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Abstract 

A neutron reflection coefficient can be decomposed into two simpler reflection coefficients: the Fresnel coefficient for 
bulk material only, and a coefficient for the case where the surface layer is surrounded on both sides by bulk material. The 
latter coefficient is obtained via the usual matrix product whose factors correspond to homogeneous strata of the surface 
layer; or this coefficient can also be expressed as a sum of terms, one for each stratum of the surface layer. The purpose of 
this latter theorem is to reveal the algebraic structure of the scattering problem and the relation of the matrix method to 
the Born approximation. Zero absorption and diffuse scattering is assumed. 

1. Introduction 

Two ways to calculate the neut ron  reflection 
coefficient for a p lanar  stratified sample  use the 
Riccati equat ion [1-] and the matr ix  me thod  [2], 
respectively. Let the a i r - sample  interface be the 
plane surface z = 0 with positive z-axis projecting 
into the sample.  The neut ron  wave is at glancing 
incidence outside the reflecting med ium (z < 0). It  
has a z -componen t  

~(Z) = e ik=z q- R e - i k z z  (1) 

where R is the reflection coefficient, which depends 
upon  ks. Inside the med ium the local p ropaga t ion  
number  k(z) is given by the equat ion:  

k2(z) = k~ - 4np(z) (z > 0), (2) 

where p(z) is the average scattering length density. 
In the stratified model  the sample consists of layers 
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with p ropaga t ion  numbers  k,, given by Eq. (2), of 
variable thicknesses d,,  where ~ = 1, 2 . . . . .  N. The 
layer closest to the a i r - sample  interface is labeled 

= 1 and that  adjacent  to the bulk par t  of the 
med ium is labeled ~ = N. The bulk par t  of the 
sample is assumed to be semi-infinite so that  no 
reflected wave exists there, i.e. 

71 oc e iq~ (bulk material), (3) 

with q defined by the equat ion 

q2 = k~ - 47~p(bulk). (4) 

The appropr ia te  root  of  Eq. (4) puts q either on the 
positive real axis or on the positive imaginary  axis. 
In practice the scattering length density of the bulk 
mater ial  is known so that  q is also known.  

2. Riccati equation 

Only the logar i thmic derivative, 

1 d ~  
- ~u d z '  (5) 
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evaluated at z = 0 is needed to find the reflection 
coefficient. From Eq. (1) we have 

7'(0) = 1 + R, (6) 

z~(0) = ikz(1 - R), (7) 

so that the reflection coefficient is 

ik~ - ~(0) 
R - ik~ + ~(0)" (8) 

The logarithmic derivative obeys the first-order 
Riccati equation 

d~ ~2 k 2 
d-~ + + = 0, (9) 

whose solution is determined by the single bound- 
ary condition 

~(bulk) = iq. (10) 

Although Eq. (9) is nonlinear, it is easily integrated 
in the stratified model, and even if p(z) is discon- 
tinuous, ~(z) is continuous and ~(0) is unambigu- 
ous. 

corresponding to the case of bulk material only. 
The function M is also a reflection coefficient which 
corresponds to the case when ks = q, i.e. a situation 
in which the sample (surface and bulk material) 
remains unchanged, but the air (incident medium) 
is replaced with bulk material so that the wave is 
incident with ks equal to q. Then F is zero and R is 
equal to M. If q is pure imaginary, then M is real 
(see Appendix A) and R has unit modulus which is 
the case of total reflection. 

Because M is a reflection coefficient it can be 
generated in the stratified model by the matrix 
method. The equivalence between the matrix 
method shown here and that given by Lekner is 
demonstrated in Appendix B. Introduce a 2 × 2 
matrix, 

cos (k, d,) ~ sin (k~ d,) t 

O~ = _ ~sin(k~d~) cos(k~d~) J' 
(14) 

for the ~th stratum of thickness d, and propagation 
number k,, and define P, and Q, by the matrix 
product 

(~])= O1 O203""" Oct-10a(Q:), 05) 

3. Matr ix  method 

The matrix method and the decomposition pro- 
cedure to be presented involve a function M of kz 
which is related to ~(0) by the equation: 

1 - M  
~(0) = iq 1 + ~ "  (11) 

The reflection coefficient (8) becomes 

with starting values Po = 1/2 and Qo = - i / 2 .  
Then M is given by 

Pu - iQu 
M - PN + iQ~' (16) 

where ~ = N denotes the stratum adjacent to the 
bulk material. This result together with Eq. (12) 
gives the reflection coefficient R in closed form. 

F + M  
R = 1 + F2~/I' (12) 

where F is the Fresnel coefficient, 

4. Decompos i t ion  of  M 

It is possible to expand M into a series of terms, 
one for each stratum of the surface layer. Define the 
quantities 

kz  m q 
, ( 1 3 )  

F -  k~ + q So = P~ + iQ~, (17) 
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for a = 0, 1, 2 . . . . .  N. The procedure for generating 
the entire series is illustrated by the first steps. 
Write 

2iQs SiV_ x 2iQiVSu _ l 
M = 1 - -  - - -  (18) 

SN SiV_ 1 SiV_ 1SN 

and then put this into the form 

denominator contains So = 1 and (putting all 
thicknesses d, = Az for simplicity) 

1 
$1 = 4~1q [(q - k l ) ( k l  - q)e ikla~ 

+ (q + k l ) (k~  + q)e-~k 'az] .  (24) 

The denominator of M E contains Sx and 

PiV-1 - iQu-1 + 2i[QiV- 1Siv - QNSN-1].(19 ) M 
PN- 1 + iQiV_ 1 SiV- 1SiV 

Repeat the steps on the first term of Eq. (19). The 
second term is simplified using 

q2 __ k 2 
2i[Q,_ ~S, - Q , S , _ I ]  - - -  sin(k,d,), (20) 

2i qk,  

1 
$2 - - -  [(q - k2)(k2 + kl)(kl - q)e  i(k2+kl)az 

8k l k2q  

+ (q - k2)(k2 - kx)(k~ + q)e i(k2-k')Az 

+ (q + k2)(k2 - k l ) (ka  - q)e -i(k2-k')a~ 

+ (q + k2)(k2 + kO(k~ + q)e-i(k~+k')az]. 

(25) 

which depends upon the fact that the matrices O, 
have unit determinant (Appendix C). Note that 
q 2  k 2 is independent of k~. If the scattering 
length density of the otth stratum is p,, then this 
difference is 

U, = q2 _ k 2 = 4rt[p,  - p(bulk)]. (21) 

The process outlined in Eqs. (19) and (20) is repeat- 
ed N -  1 times to generate the decomposition of 
M into a series of terms 

iV 

M = ~ M, .  (22) 
a t=l  

The term for the ctth stratum of the surface layer is 

5. The Born approximation 

In each S, there is one term, written as the last 
term in $1 and $ 2 ,  which has only plus signs be- 
tween the propagation numbers, and it is this term 
that gives the Born approximation. When k 2 is 
large compared with 4~p(z) (the Born approxima- 
tion limit), q and all the k/s  approach the value k, 
and only the term in S, with all plus signs remains. 
Thus in the Born approximation we have 

Sa ~ e -i~'kzaz. (26) 

The Born approximation expression for M, is 

U,  i (2 ,_ l )k=azs in(kzAz) ,  
M~ ,~ 2~zz e (27) 

q2 _ k 2 sin(k~d~) 
M ,  - 2 i q k ~  S , -  IS~"  (23) 

The series (22) is self-terminating because M, van- 
ishes when k, = q, i.e. when the bulk material is 
reached. 

The terms of the series (22) are most simple for 
strata close to the air-sample interface. In Ms the 

which can be put into the more recognizable form, 

0tAZ 

U~ ~ e 2ik*z dz 
M~ ~ 2-~ ~ " (28) 

(at-- 1)Az 

To see that this is the correct Born approximation 
expression for M~ note that M can also be regarded 
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as the reflection coefficient for a sample consisting 
only of a surface layer with air on both sides. The 
scattering length density in this surface layer is 
p(z)- p(bulk) in place of p(z) and the incident 
propagation number is q instead of kz. 

It is often pointed out that in the Born approx- 
imation, where the reflection coefficient is a Fourier 
transform of the scattering length density, the 
reflectivity (modulus of the reflection coefficient 
squared) for a sample of finite thickness remains 
unchanged when the sample is reversed, or equiva- 
lently when the wave is incident on the other side 
of the sample [3]. The reflection coefficient M 
represents this kind of situation insofar as it corres- 
ponds to a sample of finite thickness. If Mr differs 
from M only by reversal of the sample (surface 
layer), then Eq. (28) can be used to obtain the usual 
result 

vector with components Po = 1/2 and Qo = - i/2 
in this latter case, the result is a new vector whose 
upper component is again real and whose lower 
component is again purely imaginary. Similarly, 
when ON-1 operates on this new vector, and q is 
purely imaginary, the result is the same, i.e. upper 
component of the resulting vector is real, lower 
component purely imaginary. The final result when 
q is purely imaginary is that PN is real and QN is 
purely imaginary so that M, as given by (16), is real. 

It is a striking fact that whenever q is real (reflec- 
tion less than total) the entire matrix, 

0 = 0 1 0 2 0 3 " " " O N_ 1 ON (A1) 

has all real components but M, as given by Eq. (16), 
is a complex function of kz. 

M, = M* times a phase factor, (29) 

in the Born approximation (* denotes complex 
conjugate). The same conclusion turns out to be 
true when M is computed exactly in the stratified 
model. This can be easily proven with the help of 
Eqs. (B1) and (B3) of Appendix B which represent 
a sample of finite thickness and the same sample 
with strata in reverse order, respectively. 

Appendix B 

Lekner uses a matrix 

roll 
ON ON 1 " " " 0 3  0 2  0 1  = 1 

\~ m21 

The inverse matrix, 

qm12~. (B1) 
m22 // 
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Appendix A 

To show that M is real when q is purely imagin- 
ary (k~ < 4rip(bulk)), consider the matrices (14) 
which have only real elements when q is real re- 
gardless of whether k, is real or purely imaginary. 
However, if q is purely imaginary the upper right 
and lower left elements of every O, matrix are 
purely imaginary. When ON acts on the starting 

011 0 2 1 0 3 1 " ' "  ON11 ON 1 

=(mz2  -qmxz), 
\ - ~m21 mll / 

(B2) 

can be analyzed in terms of the individual O, ma- 
trices which have corresponding inverses, i.e. the 
diagonal elements (which are equal for the O, ma- 
trices) exchange places and the off-diagonal ele- 
ments change sign; in other words O~- 1 is obtained 
from O~ by changing the sign of q. It follows that 
the reversed matrix product is 

010203"''ON_ION=( m22 qrn12], (B3) 
\~m21 mll / 

which differs from Eq. (BI) in that mll and m22 are 
interchanged. 
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Aside from a translational phase factor, Lekner's 
reflectivity expression (Eq. (46) of Ref. [2]) is 

qkzm12 + ikzm22 - iqmll + m21 
R = . ( B 4 )  

qkzml2  + ikzm22 + iqml t  -- m21 

From Eq. (B3) we see that 

PN = ½(m22 - -  iqml2), (B5a) 

QN 1 1 = ~2(~m21 - -  imll), (B5b) 

1 i q  . 
Q~= 021I~cos(k~d~)-~sln(kad~)] (C2b) 

+ 022 - ~qSin(k~d, ) -  ~cos(k~d~) . 

Furthermore, we have 

1 i 
P~-I = ~011 - ~012, (C3a) 

and Eq. (B4) can be written as 

kzP:¢ - iqQN 
R = kzPN + iqQt¢' (B6) 

which is equivalent to Eq. (12) with M given by Eq. 
(16). It was necessary to reverse the order of the 
matrix multiplication, i.e. to use Eq. (B3) instead of 
Eq. (B1) in order to make the decomposition pro- 
cedure Eqs. (18)-(20) possible. 

1 i 
Q ~ - I  = 2 0 2 1  - -  ~022" (C3b) 

Using definition (17) of S~ we find that 

2iEG-1S, - Q,S,-I] 

i ( ~  ~q)sin(kj~). = ~ [ 0 1 1 0 2 2  - -  0 1 2 0 2 1  ] - -  

(C4) 

A p p e n d i x  C 

In order to establish Eq. (20) write 

~__ ( 011 0 1 2 ~ ,  
O1 0 2  " " • Oa_ 1 ~ 0 2 1  0 2 2 /  

so that Eq. (15) becomes 

1 k - G=Oll[~cos(~d~) i q  sin(k~d~)-] 
z K~ J 

F i 
_ 1 k~s in (k~d~  ) _ ~cos(kd,)], + 012l  2 q 

(C1) 

(C2a) 

The proof of Eq. (20) is completed by noting that 
the matrix (C1) has unit determinant since 
all of its constituent matrices have unit deter- 
minant. 
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