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Abstract 

We have performed a series of atornistic simulations of nearly spherical, crystalline (fee) clusters of Ag, Au, Cu 
and Pt as a function of temperature and cluster size. Since both a spherical cluster and a random polyctystal expose 
all possible surfaces equally, this provides a plausible approach for determining the surface properties of random 
(non-textured) polycrystalline metals and to find a simple expression to relate these average surface properties to the 
oft calculated properties of high symmetry/low index surfaces. Atomic clusters with radii greater than approximately 
4~2, yield cluster average surface energies and surface stresses are within a few percent of those obtained from very 
large clusters. The variation of the cluster average surface properties with cluster size is dominated by a geometrical 
effect associated with the discrete spacing between atomic planes and that the differences associated with 
differences in the atomic bonding between different elements is small, at least for the four elements considered 
herein. Comparison of the cluster average surface free energy with those of the more commonly studied high 
symmetry flat {loo), {110), and the (111) surfaces suggest two useful approximations for the average surface free 
energy: (1) equating it to the surface free energy of a (110) surface and (2) using a linear fit to the (loo), (llO}, and 
the (111) surface free energies. Conversely, the first approximation provides an accurate estimate of the (110) surface 
energy from experimentally measured polycrystalline surface energies. 

1. Introduction 

Most crystalline materials used in technologi- 
cally interesting applications are polycrystallites 
rather than single crystals. As a consequence, the 
exposed surfaces of these materials represent all 
possible crystallographic surface orientations. 
Unfortunately, the majority of surface studies 
have focused on the properties of high symmetry, 
low index surfaces. The question of how to ex- 
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trapolate from the properties of a few high sym- 
metry surfaces to the average properties of a 
random, polycrystalline material remains open, 
The focus of the present paper is the determina- 
tion and analysis of average surface thermody- 
namic properties. 

It is not feasible to directly determine average 
surface properties of a polycrystalline sample via 
atomistic simulations due to the large number of 
atoms necessary for such a study. As an alterna- 
tive, we examine the average surface properties 
of spherical clusters of atoms. Since both a sphere 
and a random (untextured) polycrystalline solid 
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expose all possible surfaces, we expect that the 
average surface properties of a sphere will pro- 
vide a good approximation to the average surface 
properties of a random polycrystal. The average 
surface properties of textured polycrystals are, 
however, not accurately represented by such 
spherical averages. Simulations were performed 
as a function of spherical cluster size in order to 
isolate the effect of finite cluster size. Clusters of 
metal atoms are also of interest in catalysis since 
many praztical catalysts are in the form of small 
(lo-100 A) metal particles. 

The two surface properties that we focus on in 
the present study are surface free energy and 
surface stress. Although the terms surface free 
energy and surface tension (or stress) are often 
used interchangeably, the surface free energy and 
surface stress are quite distinct for a solid. The 
surface stress rap is the variation of the total 
surface free energy with respect to strain E,~: 

where y is the surface free energy per unit area, 
S,, is the Kronecker delta function and (Y and p 
are two orthogonal directions in the surface. In a 
liquid, however, the second term in Eq. (1) is 
identically zero and the surface stress and surface 
energy are equivalent. This is because when a 
liquid is strained at constant temperature, addi- 
tional atoms move into the surface positions and 
the structure of the surface remains unchanged. 

It is the surface stress that is responsible for 
the internal stresses and changes in lattice con- 
stants of small clusters. As an example, consider 
a spherical, elastically isotropic crystal of radius 
R whose interior, due to the surface stress, is 
under compression. If we make an imaginary cut 
through the origin of the sphere, and perform a 
force balance in the z-direction then we can show 
that in the limit that the thickness of the surface 
goes to zero, the pressure P resulting from a 
finite surface stress T is given by 

P= -27/R. (2) 

In deriving Eq. (21, 7 is the average tangential 
surface stress, where the average is taken over 
both the entire surface area of the cluster and 

over the 00 and &#J components of the surface 
stress tensor. The stress state within this sphere 
of zero surface thickness would be purely hydro- 
static and would be uniform throughout the 
sphere, except right at the surface. Experiments 
[l] have shown that the change in lattice parame- 
ter is inversely proportional to particle size, in 
agreement with Eq. (2). 

In the present paper, we determine the aver- 
age surface free energy and surface stress of 
spherical clusters of Ag, Au, Cu and Pt atoms as 
a function of cluster size and temperature. In 
addition, we independently measure the pressure 
internal to the cluster and the surface stress in 
order to validate Eq. (2). We also investigate the 
variation of internal stress within the cluster to 
determine the effective width of the surface. 

2. Simulation method 

As described above, the simulations were per- 
formed on spherical clusters of atoms. Since these 
clusters were carved out of infinite fee crystals 
(i.e., all atoms within a distance less than or equal 
to R of a central atom are included within the 
cluster), the “spherical” clusters exhibit small 
facets. This is not unreasonable, however, since 
all high index surfaces are describable in terms of 
steps and terraces. As the cluster radius R is 
increased, these clusters become increasingly bet- 
ter approximations to true spheres. It is in the 
limit that R + ~0, the surface properties of the 
cluster represent true spherical averages. Several 
simulations were also performed for flat surfaces 
bounding semi-infinite crystals, in order to com- 
pare with the spherical cluster results. These sim- 
ulation were performed using the free energy 
minimization method, as in our previous grain 
boundary studies [21. 

2.1. The free energy simulation method 

At finite temperatures, the central thermody- 
namic property of a cluster is its free energy. In 
pure materials, the free energy, A, has two main 
contributions: a static lattice energy A, and a 
term attributable to atomic vibrations A,. The 
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static lattice energy is simply the energy of the 
atomic structure in which each atom is frozen at 
its average position. In the present study, we 
model the static lattice energy in terms of the 
widely applied embedded atom method (EAM) 
interatomic potentials [3]. These potentials have 
been shown to yield excellent agreement with a 
wide variety of experimental data. 

At sufficiently low temperatures (i.e., up to 
about nine tenths of the melting point 12,411, the 
motions of the atoms in a solid are nearly har- 
monic. We can simplify this harmonic approxima- 
tion further by neglecting the terms that couple 
atoms together. The vibrational contribution to 
the Helmholtz free energy, A,, is thus given by 
PI 

(3) 

where N is the total number of atoms within the 
system, k,T is the thermal energy, h is Planck’s 
constant and c$,, are the three vibrational fre- 
quencies. associated with atom i. Under the as- 
sumptions of the local harmonic model [2,4], it is 
possible to determine the C$ for a perfect crystal, 
by diagonalizing the local dynamical matrix for 
each particle i within the unit cell. In the classi- 
cal limit (r?w c k,T), Eq. (3) simplifies to 

#V 
A,=3k,Tfln -&- , 

i 1 
(4) 

i=l B 

where Di = [w1i02iw3i]2 is the determinant of the 
local dynamical matrix of particle i. The equilib- 
rium structure is obtained by minimizing the free 
energy with respect to the atomic coordinates of 
the particles within the cluster. This minimization 
is accomplished using the conjugate gradient 
method with the convergence criterion chosen 
such that the maximum pseudo-force (-aA/&‘> 
on any particle did not exceed 1 X lo-’ eV/A 
for the zero temperature simulations and 1 x lop4 
eV/A for the finite temperature simulations. A 
more detailed description of the free energy min- 
imization method may be found in Ref. [2]. Previ- 
ous studies have shown that this method yields 
accurate free energies for grain boundaries and 
point defects [2,4,5]. 

Although small atomic clusters often show 
faceting and can exhibit phases which are differ- 
ent from those seen in equilibrium bulk phases, 
the present study does not examine either of 
these two aspects of the structure of small clus- 
ters. In fact, the present simulation procedure 
was chosen such that the clusters represent the 
average surface properties of bulk crystal as well 
as possible. 

2.2. Surface energy and stresses 

The surface free energy y was determined as 
the difference between the free energy of the 
cluster of atoms and that of the same number of 
atoms in a perfect crystal at the same tempera- 
ture and stress state as in the center of the cluster 
and divided by the surface area of the cluster 
(47rR2). The bulk stresses Q, within the cluster 
may be written as 

k#i 

where 0’ is the atomic volume associated with 
atom i and rpki is the p component of the vector 
connecting atoms k and i. F,k’ = -aA/ar,k’ is the 
pseudo-force on atom i associated with the dis- 
placement of atom k in the a-direction, where A 
is the free energy of the cluster. 

A method for the determination of surface 
stresses of flat surfaces, where a unit cell can be 
defined, has been proposed by Ackland and Fin- 
nis [6]. The surface stress tensor is written as a 
sum over all of the atoms i of the lattice 

7 ols= &r;= -A,’ t c r,k’F,k’, (6) 
i=l UP i-1 k#i 

where eaB are the homogeneous strains within 
the plane of the surface, A, is the surface area of 
the unit cell, ui is the energy associated with 
atom i within the unit cell. The summation over 
k includes all the sites within the unit cell. 

For the spherical clusters, there is no readily 
identifiable unit cell and no simple method for 
identifying surface atoms. Therefore, an alterna- 
tive procedure was developed in order to avoid 
these difficulties. The surface stress is the deriva- 
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tive of the total surface free energy with respect 
to the homogeneous surface strain E,: rap = 
(I/Ac)a(3/Ac>/ae,p. For the clusters, this be- 
comes 

ap =A;1 f C rpkiF,ki _ if!!, 7 

3 + (7) 
i=l k#i 

where the summations are evaluated over all 
atoms in the system and the second term ac- 
counts for the stressed reference state. An ex- 
plicit expression for the surface stress, derived for 
the embedded atom method (EAM) class of po- 
tential is given in the Appendix. 

2.3. Implementation of symmetry 

The present study focuses on a series of face 
centered cubic metals. Since the crystal structure 
of the clusters have cubic symmetry, we can re- 
duce the number of atoms needed for simulating 
the spherical cluster by employing some of the 
symmetries of this crystal structure. By making 
use of the reflections in the (100) planes (i.e., the 
four-fold symmetry), it is possible to generate all 
atomic positions within the spherical cluster sim- 
ply by considering only those atoms within a 
single octant (assuming that the cluster is cen- 
tered at the origin). The positions of the atoms in 
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Fig. 1. Variation in surface free energy, y, as a function of 

inverse cluster radius (a, /R) at 0 K. 

all other octants can be obtained by reflections in 
the (100) planes. Making use of this mirror sym- 
metry operator, we simulated spherical clusters 
with R G 15a, on a workstation with 16 Mbytes 
of memory, where a, is the fee lattice parameter 
at zero pressure. Without employing this four-fold 
symmetry, we were only able to examine spherical 
clusters with R G Sa,. It is possible to increase 
the cluster size even further by making use of the 
reflections in the {llO} planes, but this would 
result in an increase of only 2a, in simulated 
cluster size (to 17a,) and hence was not imple- 
mented. 

3. Results 

3.1. Zero temperature 

Spherical clusters of Ag, Au, Cu, and Pt with 
radii in the range 3a, G R G 14a, were examined. 
In addition to the surface energy and surface 
stress, the following properties of the cluster inte- 
rior were also examined: the lattice parameter at 
the center of the cluster (acent), the pressure at 
the center of the cluster <P,,,,>, and the overall 
stress state within each cluster. 

Fig. 1 shows the variation of the surface energy 
of the clusters as a function of cluster size R at 
T = 0 K. This figure shows that there is some 
variation in the average surface energy with clus- 
ter size R, with the largest variations occurring 
for small clusters. However, this variation in the 
average surface energy becomes small for clusters 
with radii larger than approximately 4a, and very 
small for radii larger than lOa,. These results 
suggest that average surface energies have con- 
verged to within approximately 3% of the infinite 
radius results with clusters as small as 4a, and to 
within 1% for lOa, clusters. The large radii aver- 
age surface energies for Ag is 765 mJ/m2, for Au 
is 970 mJ/m2, for Cu is 1422 mJ/m2, and for Pt 
is 1742 mJ/m2. 

Comparison of the average surface energy re- 
sults with experimental data [7] suggests errors of 
approximately 35%. This error is largely at- 
tributable to the empirical EAM interatomic po- 
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tentials. In fact, comparison of the energies of 
flat, high symmetry surfaces calculated based 
upon these same potentials [3] with experimen- 
tally measured surface energies of polycrystalline 
metals [7] show errors of 35-45%. This is much 
too large to be attributed to the difference be- 
tween average and high symmetry surface ener- 
gies, as discussed below. There is also consider- 
able uncertainty in the experimentally deter- 
mined surface energies as different researchers 
quote widely varying values [7]. The 0 K experi- 
mental data were obtained by extrapolating ex- 
perimental data from high temperature using a 
linear correlation of the surface energy with the 
cohesive energy and an assumed surface entropy. 
Given this considerable uncertainty, the nature of 
the conclusions that can be drawn from the pre- 
sent study are limited to trends and correlations 
and the absolute values of the surface energies 
should be viewed as only semi-quantitative. 

The overall shapes of the surface free energy 
versus a,/R curves for all four elements are very 
similar: i.e., a maximum at the smallest cluster 
size (largest value of a,/R) and local minima at 
a,/R = 0.29,0.22 and 0.13. The similarity of these 
lattice parameter vs. sphere size curves suggests 
that the variation depends more on the discrete- 
ness of the lattice and crystal structure than on 
element type. We attempt to clarify this relation 
by normalizing all of the curves by the average 
surface energy of the R = lOa, cluster (see Fig. 
2). This figure shows that most of the variation 
with cluster size is attributable to the different 
“shape” of the clusters as a function of cluster 
radius. The deviations from this “universal” form, 
attributable to the different element types is quite 
small and is not systematic. 

Eq. (2) suggests that non-zero surface stresses 
will create a non-zero pressure within the cluster. 
The pressure at the center of the spherical cluster 
of atoms Pcent is plotted in Fig. 3 as a function of 
inverse cluster size a,/R for T = 0 K. If the 
continuum elastic analysis is valid and the surface 
stress is independent of cluster size, then we 
should expect Pce,t to be directly proportional to 
l/R. Fig. 3 shows that except for the smallest 
atomic clusters CR < 4a,), Pcent is a linear func- 
tion of the inverse sphere radius for all four 
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Fig. 2. Surface free energy for Ag, Au, Cu, and Pt (at 0 K) 
normalized using the value of energy at lOa, for each ele- 
ment. All elements studied follow one “universal” curve when 
scaled. 

elements examined and that the curves all extrap- 
olate through PC,,, = 0 in accordance with Eq. 
(2). The fluctuations about this straight line are 
attributable to lattice effects (as described above) 
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Fig. 3. Variation of the pressure at the center of clusters of 
various sizes as a function of scaled cluster radius (a0 /R) at 0 
K. As expected, all the lines extrapolate to zero for clusters of 
infinite size. 
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which are manifested as small variations of the 
surface energy with cluster size. The fact that the 
P cent vs. a,/R curves all have negative slopes 
suggests that the average surface stress r is ten- 
sile. The numerical value of the average surface 
stress is simply related to the slopes in Fig. 3. 
Associated with this internal pressure is a small 
change in lattice parameter at the center of the 
cluster acent, as shown in Fig. 4. Since the change 
in lattice parameter is directly proportional 
(within linear elasticity) to the pressure, it is not 
surprising that acent is also a linear function of 
l/R. As R gets large, a_, approaches the per- 
fect crystal, zero pressure lattice parameter. 

Fig. 5 shows the variation in the average bulk 
stress (averages taken over spherical shells) within 
a Au spherical cluster of radius R = 13a, as a 
function of distance from the center of the clus- 
ter. This variation is typical of all the clusters 
studied. All of the normal stresses are compres- 
sive, equal (i.e., the stress state is hydrostatic) and 
constant throughout the sphere until very close to 
the surface. The shear stresses are zero. These 
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Fig. 4. Variation of lattice parameter at the center (a,,,t) of 
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Fig. 5. Variation in the bulk stresses within a cluster of radius 

R = 13aa. The curves for o++ and voss have been shifted by 10 

and 20 GPa respectively, for clarity. 

are in agreement with a continuum elastic de- 
scription of the stresses within a sphere which has 
a tensile (positive) surface stress. There is a dis- 
tinct region near the surface that has a stress 
distribution much different from that of the bulk 
and can be associated with the presence of the 
surface. Although thickness of this surface layer 
is not well defined, the spatial variations of the 
all components of the stress suggest that 1.5a, is 
a reasonable estimate of the surface “thickness”. 
While part of this variation is attributable to 
surface relaxations, part of it is also associated 
with the fact that the unrelaxed surface is faceted. 
The stress state within this layer is complex. The 
radial stress a,, must go to zero at the surface 
since the external pressure is zero (i.e., the zero 
normal traction elastic boundary condition). 
However, a,, goes through several oscillations 
before it goes to zero. u,~ exhibits a very strong, 
compressive peak approximately a,/2 below the 
surface. Approaching the surface from within, we 
find that a,, becomes large and compressive (but 
not as compressive as a,.,>, then very large and 
tensile followed by a small drop at the surface of 
the sphere. By symmetry, we expect that a,, = 

u@J+. 
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The generality of these results may be seen in 
Fig. 6, where we plot the variation of the average 
internal stress a,, versus distance from the sur- 
face for clusters of several different radii. In all 
cases, the stresses are constant away from the 
surface layer and show the same general behavior 
near the surface. The thickness of the surface 
layer is found to be approximately independent 
of cluster size and is less than or equal to l&z,. 

Fig. 7 shows the dependence of the average 
surface stress G- on the clusters size for gold and 
copper cluster determined using the method de- 
scribed in Eq. (7) and the Appendix. 7 is evalu- 
ated as an average over the entire surface and 
over the two non-zero components of the normal 
surface stress 700 and TV+, The average surface 
stress does not vary smoothly with cluster size. 
This is attributable to the discreteness of the 
crystal lattice, as in the case of the average sur- 
face energy. Comparison of Figs. 1 and 7 show 
that in the case of copper, the average surface 
stress is substantially smaller than the average 
surface energy, while in the gold case, the aver- 
age surface stress is slightly larger than the aver- 
age surface energy. Therefore, the second term in 
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Fig. 6. Variation in the radial stress (a,,) as a function of 
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of various sizes at 0 K. All curves (except for 9a,) have been 
shifted by integral multiples of 10 GPa respectively, for clar- 
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the surface stress in Eq. (1) is negative in one 
case (Cu) and positive in the other (Au), even 
though both metals are noble and have the same 
crystal structure. As discussed above, there are 
two methods for determining 7: from Eq. (7) and 
from the slope of the internal pressure versus 
l/R plots. These two methods yield surface 
stresses that are in good agreement with each 
other (within 2.5% for R > 4~s). The slight dis- 
crepancies are again attributable to the discrete- 
ness of the lattice and the differences in the 
manner in which both measures of T were 
summed. 

3.2. Finite temperature 

Au and Cu clusters of radii 6a, and lOa, were 
examined at 200,400,600,800 and 1000 K. Fig. 8 
shows the variation in surface free energy as a 
function of temperature for Au clusters of radii 6 
and 10 lattice parameters. For reference, the 
finite temperature properties of perfect crystals 
of Au may be found in Ref. [2]. The average 
surface free energy is a nearly linear decreasing 
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Fig. 8. Variation in the surface free energy, y, of Au clusters Fig. 9. Comparison of scaled surface free energy for Au 
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function of temperature. This suggests that the 
average surface entropy is positive. A negative 
surface entropy does not violate the second law 
of thermodynamics (as long as the system entropy 
remains positive) since it is an excess quantity 
(i.e., the difference in the entropy of the system 
with and without a free surface). By fitting the 
surface free energy to a curve of the form y = H, 
- TS,, we can quantify the temperature variation 
of the free energy and the values of the surface 
enthalpy and entropy (see Table 1). The surface 
entropy does not go to zero at T = 0 since the 
entropy was only fitted to high temperature data 
(the free energy model assumes that Aw < k,T 
and hence is not accurate below the Debye tem- 
perature). The variation in the average surface 
enthalpy and entropy with cluster radius (from 
6a, to lOa,) is only about 1% and 5%, respec- 

Table 1 
Average surface enthalpy and entropy of Au and Cu clusters 

of radii of 6 and lOa, for 200 < T < 1000 K 

H, (mJ /m2J S, (mJ m2 KJ 

Au: 6a, 982.06 0.05966 
10aa 970.35 0.05733 

Cu: 6a, 1437.20 0.12601 
IOa, 1423.42 0.13347 
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tively. Therefore, accurate estimates of the aver- 
age surface thermodynamic properties may be 
obtained with small clusters. 

In order to determine whether the finite tem- 
perature surface free energy data exhibited the 
same finite lattice size effects as did the 0 K data 
(Fig. 21, Au clusters of sizes ranging from 3~2, to 
lOa, were studied at 400 K and compared with 
the 0 K data in Fig. 9. Clearly, the zero and finite 
temperature results are in good agreement. This 
is attributable to the fact that the entropy contri- 
bution to the average surface free energy is rela- 
tively small (less than a 5% change from 0 to 1000 
K, see Fig. 81 and that the effects of thermal 
expansion have largely been scaled out by the 
sphere size normalization. 

The variation in the average surface stress as a 
function of temperature for Au and Cu clusters 
of radius 6a, at 200, 400, 600, 800 and 1000 K is 
shown in Fig. 10. The average surface stress 7 
decreases in a nearly linear manner with increas- 
ing temperature for both Au and Cu clusters. The 
average surface stress T can be expanded in a 
Taylor series about T = 0: y = a + bT + cT2, 
where a is the zero temperature surface stress 
(see above), b = - 0.06475, c = - 1.3409 X lop4 
for Au and b = -0.1279, c = -7.6578 X lo-’ for 
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Cu, where T is in Kelvin and y is in mJ/m2. The 
average surface stress varies by approximately 
18% from 0 to 1000 K for both the Cu and Au 
clusters. 

The variation of the lattice parameter at the 
center of an R = lOa, Cu cluster with tempera- 
ture is shown in Fig. 11 along with data obtained 
for a perfect crystal of Cu at zero pressure. The 
thermal expansion coefficient, (Y = (l/a())- 
(&z,/aT>, ofth e C u perfect crystal (measured at 
T = 0) is a,C” = 19.5 x 10e6 K-‘, while the R = 
lOa, Cu cluster thermal expansion coefficient is 
only cy’” = 14.9 x lop6 K-i, measured at the c 
center of the cluster. The thermal expansion co- 
efficient for the R = lOa, Au clusters is CX~ = 
1.189 X lo-’ K-l, as compared with a$” = 1.212 
X lo-’ K-’ for a gold single crystal at P = 0. In 
all cases, we find that the thermal expansion 
coefficient for clusters is smaller than for the zero 
pressure perfect crystal. This result is counter 
intuitive since the pressure at the center of the 
cluster scales linearly with the surface stress (Eq. 
(2)), which decreases with temperature. This re- 
duction in hydrostatic stress at the center of the 
cluster would be superimposed upon the thermal 
expansion of the lattice and hence should result 
in a larger coefficient of thermal expansion for 
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Fig. 10. Variation in surface stress for Au and Cu clusters of 
size 6a. with temperature. (Cu: (01 T@@, (0) T,,. Au: (m) T@@, 
(0) T,,.) 
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Fig. 11. Variation in the lattice parameter at the center of a 
Cu cluster of size lOa, and that of bulk Cu with temperature. 

the clusters. However, this is not the case because 
the thermal expansion coefficient decreases with 
increasing compression. This offsets the effect of 
the reduction in surface stress sufficiently to make 
the thermal expansion coefficient for the clusters 
less than that for the zero pressure perfect lat- 
tice. 

4. Discussion 

The main cause of the variation of surface 
properties (free energy, stress, etc.) with cluster 
size appears to be the discreteness of the lattice 
planes. Continuous changes in the radius of the 
“spherical” cluster causes discontinuous changes 
in the surface structure. Clearly a small change in 
the radius of the cluster can introduce a new 
atomic plane, add or remove single adatoms from 
the surface, etc. These are all purely geometrical 
effects that are independent of the nature of the 
atomic bonding. These discontinuous changes in 
surface structure produce large, discontinuous 
changes in the surface free energy and surface 
stress. This was confirmed by normalizing the 
surface free energy data as a function of cluster 
radius for the different elements by y(lOa,), 
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where we found that the cluster size dependence 
of the average surface energy exhibits a near 
universal form with only slight deviations between 
one element and another. These deviations must 
be attributable to the differences in the inter- 
atomic potential from element to element and 
the resultant variations in the surface relaxations 
and/or reconstruction. 

We have also presented data which shows that 
the two different methods for determining the 
surface stresses lead to nearly equivalent results 
(Fig. 7). This shows the validity of applying simple 
linear continuum analyses to quantities which 
otherwise must be determined atomistically. This 
comparison is unambiguous and works because 
neither the atomistic nor the continuum determi- 
nation of the surface stress requires the arbitrary 
assignment of different atoms of the cluster to 
bulk and surface regions. The small deviations 
between the two methods for determining the 
surface stress is associated with the fact that the 
cluster is not a true sphere (i.e., it exhibits facets). 
When the surface normal is not exactly parallel to 
the radius vector, the identification of the tangen- 
tial components of the surface stress produces 
small errors. This causes errors in the surface 
stress calculation using the method outlined in 
Eq. (7) and the Appendix. These errors become 
less important as the cluster increasingly resem- 
bles a sphere (i.e., in the large R limit), as shown 
in Fig. 7. 

The identification of the surface thickness is 
ambiguous since it is sensitive to the definition 
employed and the physical property that the defi- 
nition is based upon. Nonetheless, the variation 
of the stresses within the clusters (Fig. 5) suggest 
that the surface thickness is approximately 1.5~2,. 
This is consistent with other surface studies which 
show that the surface relaxation decays into the 
bulk with decay lengths of order a few atomic 
spacings. We note that the estimate of the sur- 
face thickness obtained based upon the spherical 
clusters may be somewhat high, since the surface 
has an intrinsic thickness (without relaxations) 
associated with the discreteness of the atomic 
planes and the necessity that the surface be 
curved. In other words, there will always be a 
surface thickness of at least of order of an atomic 
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Fig. 12. Variation in internal radial stress of the cluster as a 
function of scaled distance from the surface, (R - r)/a,, for 
Au clusters at 400 K. All curves (except for 7a,) have been 
shifted by integral multiples of 10 GPa, for clarity. 

spacing due to the geometric necessity of surface 
steps. We also find that the surface thickness 
does not change appreciably with temperature 
(see Fig. 121, again indicating the dominance of 
local atomic geometry in determining this param- 
eter. 

When the clusters become sufficiently large, 
the variation of average surface energy with clus- 
ter size becomes small. In this regime, the aver- 
age surface energy of the cluster should provide 
an accurate measure of the average surface en- 
ergy of a random polycrystalline aggregate. This 
is based upon the assumptions that the polycrys- 
tal is truly untextured and that the grain bound- 
aries intersecting the surface do not play an im- 
portant role in the polycrystalline average surface 
properties. Several attempts have been made in 
the past to correlate this average surface energy 
with known physical quantities (see the review by 
Tyson [7]). Most of these methods, however, make 
assumptions about the structure of the “average” 
surface and the number of atoms exposed per 
unit area on such an “average” surface. Since 
surface properties are often calculated only for 
high symmetry, low index surfaces, we attempt to 
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correlate the average surface energy with the 
energy of these special surfaces. 

In order to correlate the average surface prop- 
erties with those of high symmetry surfaces, we 
performed a series of atomistic simulations on 
{loo}, (110) and (111) surfaces using essentially 
the same approach as for the clusters at T = 0 K. 
The surface free energies y are tabulated for 
these three surfaces and the R = 15a, clusters of 
Ag, Au, Cu, and Pt in Table 2. Examination of 
this table shows that the average surface free 
energy determined from the cluster is within 1% 
of the { 110) surface energy for Ag, Au, Cu and 
Pt. The {llO) surface is neither the most close 
packed nor the most commonly occurring facet 
on the cluster and therefore, the reason for this 
agreement remains unexplained. 

average cluster values. As expected, based upon 
the above comparison with the (110) surface, we 
find a large positive coefficient for 1110) (i.e. 

~(110) 7 ) a small coefficient for (111) (i.e., cyflll)) 
and a moderately negative coefficient for IlOO) 
(i.e., ‘Yap,&. The predicted average surface energy 
obtained using these values of cy in Eq. (81, 
agrees to within 0.2% with the calculated average 
(cluster) surface energy for all the elements stud- 
ied. Therefore, we conclude that a rough approxi- 
mation of the random polycrystalline surface en- 
ergy of fee metals is y = ytllo), however a better 
approximation is obtained using a linear combi- 
nation of the high symmetry surface energies. 

We also fit the average (cluster) surface energy 
to the {loo), {110) and {ill) surface energies 
using a function of the form 

Ycluster = ‘y(loo)Y(loo) + qllo)Y(llo) + ~(lll)Y(lll) (8) 

subject to the constraint that Cai = 1.0. Only the 
surface energy data for Ag and Au were used in 
performing the fit, yielding ~~~~~ = -0.434, ~~~~~~ 
= 1.249, ~~~~~~ = 0.184. The results are presented 
in Table 2 as “Prediction I”. If on. the other 
hand, we perform a linear regression on all of the 
data (a(,,,) = -0.4013, ~~~~~~ = 1.2095, ~~~~~~ = 
0.19541, the predicted values (Prediction II in 
Table 2) are in even better agreement with the 

While the focus of the present work has been 
on average surface properties, we can also use 
the present results to obtain information on high 
symmetry surfaces. As an example, consider the 
{ 110) surface energy. Surface energies of individ- 
ual surfaces cannot be obtained using such stan- 
dard methods as the zero creep test. However, 
since the average cluster surface free energies (in 
all cases examined herein) are within 1% of the 
{ 110) surface energy, an excellent approximation 
to the (110) surface free energy may be obtained 
from a zero creep experiment on a random poly- 
crystalline sample. Making use of the correlations 
between average polycrystalline results and re- 
sults on individual surfaces (where known) pro- 
vides a simple method to obtain experimental 
data without having to resort to single crystals. 

Table 2 
Values for the surface free energy for the {loo], IllO], (111) surfaces and for the average (cluster) surface free energies of Ag, Au, 

Cu and Pt for T = 0, as well as the results of a linear fit to the IlOO], {110] and (111) surface free energies, where only data from the 

Ag and Au surfaces were used in performing the fit (all values are in mJ/m’) 

(1001 UlO] (ill] Cluster Prediction I Prediction II 

Ag 703 765 618 765 764 

Au 916 978 787 970 969 

cu 1288 1412 1181 1422 1423 1422 

Pt 1652 1755 1444 1742 1742 1742 

Ni 1571 1720 1437 1730 1731 1730 

Pd 1364 1478 1215 1476 1479 1477 
Cu(2) 1205 1323 1095 1331 1332 1331 

Ni(2) 1780 1943 1657 1960 1961 1960 

The data indicated as Cu(2) and the Ni(2) were obtained using an older version of the EAM potential for these elements [8]. The 
(loo), (llO), and (111) surface energies for these elements were first published in Ref. [3] for these potentials. The slight 

discrepancies between the values of these energies in the table and those published in Ref. [3] are attributable to differences in the 
manner in which the EAM embedding function and its derivatives were calculated. 
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7. Appendix. Calculation of stresses on an atom 
using the EAM potential 

We found that atomic clusters with radii 
greater than approximately 4a, yield cluster av- 
erage surface energies and surface stresses that 
are within a few percent of those obtained from 
clusters of very large size (l&z,). It is in the large 
cluster limit that we expect the cluster average 
surface properties to be equivalent to the random 
polycrystalline average surface properties. The 
variation of the cluster average surface properties 
with cluster size is dominated by a geometrical 
effect associated with the discrete spacing be- 
tween atomic planes and that the differences 
associated with differences in the atomic bonding 
between different elements is small, at least for 
the four elements considered herein. The average 
surface stress was obtained using an explicit 
atomistic calculation and by measuring the clus- 
ter radius dependence of the pressure internal to 
the cluster. The two methods yield results in good 
agreement with each other. Comparison of the 
cluster averaged surface free energy with those of 
the more commonly studied high symmetry flat 
(loo}, { 1 lo), and 111 l} surfaces suggest two useful 
approximations to the average surface properties. 
A rough estimate is obtained by simply equating 
the average surface free energy with the surface 
free energy of a {llO) surface. However, a better 
estimate is obtained using a linear fit to the IlOO), 
{ llO}, and the {ill} surface free energies. The 
parameters for use in this fit have been deter- 
mined. This correlation can be used to obtain the 
{ 110) surface energy of fee crystals from zero- 
creep experiments on polycrystalline samples. 

In this section we present the expression for 
the calculation of stresses in a system using EAM 
potentials and the local harmonic approximation. 
The total free energy of the system, A, can be 
written as a sum of two parts: a static energy 
term, A, (which consists of a pairwise term and 
an embedding energy term) and a vibrational or 
dynamic term, A, (which contributes to both the 
entropy and the enthalpy). 

A =A,, +A,, 

AO=iC C4(rij) + CFi(Pi), 
i j#i i 

A,= 

In the above equations $(rij) is the pairwise 
energy for atoms i and j and f;;,(&) is the embed- 
ding energy. pi is the total electron density at 
atom site i and can be written as the sum of the 
contributions to the electron density at site i 
from all of the other atoms in the system: i.e. 
p, = Cj+i p(r’j). Dk is the determinant of the 
local dynamical matrix, dk, of particle k, which 
for the EAM potential may be written as 

(A.11 
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+c 
i 

a2E;; a a 
i2k 3 ar,kiPbki) @PPki) I 

+CZ 
izk ap ar,PHr;iP(rki)’ (A4 

The stress on any atom m can be written in terms 
of the derivative of the free energy of the system 
and the position vectors between the different 
atoms as 

(A.3) 

a$? is the S-y component of the stress on atom m, 
RL is the (Y co-ordinate of atom i and rrn is the 
y component of the vector rmn between atoms m 

and II. The appropriate derivatives of the free 
energy in Eq. (A.3) (when EAM potentials are 
used) are 

+CZE a 
-p( rii) i ap jzi ar,mn 

= -%(rmn) + (2 + $)&p(r”“). arpn 
6 

(A-4) 

(A-5) 

a 
-d$ armn s 

= ,z armna~kiark~~(rkl) 

8 aP 

(r”‘) 

aFk 
+- c a3kl kldrk’) ap I+ k arr”ar, ar, 

X Lp(r’“) 
ar,kl 

The stresses are found by substituting Eqs. (A.4), 
(A.51 and (A.61 into Eq. (A.3). 
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