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Abstract--Group support systems (GSS) are increasingly being used within organizations 
to support group work. One area of support that is often desired is the scoring and rank- 
ing of alternatives on qualitative/subjective domains. In this article, we present a new, 
conceptual approach, the qualitative discriminant process, for scoring and ranking in 
GSS. This approach is based on well-established decision analysis techniques. It signif- 
icantly advances the state of the art of GSS by addressing four common limitations: (1) 
the inability to deal with vagueness of human decision makers in articulating preferences; 
(2) difficulties in mapping qualitative evaluation to numeric estimates; (3) problems in 
aggregating individual preferences into meaningful group preference; and (4) the lack 
of simple, user-friendly techniques for dealing with a large number of decision alterna- 
tives. Our approach is easy to implement in stand-alone personal computers and GSS 
platforms. We illustrate this with a real-world problem on a prototype implementation. 

1. INTRODUCTION 

The turbulence of the modern business environment has influenced the way in which firms 
are organizing for decisionmaking and problem solving (Huber, 1984a). Flexible organi- 
zations, in the form of teams and autonomous work groups, seem to be the preferred 
approach for dealing with the complexity and diversity of everyday business problems 
(Finholt & Sproull, 1990). Since the early 1980s researchers and developers have responded 
to the challenge of supporting group work by building and studying a new class of IS, called 
group support systems (GSS). Early GSS focused on group decisionmaking (Huber, 1984b; 
Kull, 1982); more recently, however, other types of systems such as meeting support sys- 
tems (MSS, Dennis et al., 1988) and negotiation systems (NSS, Jarke et al., 1987) have 
emerged which target other types of group activity. Much of the research in the field has 
focused on developing GSS environments and studying their effects on group processes 
(McLeod, 1991). Returns on investments are encouraging; several studies have reported evi- 
dence of “process gains” such as improved effectiveness of group activity (Adelman, 1988; 
Vogel & Nunamaker, 1988; Dennis et al., 1988; Nunamaker et al., 1991) and reduction in 
meeting lengths (Grohowski et al., 1990; Nunamaker et al., 1989; Vogel & Nunamaker, 
1988). Some studies have shown that GSS features which support: (1) the evaluation of 
decision alternatives; (2) voting (Kull, 1982; Nunamaker et al., 1988; Galegher, 1990); and 
(3) group memory retention (Grohowski et al., 1990; Finholt & Sproull, 1990) contribute 
to group process gains. Although much research has focused on understanding how GSS 
might improve group processes, little attention is given to improving some of these features. 
For example, the areas of voting and evaluation techniques have been neglected. 
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In group decisionmaking, the evaluation of decision alternatives often involves scoring 
and ranking of the alternatives in ways that are best described as qualitative or subjective. 
For example, TELOS-PDM (Burch, 1992), a commonly used technique for information 
systems development planning, requires that each information system project be evaluated 
in terms of its expected contribution to a firm’s goals of improving productivity, differ- 
entiation, and management (PDM). During the group decisionmaking process, each mem- 
ber of the IS planning committee is required to evaluate project proposals based on the 
three criteria and to provide a composite score for each proposal. The scores of all the com- 
mittee members are then analyzed and merged into a “group ranking” of the projects after 
which the final decision is made. The goal of deriving a composite score for each proposal 
necessitates the assignment of a numeric score for each criterion, even though some crite- 

ria, such as differentiation, obviously have a qualitative/subjective domain. In a group con- 
text, this situation becomes aggravated by the fact that an acceptable “group ranking” is 
the desired objective. Thus it is necessary that the committee is able to define a “consen- 
sus” measure, identify when a satisfactory level of “consensus” has been achieved, and to 
compute a “group” score for each project proposal. There are several other examples of 
group activity with similar requirements for evaluation support: employee performance 
evaluation, candidate selection, strategic planning, product planning, negotiation, invest- 
ment decisionmaking with social criteria, and so on. 

Many scoring and ranking techniques commonly used in GSS platforms have been crit- 
icized in the decision theory literature for their limitations in dealing with the real diffi- 
culties of group decisionmaking: (a) mapping of qualitative evaluations to point estimates 
in ranking (Goddard, 1983; Weber, 1987); (b) the aggregation of individual preferences into 
a group preference (Kirkwood & Sarin, 1985; Dyer & Sarin, 1979); and (c) the analysis and 
use of point estimate data in facilitating group consensus formation (Dutta, 1980; Bropan 
et al., 1992). Although many relevant advances have been made in voting, fuzzy set, and 
possibility theories, these have not significantly influenced current GSS development. 

In this study, we propose a new conceptual framework for scoring and ranking that 
involves a multistage qualitative discriminant process. Our framework is informed by vot- 
ing, fuzzy set, and possibility theories. It provides techniques that are better suited to facil- 
itating consensus formation in group activities than currently exist in most GSSs. It offers 
the following advantages: (1) a clear and simple structured graphical approach to collect- 
ing data from users; (2) maps qualitative evaluations to numeric estimates; (3) allows for 
vagueness in preference articulations; (4) provides support for analyzing data relevant to 
evaluating consensus formation; and (5) ease of implementation in manual and computer 
supported group activities. 

2. SCORING AND RANKING TECHNIQUES 

The expression of individual preferences among a set of decision alternatives may 
appear to be simple and straightforward on the surface, but there are several issues which 
must be addressed. For example, the ranking of any set of objects implies the explicit or 
implicit scoring/rating of the objects with regard to some common basis of comparison, 
and an ordering of them in reference to the assigned scores or ratings. A fundamental impli- 
cation here, is that relationships exist among the objects which provide the basis for com- 
parison. In this regard, measuring the strengths of these relationships and assigning 
weights/scores to them is an important issue in scoring and ranking. 

Current techniques for scoring and ranking can be classified into four general cate- 
gories: (1) point estimates on interval scales; (2) point estimates on ratio scales; (3) inter- 
val estimates on ratio scales; and (4) interval estimates on interval scales (Fig. 1). Although 
there is some discussion about using category (2) techniques in GSS software (Saaty, 1989), 
most current systems support the first category. User familiarity and ease of implementa- 
tion in software may account for the wide acceptance and implementation of these point- 
estimate techniques in GSS. 

More recently, however, point-estimate techniques have been criticized for several lim- 
itations: (1) they do not address the fuzziness which is characteristic of many human deci- 
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Fig. 1. Categories of ranking and scoring techniques. 

sionmaking problems (Weber, 1987; Hurrion, 1985; Korhonen, 1985); (2) it is very difficult 
to map qualitative preferences, which may have a range, to point estimates (Kirkwood 
et al., 1985; Goddard, 1983); (3) decisionmakers often operate in situations where incom- 
plete information makes it impossible to assign point estimates to decision alternatives 
(Weber, 1985, 1987; Goddard, 1983; Korhonen, 1985); (4) in voting situations where coali- 
tions may develop, point estimates can be manipulated (Dutta, 1980; Nurmi et al., 1990); 
and (5) aggregating the point estimates of individual decisionmakers to determine group 
preferences is problematic because, although individuals may agree on the qualitative rank 
of an object, they often disagree on the point-estimate for it (Kirkwood & Sarin, 1985; 
Weber, 1985; Dyer & Sarin, 1979). 

Many researchers have argued that pairwise comparison techniques can help solve 
many of the aforementioned problems (Weber, 1985,1987; Goddard, 1983; Kok & Lootsma, 
1985; Kirkwood & Sarin, 1985). Advances in fuzzy set, possibility, and voting theories have 
also contributed to improved understanding of many of these problems and the develop- 
ment of more sophisticated pairwise comparison techniques which use interval estimates 
(Zadeh, 1965; Huber et al., 1969; Yager, 1982; Nurmi et al., 1990). Some important fea- 
tures of pairwise comparison techniques are: (a) they help to reduce complexity escalation 
in situations where decisionmakers are required to simultaneously compare more than five 
to seven objects; (b) they are applicable to decision situations where information about deci- 
sion alternatives may be incomplete; (c) subtle distinctions and relationships can be com- 
municated by ordering alternatives along a scale without deriving “exact” numerical values. 

2.1 Limitations of current GSS techniques 
Current approaches to scoring and ranking in GSS are for the most part based on cat- 

egory (1) techniques. For example, group system’s (alias PLEXSYS, TEAM QUEST), alter- 
native evaluation, and group matrix tools both utilize a IO-point interval scale for rating 
evaluation criteria and decision alternatives (Nunamaker et al., 1991). Vision Quest, another 
well-known GSS platform also uses a IO-point interval scale for the same purpose. These 
GSS platforms exhibit four basic limitations: (1) Lack of structured techniques for deal- 
ing with the problem of distinguishing among large numbers of alternatives. Thus, as the 
number of objects and evaluation criteria increases, it becomes increasingly difficult to rank 
them (Korhonen, 1986, 1987, 1991). (2) They do not elicit information on decisionmak- 
ers’ preferences, which could be analyzed by facilitators and help determine strategies for 
consensus formation. (3) They do not provide techniques for mapping qualitative criteria 
to numeric data for analysis. (4) They are inadequate techniques for aggregating and ana- 
lyzing individual preferences to facilitate consensus formation and for deriving group 
preference. 

In general, the ranking processes implemented in most GSS environments presents each 
decisionmaker with the decision alternatives (objects) and requires the decisionmaker to 



392 N. BRVSON et al. 

order them in a manner consistent with his/her beliefs, In the case of scoring, each deci- 
sionmaker is presented with a list of alternatives, a numeric interval of acceptable scores, 
and a pair of qualitative categories that is associated with the bottom and top values of 
the interval scale. The decisionmaker is then requested to assign an integer value from the 
relevant interval to each alternative. Apart from the extreme values on the scale, the mean- 
ings of the other values are usually not defined. Thus, it is possible that two different deci- 
sionmakers may associate two different meanings to the same numeric value. Similarly, a 
decisionmaker may associate the same meaning to two different values in the interval. These 
factors imply that the evaluation of the responses of the group, in order both to determine 
the consensus response and the level of consensus, is a problematic undertaking. 

Since scoring with reference to a common basis of comparison also implies the exis- 
tence of relationships between the objects relative to the basis of comparison, the scores 
provided by two different group members could reflect expressions of the same relation- 
ships (4:2:1) between the objects even though the actual scores may be different [e.g., 
(12:6:3) and (8:4:2)]. Thus, the examination of the scores in order to determine the level 
of consensus might lead to an incorrect conclusion- for consensus involves both consen- 
sus in terms of the relationships between the objects, and consensus in terms of the score 
associated with the top-ranked object. This perspective of consensus might not be appar- 
ent to the decisionmaker if there is no explicit association between the scores of pairs of 
objects, Current approaches to scoring in CSS limit the users’ perspective of consensus, 
and do not elicit information about the relationships among preferences. The one excep- 
tion here is Option Finder, which offers a tool for eliciting this information via a pairwise 
comparison technique. It is, however, limited because it elicits ordinal and not cardinal 
preference information. Consequently, the decisionmaker has no way of stating that he/she 
is indifferent to the relative rank positions of a given pair of decision alternatives. 

Another impo~ant limitation is the approach to aggregating individual preferences into 
group preferences. The common technique used in GSS is arithmetic averaging, in which 
a group mean score/rank is derived. The deviation of each individual score from the mean 
is also computed. This information is then used to stimulate dialogue and bring the group 
members closer to the mean. The major problem here, however, is that a group mean is 
meaningless. For example, if the mean score is 5 for two decisionmakers who ranked deci- 
sion alternatives on a IO-point (O-9) scale, and the scores of both decisionmakers are equi- 
distant from the mean (1,9), the deviation of each decisionmaker from the mean does not 
in any way represent how far apart they are from consensus on the ranking of this deci- 
sion alternative. 

3. QUALITATIVE DISCRI~INANT PROCESS 

The approach that we are proposing provides a process and a structured comparison 
technique for making qualitative distinctions among decision alternatives, which overcome 
the four main limitations of current GSS approaches. It also offers the option to map the 
quaIitative distinctions to numeric estimates from vague real numbers (VRN; cf. Parik, 
1983). Our approach is informed by pairwise comparison techniques (Thurstone, 1927; 
Saaty, 1986, 1989; Harker, i987a,b; Bryson et al., 1992; Bryson & Mobolurin, 1993), fuzzy 
set theory (Zadeh, 1965; Yager, 1982), theory of vague real numbers (Parik, 1983), and 
voting theory (Novak, 1980; Nurmi ef ul., 1990). In the remainder of this section, we will 
discuss the basic concepts and definitions relating to our approach. In the next section, we 
will present the procedure. 

3.1 Vague real ~~rnb~rs 
Given the vagueness inherent in many scoring and ranking processes, the concept of 

a vague real ~~rn~e~ (VRN) appears to be relevant. Parik (1983) defines a vague real num- 
ber as a tuple (st, s&) where si. < s&, and both s;, and s& are rational numbers. Also, the 
VRN (s;‘, s:” ) is said to be less than the VRN (st”, s;“) if .$ < si,“. 

We submit that, for subjective and qualitative domains, the score for an object is best 
represented numerically by a VRN rather than by a single point. For the score for an object 
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is the set of values that the given evaluator uses, implicitly or explicitly, in providing 
numeric interval or point estimates for the object. And in situations involving vagueness, 
it is likely that on occasions such a set will consist of a range of values rather than a sin- 
gle point. The following three remarks describe properties of VRN that are important for 
the remainder of this discussion. 

REMARK 1. If a decisionmaker E associates the VRN (s,!, s;) as the score of object t, 
then any real number s’ E (st, s:) could be provided as a numeric point estimate of the 
score of t. 

REMARK 2. If a decisionmaker E associates the VRN (s;, s:) as the score of object t, pro- 
vides two different real numbers P’ and s’e as numeric point estimates of the score of 
object t, and if s’~ E (s;, s;) and s” E (st, s:), the decisionmaker is not being 
inconsistent. 

REMARK 3. If a pair of decisionmakers EA, Es associate the same VRN (si, sb) as the 
score of object t, but provide two different real numbers sfA and stB as numeric point esti- 
mates of the score of object t, if stA E (sl, s:) and stE E (sl, s:), then it would be incor- 
rect to conclude that the decisionmakers disagree on a score for object t. 

Given the importance of achieving a high level of consensus in group decisionmak- 
ing processes, then the previous three remarks are instructive. For if different numeric point 
estimates are representative of the same VRN, then we may incorrectly conclude that a sit- 
uation of disagreement exists when in fact there is agreement. But how can we identify the 
relevant VRN? And, if we succeed in this task, how can we be sure that two different deci- 
sionmakers associate the same meaning to a specific VRN? For it is the meaning that is 
important. We believe that a qualitative discriminant process of successive rounds of cat- 
egorization - from broad qualitative categories to numeric point estimates-can achieve the 
objective of reasonably mapping meaning to numeric estimates. 

3.2 Qualitative discrimination 
Let Q be a complete set of ordered mutually exclusive qualitative categories Qi such 

that Qi, is considered to be superior to Qi2 for each i, > iz, where I is the index set of 
the qualitative categories. Also, let S = (sL, sU) be a numeric interval scale such that 
each object t E T is to be assigned a value in S. We will associate an exclusive numeric inter- 

val Sj = (.c(,), sU(,)) exclusively with each Qi, where S is the union of these mutually 
exclusive intervals S,. The mapping from Qi to Si is thus a one-to-one correspondence 
mapping. The numeric interval scale S is thus the union of these numeric intervals S,, over 
the index set 1. It should be noted that, since for each il > i2, that Qil is superior to Q,* 

then SL(;I) > ~(~2). 
Each qualitative category Qi may be further subdivided into a complete set of mutu- 

ally exclusive subcategories Q;,j, or buckets B;,j, each with its own numeric subinterval 
S;,, = (SL(;,j), s~(~,~) ) . Again, each qualitative subcategory Q;,j may be further subdivided 
into a complete set of mutually exclusive sub-subcategories Qi,J,k, or buckets Bi,Jlk, each 
with its own numeric sub-subinterval S;,j,k = (SL(;,j,k), SU(;,j,k)). 

Now, an object t that has been assigned by a decisionmaker to qualitative category 
Q, may be assigned to exactly one qualitative subcategory Q;,j and exactly one qualitative 
sub-subcategory Qi,J,k. Therefore, if objects t, and t2 are assigned by a decisionmaker EA 
to qualitative categories Q,i and Qi2, respectively, where i, > iz, then s,, , the numeric 
point estimate of the score for object t, , is greater than s2, the numeric point estimate of 
the score for object t2. This follows from the fact that stI E Sir while st2 E Si2, and each 
value in Si2 is smaller than any value in Sil. Similar relationships hold between the quali- 
tative subcategories and the qualitative sub-subcategories. 

It is also possible that two evaluators could assign object t to the same qualitative sub- 
subcategory, even though they disagree on the numeric point estimate of the score. Thus, 
any considerauon of agreement between a given pair of evaluators should focus on the level 
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of agreement. For example, a pair of evaluators may agree on the qualitative category to 
which an object should be assigned, but differ as to the qualitative subcategory to which 
it should be assigned. Thus, they agree at one level, while they disagree at a finer Ievel. On 
the other hand, if the evaluators assign the same numeric score to object t, they do not 
share the same mappings from Q to S, then they do not necessarily agree on the quantita- 
tive category. 

Consequently, unless evaluators share equivalent sets of qualitative categories Q, 
numeric interval scale S, and mappings G: Q -+ S, then it is generally meaningless to attempt 
to use numeric point estimates from S in order to assess agreement between decisionmak- 
ers. So how can we estimate the current level of consensus in the group? We suggest that 
qualitative evaluations which have “natural” meaning to the evaluators are better indica- 
tors of group consensus than numeric point estimates. In Appendix A, we define a set of 
consensus indicators that are based on the assignments to the qualitative categories, sub- 
categories, and sub-subcategories. These indicators can be used to assess group consensus 
and tendencies for consensus formation with regard to any decision alternative(s) under 
consideration (for theoretical details see Ngwenyama et al., 1993a). 

The process of dividing each qualitative category at one level into multiple lower level 
(i.e., more detailed) subcategories may be repeated until the assignment of any two objects 
into any subcategory at the lowest level of decomposition is equivalent to assigning them 
the same VRN. But, how exactly could one go from a qualitative category to a VRN or 
even a numeric point estimate. The method of pairwise comparisons could be useful here. 
Pairwise comparison methods involve the comparison of each pair of objects (say t and r) 
in T, the set of objects. Pairwise comparisons methods are most effective when the num- 
ber of objects involved is small, the variation in scores for the relevant objects involved 
is not wide, and the decisionmaker has a good feel for the relationship between the objects. 
The qualitative discriminant process (QDP) results in the assignment of objects to quali- 
tative sub-subcategories that would, in general, satisfy these conditions. Pairwise compar- 
isons in QDP are restricted to objects within the same sub-subcategory. The objective is 
to determine the ordinal relationships of the objects within the given sub-subcategory. 

3.3 Transforming qualitative assignment,s to numeric scores 
The intervals Sj = (s,(,,, SU(i)) associated with each qualitative category do not have 

to be of equal length, but for a given i, the subintervals Sii,j are of equal length, and the 
sub-subintervals Sil,j,k are of equal length. This follows from the fact that each Qi,,j 
resulted from the implicit trisection of Qj, into the three subcategories, top, middle, and 
bottom, and each Q,,,j,k resulted from the imphcit bisection of Qi,,j into the two sub-sub- 
categories, upper and lower. Thus, if we specify values for each S;, then we implicitly also 
specify the corresponding & and Si,j,k. This implies that if object t, was assigned to the 
qualitative sub-subcategory Qi,j,k by evaluator r, then x;, , the VRN that is the score for 
object t,, is included in the numeric sub-subinterval Si,j,k. Now, since any numeric point 
estimate (say s;]) of the score of object tl is included in the VRN x:1, then $I satisfies the 
following relation: 

SL(i,j,k) 5 S:I 5 Sl/(i,j,k) (3.1) 

NOW, if object tz were also assigned to Qi,j,k, but were ranked as being inferior to tI, then 
if & is a numeric point estimate of the score of object tZ, we have: 

SL.(i,j,k) s s;2 + P s $1 s SU(i,j,k) (3.2) 

where we associate a precision p (>O) with the numeric point estimates. 
It should be noted that these two relations (3.1, 3.2) determine the VRNs that are 

acceptable as scores for the objects for a given evaluator. However, there does not need 
to be any explicit calculation of these VRNs. Our knowledge of their existence and the 
bounds on their values provide us with flexibility in generating legitimate individual and 
“consensus” numeric point estimates. 
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Let s, be a “consensus” numeric point estimate of the score of object t. Ideally, s, 
should be as close as possible to the numeric point estimates for object t that were provided 
by the individual decisionmakers. Thus, for R, the index set of the decisionmakers, we want 
CCreR) Is,!- s,( to be as small as possible for object t. Since this concern would apply to 
all objects in T, our objective is to minimize CCfET, CCr,=RJ 1s; - s,I . This problem can 
be solved as a linear programming (LP) problem. The solution of this problem will pro- 
vide the following: 

1. A numeric point estimate vector for the objects to each decisionmaker, such that 
the numeric point estimates for the objects will be consistent with the evaluator’s 
assignment and ordering of the objects. 

2. A compromise numeric point estimates vector for the objects. 

We suggest that these mathematical methods for deriving numeric point estimates of “con- 
sensus” should be applied after an acceptable degree of group consensus via qualitative cat- 
egorization. In the event that there are “outliers” associated with the score of an object t 
then these could be dropped. Such a course of action would only be reasonable if the degree 
of consensus was sufficient but there was not unanimous agreement. In such a case, if R,* 
is the index subset for the decisionmakers who have a high degree of agreement on the score 
for t, we may use CCrERI*) 1s: - s,( instead of CtreR,) 1s: - s, ( in the objective function 
of our LP problem. 

The LP formulation specifies the assignment of each object to a narrow level bucket 
(Bi,,,k), the ordering of the objects in each of these buckets, the specification of a 
numeric scale S = (sL, sU), and the consistent lengths of the numeric intervals (i.e., D; = 

S,(i) - SL(i)) for each qualitative category. In cases where the user is not sure of a precise 
value for each Dj, a VRN should be provided. Let (D,(,,, DvC,,) be such a VRN. Then 
our LP could accommodate this vagueness in the specifications by including the follow- 
ing type of constraint: 

The formulation and solution of the LP in a computer implementation of the QDP could 
be done in a manner that is transparent to the user, in a manner similar to the formula- 
tion and solution of the eigenvector method in the analytic hierarchy process (AHP), or 
the least squares method in statistical regression. It should be noted that the sizes of LP 
problems are generally quite small, and can be quickly solved by current commercial LP 
software. 

4. DESCRIPTION OF THE GENERAL PROCEDURE 

A tree structure (see Fig. 2), of qualitative categories is used to discriminate among 
the objects. Let B be the bucket that contains the set of all objects before ranking, and B;, 
B;], and B,, be the buckets for objects assigned to Qi, Q,j, and Qljk, respectively. Then, 
B is the root of the tree and applies to the set of objects, while B;, B,, and B,, represent 
successive levels. Let B* be the bucket that contains the ordered set of all objects after 
ranking. Although we have defined only three levels, the user is free to define any num- 
ber of levels and subdivision deemed appropriate of the application at hand. The levels i, 
j, and k are, respectively, defined as broad, intermediate, and narrow. 

Assumptions: 

1. All decisionmakers will use the same set of qualitative categories Q. 
2. Each qualitative category Qi in Q is meaningful to each decisionmaker for the pur- 

pose of evaluating the objects. 
3. All decisionmakers will use the same interval scale S. No attempt will be made 

to identify the interval, subintervals, or sub-subintervals of S that could be asso- 
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Fig. 2. Tree diagram for categorization process. 
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ciated with each Qi until all objects have been assigned to their qualitative sub- 
subcategory. 

4. All decisionmakers (i.e., evaluators) use the same explicitly specified mapping from 
the qualitative categories Qi to the numeric intervals Si. 

5. If two decisionmakers assign an object to the same qualitative category Q;, then 
they share a broad (but not necessarily deep) level of agreement on the value of that 
object with respect to the common basis of evaluation. If two decisionmakers assign 
an object to the same qualitative subcategory Q;j, then they share a deeper level 
of agreement than in the previous case. If two decisionmakers assign an object to 
the same qualitative sub-subcategory Q;,j,kr then they share an even deeper level 
of agreement than in the previous case. 

The following stages outline the procedure for differentiating among the objects. 

4.1 Individual procedure for ranking 
Stage I 

Assign each object t, t E T, to an appropriate Bi. 

Stage 2 
For each i E I 

If B; is not empty, 
Assign each object “t” in Bi to an appropriate B,,j. 

Stage 3 
For each i E I 

For each j E J 
if B;,, is not empty, 

Assign each object “t” in B,,j to an appropriate Bi,j,k. 

Stage 4 
For each i E I 

For each j E J 
For each k E K 

If 1 Bi,,,kl 2 2 then, 
Order the objects in B;.j,k using pairwise comparisons, and place the 
objects in B’ based on this ordering. 
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There are four steps in the group procedure: (1) the specification of the numeric inter- 
val scale; (2) the execution of the individual procedure by each decisionmaker; and (3) the 
aggregation of the individual preferences into a group preference. The following is an out- 
line of the group procedure: 

Step 1: Scale definition 
Specify the numeric interval scale S, and the lengths of the numeric intervals for each 
qualitative category (i.e., Di, i E I). 

Step 2: Individual ranking 
For each decisionmaker “r,” r E R 

Perform the individual procedure. 

Step 3: Aggregating group preference 
(a) For each object “t,” t E T 

The facilitator should determine if the degree of consensus is sufficient. 
(b) For those objects for which the degree of consensus is not sufficient the facilitator 

should inform the group and request that decisionmakers repeat step 2 if they feel 
that another round would improve the outcome, or the facilitator should go to step 4. 

Step 4: Generating point estimates 
(a) The facilitator generates LP formulation and solution. 
(b) Present the consistency vector to the group and present each decisionmaker with 

his/her vector of scores. 

5. APPROACHES TO USING THE QDP 

A group decisionmaking problem may involve the evaluation of the candidate alter- 
natives in terms of a single criterion or multiple criteria. In addition, the problem may 
involve a single stage or multiple stages. A particular stage may involve one criterion or 
multiple criteria. The QDP is relevant for all of these situations. We will provide descrip- 
tions of the single criterion and multiple criteria situations. 

Single criterion problem 
In this problem situation, the individual and group procedures of the QDP are applied 

in order to generate individual and group scores for the alternatives. An example of such 
a problem is the popular sequencing of managerial activities (McLeod & Liker, 1992; 
Turoff & Hiltz, 1982). The group receives a list of management activities and instructions 
to reach consensus on the proper sequence of activities. 

Multiple criteria problem 
Multiple criteria decisionmaking is another general problem area to which QDP can 

be applied. In practice explicit or implicit synthesis approaches are to be used to determine 
composite scores for the alternatives. Both approaches involve the hierarchical structuring 
of the problem into criteria level and alternatives level, but they differ in terms of rigor. 
The explicit synthesis approach utilizes a formal weighting model as follows. First, the deci- 
sionmakers determine a score/weight for each criterion. Second, they determine a score/ 
weight for each alternative with respect to each criterion. Then a composite score is com- 
puted for each alternative using an additive value function. Finally, the alternatives are 
ordered based on their composite scores. This weighting model approach is sometimes used 
by groups to evaluate projects that are to be funded. In these types of situations, the QDP 
can be used to generate the scores or weights for the criteria, as well as for the alternatives. 

An example of the application of the weighting model is the TELOYPDM procedure 
(Burch, 1992). This procedure is used by information systems steering committees for 
project evaluation and selection. Each proposed project is evaluated based on two sets of 
criteria: (a) TELOS feasibility factors, technical, scheduling, etc.; and (b) PDM strategic 
change factors, productivity, differentiation, and management. The score for each set of 
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criteria is generally determined by averaging the scores of the constituent criterion. How- 
ever, it could also be calculated using a weighted sum of the scores with regard to the rel- 
evant criteria. For the TELOWPDM procedure, the QDP can be used to determine the 
score for each alternative with respect to each set of criteria, and also the criteria weights. 

The implicit synthesis approach to the multiple criteria decisionmaking problem does 
not follow a formal model. First, the decisionmakers decide on the criteria upon which the 
alternatives will be judged and then a scale is selected. No weighting model is developed 
for the criteria. Each decisionmaker determines a score for each alternative with respect 
to each criterion. Using these criteria scores the decisionmaker then determines a compos- 
ite score for each alternative. In this approach, the QDP would be used to generate the 
group and individual scores for all the alternatives with respect to each criterion, and may 
also be used to generate the composite scores for the alternatives. 

The implicit synthesis approach is sometimes used in the selection of personnel by a 
search committee. For example, in the selection of a dean for a school, the search com- 
mittee may decide that the important criteria are academic credentials, management cre- 
dentials, and fundraising credentials. The committee members may decide not to use the 
weight model for a number of reasons including lack of confidence in the model, or strong 
disagreement on the importance of the different criteria. It should be noted that the QDP 
can be used to determine the level of agreement in the latter situation. If the committee 
members do not want to use any formal synthesis technique, but want to rate the candi- 
dates with reference to each criterion, then the QDP can be used to do this at both the indi- 
vidual and group levels. Other applications of the implicit approach include the ranking 
of sports teams by a panel of sports pundits. 

6. CASE ILLUSTRATION 

The prototype implementation of the QDP is PC-based with screen-interactive data 
capture and back-end data analysis. Figure 3 depicts the conceptual architecture of the sys- 
tem. Each decisionmaker using the QDP support system is guided through a hierarchy of 

F-l/l 
I’ IL 4 

I-E-l I, 1 

Reporting El Processor 
/ 

Fig. 3. Conceptual architecture of QDP support system. 
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three mouse-driven interactive user interface screens (Figs. 4-6), which are supported by 
the preference specification processor (PSP). 

Ranking and scoring with the QDP system is a three-step process. In step 1, the deci- 
sionmaker performs three rounds of discriminant analysis, in which the decision alterna- 
tives are moved from broad categories on the left of the screen to successively narrower 
categories on the right of the screen. At the end of this step the PSP produces a file of the 
rankings which serves as input to the analysis & aggregation processor (AAP). In step 2, 
the facilitator invokes the AAP which: (a) generates the VRN scores for each set of rank- 
ings, and (b) formulates and solves the LP (see example Appendix A), which generates indi- 
vidual score vectors, a “consensus” score vector, and the group ranking. The results are 
then reported to each decisionmaker for group discussion. If there are disagreements about 
individual scores, decisionmakers can re-do their individual rankings and the process can 
continue from there until there is agreement with the results. The following is a case illus- 
tration which demonstrates the process. 

6.1 Case description 
A search committee consisting of the faculty representative, the alumni/student rep- 

resentative, and the corporate partners representative has been mandated to identify suit- 
able candidates for the position of Dean of the School of Business, and to present a list 
of the top three candidates to the university president. The committee decided that the three 
criteria to be used in evaluating the candidates are academic credentials, management cre- 
dentials, and fundraising credentials. They also decided to use a multistage decisionmak- 
ing process with the first stage involving an initial screening of the candidates, and that the 
only candidates who will be considered in the later stages are those who the group agreed 
had excellent academic credentials. Our illustrative example applies to this first stage. It 
should be noted, however, that in a multistage decisionmaking process the QDP can be 
applied at each stage with the output from one stage being input to the succeeding stage. 
Also, any stage can involve a single criterion or multiple criteria. 

i 
1 
i 

Qualitative Discriminant Ranking Procedure 

First Round Categorization 

Decision Alternatives 

Thomas Steele 
William Washington 
August St. James 
Jens Hilderbrand 
Deablo Jesus 
Thomas lsikawa 
Goef Codogan 
Andrew Mclntire 
Akeem Obadio 
Theo Hiawata 

Broad Categories 
I 

Excellent t-1 

Very Good 1-1 

I 

Satisfactory 

I 
Poor 1 

To rank alternatives in Broad Categories: 
I. Use mouse to block item. 
!. Move cursor to appropriate category and double click. 

lou may also shift alternatives among categories. 
Dress Enter for next round. 

Fig. 4. User-interface screen 1. 
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I I 

Qualitative Discriminant Ranking Procedure 

Second Round Categorization 

Decision Alternatives 

I 

Intermediate Sub-Categories 
In Broad: Excellent 

Thomas Steele 
William Washington 
August St. James 

I TOP I-1 

I 

Bottom 

Select Broad Category you wish to rank: 
1. Excellent; 2. Very Good; 3. Satisfactory; 4. Poor 
To rank alternatives: Block out item, move cursor to 
Sub-Category and double click. 

Press Enter for next screen. 

Fig. 5. User-inferface screen 2. 

6.2 Application of the QDP 
As stated previously, the QDP system guides decisionmakers through a three-round 

analysis process. In round 1, the decisionmakers are each presented with the list of the can- 
didates on the right of the screen, and are required to place each candidate in one of the 
four broad categories, excellent, very good, satisfactory, and poor, on the left (see Fig. 4). 

Qualitative Discriminant Ranking Procedure 

Third Round Categorization 

Decision Alternative 
Intermediate: (Very Good). Top 

Narrow Sub-Categories 

Jens Hilderbrand I 
Upper Jens Hildebrand 

Deablo Jesus 
Thomas lsikawa 
Goef Codogan 

Select Intermediate SubCategory: 
1. Top; 2. Middle; 3. Bottom 
To rank alternatives: 
1. Use mouse to block item 
2. Move cursor to appropriate Narrow Sub-Category and 

double click. 

Fig. 6. IJser-interface screen 3. 



A qualitative discriminant process 401 

The reader may recall that the QDP permits the group to redefine these four broad quali- 
tative categories depending on the context of the valuation (e.g., for the ranking of a set 
of criteria, the broad categories very high, high, average, low might be appropriate). The 
process is straightforward, and yields a preliminary ranking of the alternatives. The deci- 
sionmakers may also shift the candidates among any of the categories until they feel com- 
fortable with their assignments. 

Round 2 is another cycle of the ranking process which yields a higher level of differ- 
entiation of the alternatives. In this round, the decisionmakers are required to further dis- 
tinguish among the candidates in each broad category, by differentiating them into the 
intermediate subcategories. top, middle, and bottom (see Fig. 5). Again, it is possible to 
shift around the candidates until the desired assignments are achieved. For example, the 
decisionmaker may decide to move a candidate from very good to excellent/bottom, or 
excellent/bottom to very good/top. In fact, the second and successive round forces the deci- 
sionmaker to rethink the rankings of each category under consideration in order to achieve 
a higher degree of differentiation among the candidates. 

In round 3, the third and final round of the ranking process (see Fig. 6), each deci- 
sionmaker is required to differentiate among each set of candidates in the intermediate sub- 
categories, and place them into the relevant narrow subcategories, upper and lower. 

This stage of the process allows for the further refinement of the assignments. It 
should be noted that for each of the four broad categories, there are six associated nar- 
row subcategories which give the decisionmaker a wide range of options for ranking the 
candidates. For each narrow sub-subcategory, if there is more than one candidate, the pair- 
wise comparison technique is used to determine the rank order within that narrow sub-sub- 
category. Figure 7 displays the assignments of the candidates to the sub-subcategories, and 
the rankings within each sub-subcategory. The symbol “B” should be interpreted as mean- 
ing “superior to.” 

6.3 Analysis and aggregation 
The procedure for assigning a score is just as simple. In the current implementation 

we use a scale of 1 to 100 divided into four intervals, and assign a range to each broad cat- 
egory (excellent [80-1001, very good [60-801, satisfactory [30-601, poor [O-30]). It should 
be noted that the group could decide to use any other subdivision of this scale. 

Fig. 7. Individual rankings of the candidates. 
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When the individual ranking is completed the facilitator invokes the analysis & aggre- 
gation processor (AAP) which formulates and solves the LP. The output includes individ- 
ual and group scores for each alternative, and a group ranking of the candidates. Figure 8 
lists the estimated scores for each decisionmaker, the resulting aggregate (consensus) scores, 
and group rank. As can be seen from the results, there is no major disagreement on the 
rankings among these decisionmakers. It is important to note, however, that two candi- 
dates, Steele and Washington, tied for first place in the aggregated ranking, and that while 
St. James was assigned to the very good category by the alumni/students representative, 
his group rating was in the excellent category. 

7. CONCLUSIONS 

We have presented a qualitative discriminant process (QDP), a simple and intuitively 
appealing technique for scoring and ranking in GSS that is relevant to group decision- 
making situations that involve the evaluation of alternatives. This approach is based on 
well-recognized decision theory techniques and is easy to implement in any computing envi- 
ronment with LP software. (The prototype discussed in this article was developed for IBM- 
compatible workstations using VISUAL BASIC’“. We are currently developing a version 
for the Macintosh environment.) 

The QDP addresses four major limitations of current systems. These are: (1) the inabil- 
ity to deal with vagueness in human decisionmaking; (2) difficulties in mapping qualita- 
tive evaluation to numeric estimates; (3) problems in aggregating individual preferences into 
meaningful group preference; and (4) the inability to deal with a large number of decision 
alternatives. 

We have taken the position that it is more prudent to first differentiate among the 
objects at increasing levels of detail using qualitative categories that have “natural” mean- 
ing to the evaluators, before attempting to assign numeric point estimates as the scores of 
the objects. An important benefit of this approach is that information relevant to consen- 
sus building can be obtained even before numeric values have been assigned. The QDP also 
provides more structure to the task of scoring and ranking than exists in current GSS. This 
approach is supported by the results of GSS research. For as noted by McLeod and Liker 
(1992): “Providing specific rules for and resources for task interaction . . . can lead to 
improved group performance among a number of dimensions, such as, task quality, and 
conflict resolution.” We submit that the QDP would lead to improvements in the quality 
of scoring and ranking, and in consensus building and assessment. 

The prototype discussed in this paper was developed and tested for IBM compatible 

workstations using VISUAL BASK?. We are currently developing a version the 

MACINTOSH environment. 

Fig. 8. Resulting scores and group rank 
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The QDP was developed to support group decisionmaking tasks which require that 
numeric point estimates be provided for objects based on criteria whose natural domains 
are qualitative or subjective. Such situations are common. They include: (1) the derivation 
of a national ranking of college football teams by sports “experts”; (2) the selection of per- 
sonnel by search committees; (3) the sequencing of activities; and (4) the selection of 
projects for funding by a review committee. The applications are numerous. Although the 
QDP is not the only procedure for addressing these tasks, it represents a new conceptual 
approach that has as its emphases: (1) accommodating vagueness; (2) avoiding the prema- 
ture assignment of numeric scores; and (3) facilitating consensus building and assessment. 
Thus, it offers new possibilities for scoring, ranking,and classification in group situations. 
It must also be emphasized that QDP is well suited to decision situations in which only sys- 
tematic qualitative evaluation is required. For example in classification tasks where assign- 
ment to categories is based on similarity of attributes, the broad categories can be defined 
appropriately, and the alternatives assigned to the appropriate sub-subcategories. 
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APPENDIX A. CONSENSUS INDICATORS 

Let CY (50 I Q! i 100) be the parameter that is used as a threshold value for testing for group 
consensus on an issue. Let PER:, PER;,,, and PERi,,,k be the percentages of group members that 

assign object “t” to Qi, Q,,,, and Qi ,,,, k, respectively. Also, let: 

Ci = Max((PERi,j,k/a) : i E I, j E J, k E K); 

C$ = Max[(PERlj/ol) : i E I, j E J); 

Ci+ = Max((PER:,i + PER:,rJ_-I),RU f PER:+(j+,,,kL)/~ : i E I, j E f) 

where kU and k, are the highest and lowest sub-subcategories associated with subcategories (j - 1) 
and (j + I), respectively. We also define the following consensus indicators: 

C{ = Max{(PER:,/cr) : i E Z, j E J); 

Cl+ = Max((PER: + PER;j_,I,jr, f PER{i+,,,j&‘a) : i E I) 

where j, and j, are the highest and lowest subcategories associated with categories (i - 1) and (if l), 
respectively. 
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It is clear that Cl+ L Ci 2 Ci+ 2 Ci 2 Ci. The order of these indicators represent increasing 
levels of consensus. By definition, Ci 1 1 indicates that the group has reached an acceptable level 
(i.e., o-degree) of consensus with regard to the assignment of object t to a particular qualitative sub- 
subcategory. On the other hand, if Ci < 1 and Ci L 1, then, although the group does not have a 
a-degree consensus with regard to the qualitative sub-subcategory to which t should be assigned, there 
is a o-degree of consensus on the qualitative subcategory to which t should be assigned. The facili- 
tator thus has multiple indicators to both inform him/her of the current situation with regard to con- 
sensus and of the tendency for consensus formation. 


