing a with b with c. 
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Fig. 3. Changes  in the coupling strength of coupled consumer / r e sou rce  systems as illustrated by the 
s tandard circle map. (a) As coupling strength increases from 0 to 0.8 the approach to the stable point is 
ever more rapid. (b) As coupling strength increases 1 to 1.5, because of the oscillatory nature 
introduced at about 0.8, the approach to the stable point is ever more slowly in this parameter  range. 
(c) Empirical observations of approach to the entra inment  cycle of  a Lotka-Vol te r ra  type system, 
illustrating the behavior predicted in a and b. 
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4. Qualitative results of  the non-invertible circle map 

As the parameters  l)  and k of the standard circle map are varied, a well-known 
pat tern emerges in which so-called Arnold tongues defining regions of rational 
winding numbers increase in area as k increases, as discussed above. The point at 
which Arnold tongues begin overlapping, usually taken to be at k = 1, defines the 
onset of chaos. It is also the point at which the circle map becomes non-invertible. 
With the exception of a recent analysis of symbolic dynamics (Zeng and Glass, 
1989), little attention has been paid to the dynamics of the non-invertible circle 
map. 

A special case exists in which the coupled oscillators are identical, thus making 
f~ = 0. Not only does this case not result in chaos at the non-invertibility point, a 
classical period doubling approach to chaos can be observed as coupling values 
reach yet higher values. To see this we begin with a purely uncoupled system for 
which O(t + 1)---O(t), that is, k = 0. Increasing k slowly we see the sequence 
illustrated in Fig. 3. In Fig. 3a, k increases from 0 to 0.8 and the approach to a 
phase locked position at 0 = 0.5 is ever more rapid. In Fig. 3b, k increases from 1 
to 1.5, and the rate of approach to the phase locked position is declining. This 
dynamic corresponds to empirical observations on Lotka-Vol te r ra  type coupled 
oscillators (Vandermeer,  1993) with weak coupling, that the approach to an 
entra inment  cycle is accelerating for low values of coupling, reaches a peak  and 
then becomes decelerating for higher values of coupling, as illustrated in Fig. 3c. 

The slope of the map at the non-zero critical point is s = 1 - k ,  whence the 

Ot+ 1 

O t 

Fig. 4. The qualitative nature of  the alternate stable two-point cycles in the non-invertible circle map. 
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critical point for the first bifurcation (when the slope is exactly - 1) is simply k = 2. 
At the next bifurcation alternative two point cycles begin, as illustrated in Fig. 4. 
This bifurcation point is also easily calculated as the point at which the projection 
from the peak of the sine curve strikes its ascending rather  than descending limb. 
The critical value occurs when the projection from 0.25 strikes exactly at 0.75, or, 
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Fig. 6. (a) Illustration of the stable 6-point cycle characterizing the large window on the left hand side of 
Fig. 5b. (b) Illustration of the stable 4-point cycle characterizing the large window on the right hand 
side of Fig. 5b. 
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0.75 = 0.25 + (k/2rr)sin(Tr/2), which occurs when k = 7r. The next bifurcation 
marks the point at which both alternate cycles bifurcate to alternative four-point 
cycles. This sort of partial bifurcation (in the sense that alternate basins always 
exist) continues until a value of k slightly more than 3.6, at which point full chaos 
is apparently reached, and no alternative basins exist. 

The entire process can be best visualized with a bifurcation diagram, presented 
in Fig. 5. As is now familiar, various windows of stable periodicity appear 
throughout the chaotic region. Two such cases are shown on return maps in Fig. 6, 
for a period 6 and period 4 window. 

The above suggests an approach to chaotic behavior that is quite distinct from 
that normally associated with the standard circle map, and one that corresponds 
quite closely to the observations made of coupled biological populations 
(Vandermeer,  1993). 

5. Discussion 

The discovery that simple biological models can lead to chaos (May, 1976) 
seems to have left ecology in two alternate modes. On the one hand has been a 
search for evidence of chaos existing in nature (Schaffer, 1984, 1987; Schaffer and 
Kot, 1985a, 1986; Schaffer et al., 1988; Hassell et al., 1991), on the other hand a 
cataloging of ecological situations that have the potential for exhibiting chaos 
(May, 1976, 1985; May and Oster, 1976; Gilpin, 1979; Shaffer and Kot, 1985b; 
Allen, 1990; Hastings and Powell, 1991). While we now have a large number of 
ecological circumstances that clearly imply the potential of chaotic dynamics, and 
several suggestive cases of chaos in nature, the present offering suggests another 
avenue for research. If the qualitative results that emerge from a study of circle 
maps have any significance, we should expect, along with the now commonly 
expected chaos, demographic locking. Preda tor -prey  pairs coupled together may 
very well exhibit patterns of correlation in nature that have to do with their 
demographic locking, thus suggesting the existence of a non-equilibrium pattern. 

As discussed elsewhere, one obvious demographic locking pattern is frequency 
entrainment (Vandermeer,  1993), examples of which are cited frequently in physi- 
ology and behavior. The observations of Bulmer (1974) may reflect just such a 
pattern (Vandermeer,  1993). 

Extending the analysis to populations with unlike periodicity, coupling con- 
sumer / r e source  systems suggests that populations will tend to become demo- 
graphically locked at rational frequencies. Does this then imply that an empirical 
determination of real periodicities in a natural community will show a clustering 
around the dominant rational winding numbers? For example, will a community 
composed of populations roughly obeying Eqs. 2 with the same range of frequen- 
cies shown in Fig. 4 have period ratios concentrated near 3 /2 ,  7 /5 ,  4 /3 ,  5 /4 ,  and 
1/1 as the theory suggests? Of course such a pattern has not yet been sought in 
any natural community. 
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Furthermore,  the phenomenon of demographic locking can produce counter-in- 
tuitive results that call into question the meaning of both observed correlations and 
empirical results. For example, in a phase reversed demographic locking of the 
consumer resource system, Vandermeer  and Kaufman (1994a) demonstrated a 
time series in which two competitors were clearly positively correlated. The 
phenomenon  of demographic locking precludes simplistic expectations of observed 
correlations of biological phenomena.  

The well-known results from circle maps as models of coupled oscillators (Bohr 
et al., 1984; Bak, 1986) suggest important implications for ecological communities 
(Vandermeer ,  1993). As coupling increases, the parameter  k increases, and pat- 
terns of phase locking change. Effectively the "s teps"  in the devil's staircase 
become broader,  eventually overlapping. At this point a sort of competit ion for 
different locking frequencies emerges, and the system becomes chaotic. From an 
ecological point of view, increased coupling implies increased competit ion between 
the consumers in the original consumer / r e sou rce  systems. Thus, the qualitative 
behavior of the standard circle map implies that as ecological competit ion in- 
creases, the system becomes chaotic. The standard model of interspecific competi-  
tion that implies coexistence with weak competit ion and eventual competitive 
exclusion as competit ion becomes excessively strong must be modified. As compe- 
tition proceeds from weak to strong, there is a point at which the competitive 
system becomes chaotic. The general phenomenon then, must be modified from 
the classic range of competitive coexistence through competitive exclusion, to a 
range that extends from stable competitive coexistence, to chaotic competitive 
coexistence, to competitive exclusion. 

Such an ecological interpretation may be important for theories of community 
structure. While the theory reported here treats only the two-competitor case, it is 
nevertheless possible to speculate about larger communities. The earlier ideas of 
MacArthur  and Levins (1967) and certain formulations of the equilibrium theory 
of island biogeography (e.g., MacArthur  and Wilson, 1967) suggest that communi- 
ties tend to a state of full packing, that is, if too many species are in a community, 
one or more will go extinct, whereas if there are too few, another  will colonize. 
Such a view suggests that communities should be characterized by all species at 
some maximal allowable level of competition, large enough so that other species 
cannot invade, yet not too large to cause extinctions. Such a view of communities, 
in light of the qualitative generalization that strong interspecific competit ion 
causes chaos, suggests that populations in natural ecological communities should 
be characterized by chaotic population behavior. 
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