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Semiparametric two-stage estimation 
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A semlparametruz two-stage estimation method 1s proposed for the estimation of sample selectlon 
models which are subject to Toblt-type selectlon rules. With randomlzatlon restrIctIons on the 
disturbances of the model, all the regresslon coefficients m the model are, in general, ldentlfiable 

wIthout exclusion restrIctIons The proposed estimator is shown to be X/n-consistent and asymp- 
totlcally normal. Some Monte Carlo results, to demonstrate Its limte sample performance, are 
provided. 

Key wwrd.s Sample selection; Truncation; Censormg; SemIparametrIc estlmatlon. Kernel estlmatlon; 
Randomlzatlon, RegressIon model 

1. Introduction 

Econometric models of discrete choice, limited dependent variables, and 
sample selection have found interesting applications in empirical studies. 
Models with parametric distributions, however, may be subject to distributional 
misspecifications, which might result in inconsistent estimates. Recent research 
efforts on the estimation of such models have focused on semiparametric 
methods, which relax parametric distribution assumptions. Semiparametric 
methods have been proposed for the estimation of sample selection models with 
discrete choice decision rules. Semiparametric estimation of sample selection 
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models subject to Tobit-type selection rules have not been explicitly considered 
in the literature. 

Tobit-type sample selection models differ from sample selection models with 
discrete choice rules in that the decision equations in such models are Tobit 
equations instead of discrete choice equations. An example is a model of female 
labor supply in Heckman (1974) where the market wages can be observed only 
for the individuals whose hours of work are positive. Consider a model of two 
equations: 

y, = xa + u, y2 = XP + v, (1.1) 

where y, and y, can be observed only when y, > 0. This model provides much 
more information than the model with a discrete choice equation for y,, in that 
the positive values of y, can be observed instead of just the sign of yr. For the 
semiparametric model with a discrete choice equation for y,, Chamberlain 
(1986) has shown that, under the assumption that (u, v) is independent of 
regressors in the model, the identification of b requires exclusion restrictions on 
the regressors of the y, equation. Semiparametric methods for estimation of 
such a model have been suggested in Cosslett (1991) Robinson (1988), Powell 
(1987), Ichimura and Lee (1991), Newey (1988), and Lee (1990). For the model 
with a Tobit-type selection equation, observability of y, in a continuous range 
may provide enough restrictions for the identification of /I This article proposes 
a simple semiparametric two-stage method for the estimation of /I. Given a 
consistent estimate of a, the bias of the observed outcome equation can be 
adjusted, and fl can be estimated by a regression procedure. Our procedure 
differs from the two-stage estimation procedures in Heckman (1976), Cosslett 
(1991), Robinson (1988) and Powell (1987) in the way of constructing the bias 
adjustment term. Our adjustment term is designed for Tobit-type sample selec- 
tion models. Under general regularity conditions, our two-stage estimator is 

&-consistent and asymptotically normal. 
The article is organized as follows. Section 2 describes the estimation proce- 

dure. Regularity conditions for our model are listed in this section. Consistency of 
the estimator is discussed in section 3. Asymptotic distribution of the estimator 
is described in section 4. Section 5 provides a consistent estimate of the 
covariance matrix of the estimator. Several Monte Carlo simulations are per- 
formed to investigate the finite sample performance of the proposed estimator. 
The simulation results are reported in section 6. Appendix 1 summarizes some 
relevant results for our analysis. Some proofs of asymptotic properties of the 
estimator are provided in appendix 2. 

2. A two-stage semiparametric estimation procedure 

The model considered has two equations. One of them is a Tobit-type 
selection equation. Let x be a k-dimensional vector of regressors in the model. 
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To be specific, x does not include a constant term.’ The xi and x2 are subvectors 
of x of dimensions ki and k2, respectively. The underlying latent equations in the 

model are 

y,=x,cc,+u (2.1) 
and 

Y2 = x2Po + 0, (2.2) 

where a,, and Do are the true parameter column vectors of dimensions k, and k2, 
respectively. Values of y, and y, are defined on the whole real line, but they can 
be observed only when yi > 0. Eq. (2.1) is a censored regression model if 
max{O, y,} and the corresponding x are observable. It will be a truncated 
regression model if only the positive values of yi and their corresponding x are 
available. In this article, the disturbances u and v in (2.1) and (2.2) are assumed to 
be independent of x in the model. If observations of y, are censored, Q, can be 
estimated by, for example, Powell’s least absolute deviations method [Powell 
( 1984)].2 With a truncated sample, the method in Lee (1992) is applicable. 
Estimation of Do is the remaining issue. In this article, we generalize the 
semiparametric estimation method in Lee (1992) for the truncated regression 
model to the estimation of the above sample selection model. 

Conditional on y, being observable and x, the regression function of y, is 

E(Y2 I Yl > 0, XI = x2Bo + E(v I u > - -ylcfO> x). (2.3) 

The two-stage estimation method in Powell (1987) and the semiparametric 
nonlinear least squares method in Ichimura and Lee (1991) have used the ‘index 
property’thatE(vIu > -xlcco,x)isafunctionofx,cco,i.e.E(v~u > -x~c(~,x)= 
E(v 1 u > - x1x0, x,cco), but not the ‘independence property’ that u and v are 
independent of x in the latent structure. When xi = x2 or x2 is a subvector of xi, 
the index property alone does not provide enough restrictions for identification 
ofDo [see Chamberlain (1986), Powell (1987), and Ichimura and Lee (1991)]. For 
our model, letf(v, U) be the joint density of (v, u), letfU( .) be the marginal density 
of U, and let h( .) be the density of x~c(~. Then 

7 7 vf(v,u)dudz: 

E(vlu > - Xicc,,X) = -cu -“I: 

_-/(r) dt ’ 

(2.4) 

‘For our model, smce no moment restrlctlons are Imposed on the dlsturbances, constant terms m 
the equations are absorbed mto the dlsturbances 

‘Powell’s approach assumes that u condltional on x has zero median, which IS weaker than the 
Independence assumption 



308 L.-f. Lee, Semiparametric two-stage estimutlon of sample selection models 

For the index formulation, the property thatJ(v, u) is not a function of xlaO has 
not been imposed on estimation. Imposing this property of the model is the key 
for identification. At first sight of (2.4), one might attempt to estimatef(u, u) and 
L(u) with observable residuals u and u by some nonparametric density estimates. 
Unfortunately, the problem is not so straightforward with truncated (or cen- 
sored) data, because the joint density of (L;, u) given y, > 0 isf(v, u) 1 r, h(t) dt/D, 
where D = J", (JT,fu(t)dt) h(z)dz is the probability of the event y, > 0, and the 
density of u given y, > 0 is fu(u) J “, h(t) dt/D. Estimation of any relevant function 
of this model should take into account the distribution of xluO. Multiplying 
both the numerator and denominator of (2.4) by J,SmO h(z)dz, (2.4) can be 
rewritten as 

7 7 7 vf(v,u)h(z)dudzdv 

(2.4’) 

With a random sample (y,,, yZZ, x,), y,, > 0, i = 1, . . . , n, consisting of indepen- 
dent observations drawn from a common population, (2.4’) can be estimated 
nonparametrically. At Xi, the proportion of sample observations of (xlao, u), 
which satisfy the conditions xlclo > Xliao and u > - xl,tlo, will provide a con- 
sistent estimate of the probability (conditional on xl) of the event u > - X,~CI~ 
and xlaO > xlr~o; i.e., 

by the strong law of large numbers. Similarly, 

The ratio of the latter sample average over the former sample average provides 
an estimate of (2.4’) at x,. These sample averages are, however, not easy to work 
with due to their nonsmooth characteristic as functions of c(~. Instead of 
frequency estimators, we consider smooth kernel density estimators. The in- 
tuition behind these formulations is based on the observation that the density 
of (v,, u,) conditional on y,, > 0 and xlrao is the same as the density of any 
(t’,, u,) conditional on XIiC(o, uJ > - x~~c(~ and xl,ao > x11tlo.3 In particular, the 
conditions xlclo > X~,CI~ and u > - xllclo imply y, = xlrO + u > 0. 

‘See also Lee (1992) for the estlmatlon of a truncated regresson model and a geometric 
mterpretatlon 
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Before we proceed further, let us clarify some of the notations and conven- 
tions that will be adopted throughout this article. The random variables y, , y,, 
x, u, and u are referred to the random variables in the latent eqs. (2.1) and (2.2). 
Sample observations are always referred to truncated observations. 
rJ = (y,,, y2], x,) is a row vector of the jth sample observations; rrj = (yr,, x1, ) 
is a subvector of rJ. All the expectations and probability functions are taken with 
respect to the distribution of the latent random variables before truncation. P(S) 
denotes the probability of an event S under the distribution of the latent random 
variables. As a convention, with a realization X, appearing in any expectation or 
probability function, x, will be regarded as a parameter. For example, 
P(x,Q > x~~cI~) refers to the probability of the set {X I,Y~Q, > xI,rlOJ, and 
E(z: 1 u > - xI,xo, xlrO > .xlrxo) is the conditional expection of v conditional on 
the set {(u, x)1 u > - x~,cI~, X~CQ, > x1,2,)>. I,( .) denotes the indicator 
of a set S. 2 and p are possible values of a,, and /I,,, respectively. Or x O2 is 
the parameter space of (CC’, /I’)‘. We define the variables U(LY) = yr - xrc( and 

Q) = Y2 - x2& and their realizations uj(“) = Yl, - xl~a and 

u,(P) = Y2, - x2,/?. g(. 1%) denotes the density function of (U(E), xrc~), and 
E( I., ., u) is a conditional expectation conditional on (u(a), x1 SI). The u, = U,(Q), 

UJ = u,(BCl), s 11 = Yl, - ,~lJ~O - E(u I u > - xl,uo), and s2] = y2, - xZJ,& - 
E(v( u > - x,jClo) are regression residuals. More notations will be introduced in 
the due course. 

Let K( .) be a kernel function on R2 and a, > 0 be a bandwidth parameter 
[Rao (1983)]. For any random variable s, define 

u - UJ(dl) z - .X1,% 

’ 
~ dudz, 

a, a, 1 
where d, > 0 is a trimming parameter, and 

&As I Xl,, 4 = 
C,(s I x1134 

Cn(l I xii> a)’ 
(2.6) 

As shown in the subsequent sections under some regularity conditions and the 
design that a, and d, go to zero as n goes to infinity, E,(U(B)lxli, a) provides 
a consistent estimate of E(v(@I ( ) u c1 > - xlic(, xIc( > x,,(x). Given a consistent 
estimate d of c(~, our proposed estimation method is a semiparametric least squares 
procedure: 

(2.7) 



310 L.-f Lee, Semiparametric two-stage estimation of sample selectton models 

where the set X is constructed by trimming the regressors in x1. The necessity of 
trimming the regressors will be explained in a later paragraph. The estimator /? from 
(2.7) has a closed form expression: 

-1 
P = - En(x2 I Xii, &)I CXZ~ - En(x2 IXIZ, &)I 

This two-stage procedure is similar in a certain way to the two-stage procedures in 
Robinson (1988) and Powell (1987). Define a weight function: 

The two-stage estimator b can be rewritten as 

L i+l JJ 

n r n 11 

x c IT&l,) 1 x2, - 1 xZ~ KtXlr, rlj3 Oil 
1=1 Jfi 1 

[ 

n 

x Y2i - 1 Y2jKtxli, rij, a) 

j+i 1 
(2.10) 

The weighting functions in the two-stage procedures in Robinson (1988) and Powell 
(1987) are, however, quite different from ours. Our weighting function is specific to 
the sample selection model with a Tobit selection rule. Their weighting functions 
use index restrictions only. Our semiparametric estimation procedure can also be 
understood from an angle different from (2.7). At each x,, (2.1) and (2.2) imply (2.3): 
E(y,i 1~1, > 0, Xi) = xzipo + E(u 1 u > - x1icL0, x,). In addition, they imply also that 

E(.Y2 I u > - xlitlO, Xlc10 > xlic(0) 

= E(x~ I Xlao > Xlitlo)po + E(u 1 U > - XlicCo, XlCto > X~~CLCJ). (2.11) 
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AS E(u IU > - XliMo,~lao > x,iao)= E(u~u > - xlicIo,xi) is an unknown 
function, it can be eliminated by taking the difference of (2.3) and (2.11) which 

gives 

Y2, - E(Y2lU > - xlPOIxla0 I== x190) 

= cx2, - E(x2 lxlaO ’ xl~aO)lPO + &2i. (2.12) 

With E(y2 1 u > - Xliao, xlcto > x1icIo) and E(x, 1 xlaO > xl,ao) replaced, re- 
spectively, by the nonparametric estimates E,(y, ) xlr, 02) and En(x2 I xii, oi), a least 
squares procedure applied to (2.12) provides the estimate [in (2.8). From this point 
of view, we see that the estimation procedure has explored the information in (2.12) 
in addi$on to (2.3). 

The fi can be shown to be consistent and asymptotically normally distributed 
under some regularity conditions if a,, and A, are chosen to converge to zero at 
certain rates as the sample size n increases. 

To justify the statistical properties of our estimator, the following regularity 
conditions are assumed: 

Assumption I 

(1) The disturbances u and v in the latent equations are independent of x. 
(2) The samples (yri, y,i, x,), i = 1, . . , n, where y,, > 0 for all i, are i.i.d.4 
(3) The first four order moments of (y2,, x,) exist. 
(4) B is a consistent estimate of cco. 
(5) For each a E Or, where Or is a compact neighborhood of cIo, the index xrc( is 

a continuous random variable. 
(6) X is chosen to be a compact subset of the support S of x1 such that 

max,,,.xxlao < max,L,sxl~~. 
(7) For each xIL E X, there exists, with postive probability, some x1 in the set 

{XJXICI~ >xli~o} such that P(y, > x~c(~-x~;cI~/x)> 0. 

Assumption 2 

(1) For each CI E 01, the density function g(w I a) of (yr - x1%, ~,a); and the 
conditional expectations E(x I w, a), E(y, 1 w 4, -Yy2xI I w 4, and -WIx2 I w, 4 
conditional on (y, - xrc(, x1%) = w are twice differentiable in w on 
W = {w I w1 + w2 > 0 where w = (w,, w2)}. 

(2) g(w 1 cc), E(x2 I w, a) and E(y, 1 w, a) are continuous in a E 0,. 

40ur two-stage estimation method does not use informatlon of the event y, < 0 once a consistent 
estimate of LYE IS given The sample can simply consist of truncated observations. 
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Assumption 3 

There exist Lebesgue measurable functions h,(w), j = 1, . . , 4, with the follow- 
ing domination and integrability properties: 

(1) Domination properties: Let t = 1, x2, or y,. In some neighborhood N6(w) of 
w in W with radius 6 > 0 that does not depend on w, 

6) sup sup lIE(tls,4gbI~)Il S hi(w), 
XGBI ~EN”(Wl 

(iii) sup sup E( II (Xi! - xlMl*l~~CoS(~I4 5 h3(W), 
((I,X,z)EO1 xx SGN,(W) 

(2) Integrability properties: 

(i) 7 7 hj(u, z)dndz < CC for j=l,2. 
-?j _Z 

(ii) 7 sup h,(u, z)dz < co and i sup h,(u, z) du < co 
-3u u -3cI Z 

for j = 3,4. 

Assumption 4 

(1) The kernel function K(w) on R* is bounded and has a bounded support. 

(2) { K(w)dw = 1 and J wK(w)dw = 0. 
(3) The bandwidth sequence {a,}, with a, > 0, converges to zero at a rate such 

that lim,,, (naz/ln n) = cc and lim,,,,naz = 0. 
(4) The {A,} is a positive sequence such that lim,,,d, = 0 but 

limn_,(d./a,) = co. 

Assumption 5 (Identification condition) 

The matrix E(lAxi,) CXzi - E(.G I XIMO > xli~o)l’ CXZ, - E(XZ 1x1~0 > XIPO)I) 
is nonsingular. 
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The conditions in Assumption 1 are some basic regularity conditions for our 
model. The regressors in xIr are trimmed in Assumption l(6) to gurantee that, for 
each xl[ E X, P(xIccO > xriCl0 1 xl,) is strictly positive. Assumption l(7) together 
with X implies that P(u > - XliC(o) is also strictly bounded away from zero on 
X. This assumption is always satisfied if u is unbounded from above. Without 
trimming of x1, we have some technical difficulty to prove the uniform conver- 

gence of &(4B)lxr,, c(), which is a ratio of C,(u(p)lx,, cx) over C,(l 1x1,, c() to 
a well-defined limit. This is so, because at some boundary points of S, say XI, it is 
possible that the event x,c( > %,a will occur with zero probability. At those 
points, l/C,( 1 1X1, cc) will not converge. For the points close to the boundary, 
even their limits may exist, the limiting values might be very large.5 Assumptions 
224 are used to guarantee convergence of the nonparametric functions in (2.5) 
and (2.6) and their derivatives to some proper limit functions. The conditions in 
Assumption 3 permit interchange of order for limiting operators and integration 
operators by the Lebesgue dominated convergence theorem (LDC). The rate of 
convergence of a, controls the rate of convergence of the nonparametric func- 
tions. The trimming parameter A,, is used to avoid complicated biases of the 
nonparametric functions along the boundary of yr > 0 so that some uniform 
rate of asymptotic biases can be established. To clarify this issue a little bit more, 
consider the point ( - xIpo, Xli~o). In any neighborhood of this point, some 

_ - 
values (u, z) of (u, xIao) with U < - xIr!xO would not be observable because 
jr = Z + U could be negative. The kernel density estimate (l/(n - 1)~:) x 

C~“#I K(( - XlirO - u~)I”n~ tXlruO - xl,cco)/a,) would not necessarily converge 
to the density of(u, x1x0) at ( - .Y~~z~, xlrxO) when the kernel puts some positive 
weight on every point in its neighborhood. This difficulty might prevent the 
conditional expectation of C,( 11 xll, cto) (with A, = 0), conditional on xlr, to 
converge to j,“,,,, JY,,,~J(tI)h(r2)dtI dt, with the rate of O(ai) as required in 
Proposition 2 of the appendix. The A, is designed to overcome such irregu- 
larity.6 For our proposed estimation method, since the rate of convergence of a, 
is not too slow, K( .) can simply be a density function. The regularity conditions 

of our assumptions are sufficient to prove that our two-stage estimator is &- 
consistent and is asymtotically equivalent to the sum of an asymptotic normal 

‘Instead of trimmmg x1, an alternattve suggestton m Powell (1987) can be apphed to our model 
Powell’s approach 1s to wetght the squared residual at each pomt x, by Cj(1 Ix,,, 6) so as to ehmmate 
each denommator in the semtparametrrc least squares procedure. Followmg Powell’s approach, the 
semtparametric least squares procedure would be a semiparametric weighted least squares proce- 
dure. However, such a weighting has nothmg to do with opttmal esttmation as m the classtcal 
Attken’s estimator for linear regression models. 

6An alternative approach, that mtght be useful to overcome thts dtfficulty, IS to select a kernel 
function K(t,, t2) wtth the property that tt vamshes whenever tl > 0. Such a kernel for the denstty 
esttmation of (a, x,rO) at ( - x ci Iz o, xllq,) will put zero wetght on any value (u, z) wtth U < - x,,rO 
However, such a kernel could not be a proper denstty function under the zero mean condmon m 
Assumptton 4(2). Kernel functtons wtth some negattve values would be needed. 
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variable and a variable involving CE. With a $-consistent and asymptotic 
normal &, our two-stage estimator is asymptotically normal. 

3. Consistency and identification 

Asymptotic properties of b depend on properties of the nonparametric func- 
tions in (2.5) and (2.6). Let t = 1, y,, or x2. By a change of variables, 

7 K(u, z)dudz. (3.1) 
(xIIa+~“~xl,or)/a” (-xl,a-u,(n))/a, 

Since the second moments of y, and x2 are finite and J “; m 1 K(w)) dw < oc , 

sup var (C,(t 1 x1, a)\ x1) = 0(1/n). 
x,.a 

(3.2) 

For any random variable s and a constant A 2 0, denote 

C(slx~,c~A)= 7 7 E(slu, z, cr)g(u, zla)dudz. 
x,a+A -x,a 

Under Assumptions 3 and 4, Proposition 2 of appendix 

(3.3) 

sup IE(G(tlx,, 41x1) - C(tlxl, ~(3 AJI = O(d). 
x1 .a 

1 implies that 

(3.4) 

With the LDC theorem, Assumption 2(2) and Assumption 3 imply that 

C(tlx, 3 a, A) with t = 1, y2, or x2 are uniformly continuous on X x O1 x [0, 11. 
The uniform law of large numbers in Proposition 1 of appendix 1 can be applied 
to (3.1) with d = 6= 0. Since oi is consistent, it follows that 

plim sup Cn(tlxl, 02) - 7 7 E(t(u, z, cq,)g(u, zlccO)dudz = 0. (3.5) 
n-do x,eX x1=0 -x,ao 

On X, Assumption l(7) guarantees that the probability j,“,,, JZ”,,,, g(u, zlcq,) x 
dudz is uniformly bounded away from zero. As u and v are independent of x, 
E(vlu > - x~,cL~, xlaO > x~~cL~) = E(vlu > - x~~c(~) and E(x,lu > - xlislo, 
xlclo > x~,cL~) = E(x~Ix~cL~ > xI,ao) for all x1,. Therefore 

plim sup l-K(yzlxl,, a) - E(YZIU > - xliao, ~1~0 > XI,~O)I = 0 (3.6) 
n-cc X,,EX 
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and 

plim sup l&(x21x1,, 4 - E(x~(x~cL~ > x~~cc~)I = 0. 
n-a, X,,EX 

(3.7) 

Since GW)lxll, 4 = Wd~1,, ct) - Cn(x2 lxlir a)fi, (3.6) and (3.7) imply that 

plim sup IEn(~Ixlr, &) - E(UlU 1 - XliCto)l = 0. (3.8) 
“-3L1 X,zEX 

Eq. (2.8) implies that 

x i$l zX(xIi)Cx2i - En(X21Xli9 a)l’(ut - En(“lx18, Oi)). (3.9) 

Since the first two moments of (yz, x2) are finite, (3.6H3.8) and Kolmogorov’s 
law of large numbers imply that 

i t$l IX(Xli) CX2r - En(X2 1X1*, OilI Cx2i - Eno12 IXlr, OilI “, Af t3.10) 

where A = E(l,(x,,) [x2, - E(xZlxlic10 > xI~aO)l’Cx2i - E(x21x1a0 > XIPO)l)~ 

and 

; ,$r I&I,) cxz* - J%X2lX1,, a)l’h - J%UIXII, $1) 

3 E{~XblJCX2~ - E(x,~x,aO > XI~LYO)]'EZ,} = 0. (3.11) 

The consistency of / follows from (3.9H3.11) and the identification condition in 
Assumption 5. 

The identification condition requires that the components of the random 
vector X2i - E(xzjxIao > xIIczo), with x1, E X, are not linearly dependent a.e. 
This identification condition is apparent as the estimation procedure is applied 
to the estimation of (2.12). For the special case that x1 is independent of x1, this 
condition will be reduced to the requirement that the variance matrix of x2 is 
nonsingular. For models with a single regressor and x1 = x2 = x, the condition 
is simply E[Zx(x,)(x, - E(x[xQ, > x,~~))‘] > 0, which holds as x, < E(x(x > 
Xi) and Xi > E(xlx < x,) for all x, E X. The identification of /I is based on 
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information contained in both the bias-adjusted eqs. (2.3) and (2.11). Eq. (2.3) 
alone may not be enough for identification of /I when x 1 = x2 = x. For example, 
if E(u I u) is a linear function of u and E(u 1 u > - xao) is a linear function of XQ, 
E(olu > - xa, .x) will be a linear function of xa and p in (2.3) will not be 
identifiable due to perfect multicollinearity.’ Eq. (2.11) provides additional 
identification restriction because even if E(ulu > - x,ao) were linear in XicIo, 
E(xlxccO > x,x0) would, in general, not be linear in x,(x0. 

4. Asymptotic distribution 

The asymptotic distribution of [ can be derived from (3.9). Denote 

LA% PO) = ; jI IXbIL) CX2r - &(X21X1,, =)I’(& - &(UIXI,, m)). (4.1) 

By a Taylor expansion, 

(4.2) 

where !?i lies between 6 and clo. a L,(cL, PO)/& depends on the derivatives of the 
nonparametric function in (3.5). As shown in appendix 2, with the rate of 
convergence for the bandwidth sequence {a,) in Assumption 4(3), 

ac,(rlxr, &)/aa, where t = 1, y,, x2, converges in probability uniformly in 
x1 E X to some well-defined limits, and 

au6 po) r: B 

ad (4.3) 

where 

xCxli- E(xtlxlccO >xl~aO)lh (4.4) 

and z(t) = (a/at) E(ul u > t, uo). The asymptotic distribution of Jn L&co, Do) can be 
analyzed with Propositions 5,6, and 7 in appendix 1. The details are in appendix 2. 

‘When u 1s either a umform variate or an exponential variate, E(ulu > - XQ) will be a hnear 
funtlon of xq,. The uniform variate case IS known in Olsen (1980) Professor Peter Schmidt has 
pointed out the exponential variate case to me. 
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It follows from appendix 2 that 

where 2 means that the statistics on both sides have the same limiting 
distribution, 

P”(, ) = 1 I 1x(x1,)(x 21 - ~(xzlx,% > XlPO))‘EZI (4.6) 

and 

‘PC’+ ) = - E E [l,(xl,)(.x 1 1 
i 

2J - E(x2lx1~0 > X~J~O))‘IX~J~OI 

xc’, - E(ulu > - ~~,a,,) 

@I,, a,> 0) 

---I txlJ% < xl,ao) 

(4.7) 

*,,a0 

=- 
Ju EC ‘,(x1J)(x2J - E(-~zIxI~o > XIJ@O))‘IXIJ~O = ZI 

X 
01 - yu ’ - 4h(z)dz, 

1 W)dt 

The asymptotic distribution of &L,,(& Do) depends on the joint distribution 

of & L,(ro, p,,) and &(c? - q,). To complete the asymptotic distribution fi, 

one needs to be specific about the distribution of &(oi - q,). As a specific 
example, consider the estimator 5 in Lee (1992). Under the regularity conditions 
in that article, it was shown that 

x i i I,y(Xlt)(Xli - E(XI~XI~O > XIL~O + AnI) 
1=1 jlit 

51 (XI,~O) 7 x Cl1 IXlr, “0. An) X1,310fd. 
‘T_ (u, - u) 

1 
x-K 3, ’ - x1JcIo 

a, a, 0” 
(4.8) 
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where 

71(Z) = z {z + E(ulu > - z, a,)) 

= l - ,$gfd, (z + E(ulu > - z> ao)) (4.9) 

is the derivative of the regression function ofy, conditional on x and y, > 0 with 
respect to xlao, and 

C = E{ IX(Xli) 7f(XltMO) [Xii - E(xl lxlzO > xliaO)l’ 

x IIXlr - ax1 1x1~0 > XlPO)I 1. 

With this 5, appendix 2 proves that fi is asymptotically normal: 

(4.10) 

&Cb - Bo) Ji NW, Q), (4.11) 

where 

52 = K’[Z, BC’] C[Z, BC’]‘K’, (4.12) 

I is an identity matrix, A is the limit matrix in (3.10), B is the matrix in (4.4), C is 
defined in (4.10), and C = E(Y(ri) Y’(r,)) with 

IX(Xlt) 
(x 21 - E(x21xl~0 > Xli”O))‘EZi 

(Xi, - Ebl IX,% > xlP0))171(xG3)~1~ 

x11’o E[I,(X,J)(X~J - E(XZIXlalJ > X1jCLO))‘IX1,MCJ = Z](Ui - E(U\U > - Z)) 
- 

!., (eCMxl,)(xl, - E( ~1 ~1~0 > xljMo))‘lxljcIo = Z](Ui - E(u~u > - 2)) I 

h(z) d . 

x- z 

j h(t)dt 

There are some interesting similarities between the asymptotic distribution 
of our two-stage semiparametric estimator and the asymptotic distribution of 
a parametric two-stage estimator of this model. If the functional form of 
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E(u(B)lu(~) > - xl,a, xlcl > XlicI) were known, a parametric two-stage esti- 
mator BP could be derived from 

mini i Zx(xl,)(y2, - x,,B - ECO)lW > - XI,&XI@ > x~,~l)~. 
B L-1 

(4.14) 

For any random variable s and a constant A 2 0, denote Em(.sjxI, M, A) = 

CblXl, 6 A)lC(llx,, c(, A) and E,(s(xl, ~1) = Eno(sjxl, LX, 0) for simplicity. Since 

E(“(B)lu(E) ’ - xli’% xlc( > XlrCo = Em(“(B)lxli~ Co, 

bp= ,tl Zx(xdCx~r - Em(x~Ixlr> h)l’Cxz, - EnMx~z, $)I -’ 

x i ZX(XlJCX2, - E,(xzIx~i> ~)I’(Yz - E,(Yz~xI,> 02)) (4.15) 
r=l 

implies 

bp~- BO = i Zx(Xli)CX2t - Eco(X2IXli, ~)l’Cx,t - Em(x~Ixlz, $)I -’ 
1=1 

x i Zxh,)Cx2* - E,(XZIXI~, s)I’(vi - Eco(UIXllr 4)). (4.16) 
1=1 

By a Taylor series expansion, (4.16) implies that 

For the semiparametric estimator /?, 

. . (4.17) 

JL(P- PO) 5.c’ ki$ (yy’(ri) + yy’(r,)) + B&(2 - clo) , 
1 

(4.18) 



320 L -1: Lee, Semrparametrtc two-stage esttmatlon of sample selection models 

from (3.9) and (4.1H4.5). Comparing (4.17) with (4.18), the difference is that an 

extra term, namely (l/4) I:=, Y:“(ri), app ears in (4.18) for the semipara- 

metric estimate. This extra term reflects the error introduced by replacing 

E(v(B)lu(a) > - xl~% xlsl > xIiz) with the nonparametric estimate 

K(@)IXi,> Z) in the second-stage estimation. 

5. Covariance estimation 

The covariance matrix of the limiting distribution of &(p^ - ,$,) is Q in 
(4.12). From (3.10), A can be consistently estimated by 

X ,iI 1X(x1JCx2i - En(x2 I Xlrr B)l’Cx2i - En(X2 I xli3 &)I. (5.1) 

The B can be consistently estimated by a&,(&, fl)/&x’. As suggested in Lee (1992) 
C in (4.10) can be estimated by 

where 

(5.3) 

.I #L r,,i + A, - Y,,i \ a, ’ a, / 

is a nonparametric estimate of E(ulu > - x,q,). If Y(r,) m (4.13) could be 
evaluated, an estimate of C would be the sample covariance matrix of Y(r,). As 
in appendix 2, Y(r,) is the limit function of E(Y,(r,, rJ)lr,) + E(Y,,(r,, r,)lr,), 

where Y,(r,, rJ) = (YL,,(r,, rj), Yk,,(r,, rj))’ in (A.17) and (A.23). This motivates 
the following estimate of C: 

i CH,(r,, rJ, 6 /i) + H,(r,, r,, 8, Al 
r=l ,#lk#r,, 

where nt3) = n(n - l)(n - 2) 

(5.4) 

(5.5) 



L -f Lee. Semlparametrrc trto-stage estrmutum of sample .selec.tron models 321 

xK 

Define 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

1=1 J#lk#l,J 

where 

x [H(r,, rk, a, 8, a,, A,) + H(rk, rI, cc /A a,, AJI’, (5.10) 

H(r,, r,, x, /La,,, A,) = (H’,(r,, r,, LX, /A a,, A,,), Hi@,, rJ, % fit a,,, A,))‘, 

(5.11) 

(5.12) 
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(5.13) 

and E(xi,, IX) is the limit fun_ction of E,,. l(xli,c(). The consistency of z,,(&, j?) will 
follow by showing that C,(ci, 8) converges in probability to C and C,(cc, B) - C,(N, /I) 
converges in probability to zero uniformly in (tl, fi) in a neighborhood of (c(,,, PO). 

By a change of variables in the integral, 

J1(r,, ‘;, 4 4 = i i K(u, z)dudz (5.14) 
(x:1,1 + &-xl,a)/a, (- x1,1 - u,(al)/u, 

and 

x K (u, z) du dz. (5.15) 

The uniform law of large number for U statistics in Proportion 1 can be applied to 
C,(CI, /I) with d = 6= 0 and 6 = 4. Under the assumption that the first eight 
moments of y,, y,, and x exist, as n goes to infinity, 

uniformly in some compact neighborhood of (a,, &,). For any sequence (IX,, P,,) 
converging to (a,,, PO), with similar arguments for the proofs of (A.19) (A.21) (A.24), 
and (A.25), 

lim ECH(ri, rj, a,, B,, a,, A,) + H(ri, rj, G, /L a,, 4,)lrJ = yk,). 
n-t* 

Since oi and fl are consistent, Z,(&, 6) $2. Uniform convergence of 
&(a, 8) - &(Lx, /I) to zero in probability is apparent as all the nonparametric 
functions in H,( .) have converged in probability uniformly in (x1,, t(, p) to their limit 
functions in H( . ). 

6. Monte Carlo simulation 

In this section, we report Monte Carlo results for the finite sample performance of 
our estimator. 
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Simulated data are generated from the following latent equations: 

y, = c(isi + ZzS2 + cJ,u 

and 

y, = BiSl + /jzs2 + a,v. 

(6.1) 

(6.2) 

The true parameter vectors are (c1i, z2) = (1, - 1) and (/Ii, p2) = (1, 1). The re- 
gressors s1 and s2 are randomly drawn from a normal N(0, 1) distribution and 
a uniform U( - 2,2) distribution, respectively. si and s2 are independent. Different 
experiments are constructed by varying distributions of U and 0. Data on U are 
generated from three different distributions, namely, the standard normal distribu- 
tion N(0, 1) (Normal); a mixed gamma and normal distribution (Gamma* Normal): 

$%Gamma(O, 1) + $?‘N(O, 1); and a mixed negative gamma and normal dis- 

tribution ( - Gamma*Nomral): - {&Gamma(O, 1) + mN(O, l)}, where 
Gamma(0, 1) is a standarized gamma random variate with zero mean and unit 
variance of which the density function is fc(~) = !(E + 2)3 exp[ - 2(c + 2)], 
E > - 2, with its mode at - 4. The disturbance V is generated from V = 

J%& + Jo.75~1, where r] is a N(0, 1) random variable independent of U. The 

distribution of V is the convolution of the distributions of $%u and flv]. The 
correlation coefficient of U and V is 0.5. The variances of U and V are both unity. 
However, variances of equation disturbances can be controlled by selecting values 
for scale parameters. The scale parameters oi and o2 are set to 1.5 which imply that 
the R2 values for both latent eqs. (6.1) and (6.2) are 0.5. The correlation coefficient of 
the two equations’ disturbances remains to be 0.5. For each simulated data point, 
the sample (y, , y2, si , s2) is kept only when y, > 0. The sample sizes considered are 
30,50, 100, and 200. With these designs, as the latent variable y, has zero mean, the 
sample observations of y, are results of 50% truncation. 

The bivariate kernel function used for our estimation is the product of two 
univariate biweight kernel density functions, i.e., K(t,, tz) = K,(t,)K,(t,), where 

K,(t) = 
++(l - t2)’ for It/ < 1, 
o 

otherwise. 
(6.3) 

This density has a bounded support and is continuously differentiable. In addition 
to its smooth character, this kernel K is chosen for its computational efficiency.* 

*The nonparametrtc functton m (3 1) mvolves double Integrals When the bivartate kernel function 
is a product of two umvartate kernel functtons, the double integrals become the product of two 
umvartate integrals. With K, in (6.3). the umvartate Integral has a sample closed form expression 
whtch is a polynomtal functton. Thts btvariate kernel functton IS not the unique choice Many other 
kernel functrons ~111 also be useful. It is known in the denstty esttmation hterature [see, eg, 
Stlverman (1986)] that different kernel functions have only some mmor dtfferences in terms of 
effictency m denstty esttmatton. 
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Table 1. 
Results of 300 rephcattons wtth various sample stzes, bandwtdth factor c = 1 

Normal Gamma+Normal - Gamma*Normal 

N Mean SD RMSE Mean SD RMSE Mean SD RMSE 

30 BI 0 843 0 746 0.761 0 834 0.576 0.599 0 942 0.544 0 546 
Bz 0.938 0 586 0.588 1.037 0.539 0 539 0 979 0.548 0 547 

50 81 0.919 0 422 0.429 0.906 0.516 0.524 0.928 0.381 0.387 
Bz 0.986 0.427 0 427 0.996 0451 0.450 0.956 0358 0.360 

100 /3, 0 992 0.269 0.268 0 948 0.294 0.297 0970 0.223 0 224 
112 0.986 0.248 0.247 1017 0.275 0 274 0.983 0.222 0 222 

200 B1 1.005 0 168 0.168 0.997 0224 0.223 0 994 0.156 0.156 
Bz 0.995 0 159 0.159 0.996 0.203 0.203 1.004 0.139 0 139 

Any bandwidth sequence of the form 

a, = c/nP, (6.4) 

with $ < p < 4 and c being a constant factor independent of the sample size, will 
satisfy the rate requirement that nai -+ cc and nat -+ 0. For our experiments, 
p = 0.3 is set. However, we experiment with different values of c to investigate 
the sensitivity of our estimator to the chosen bandwidth parameter. The param- 
eter d is set to 0.1 az.99. For our semiparametric estimation, the regressors are 
trimmid whenever Ix1 1 > 1.9 or Ix2 1 > 1.8 to satisfy Assumption 1, which 
implies that approximately 15% of the data will be trimmed. 

For each case, 300 data sets with the same sample size are generated. All the 
summary statistics reported below for each case are based on 300 estimates. 
First-stage estimates of the truncated regression function are in Lee (1992). Both 
the first-stage and the second-stage semiparametric methods use the same kernel 
function and the same bandwidth a,,. 

Table 1 reports stmulation results of the two-stage semiparametric estimation 
of (6.2) with various sample sizes and distributions. The c in (6.4) is 1. The true PI 
and f12 are both 1. The summary statistics reported in the table are the mean 
value (Mean) the standard deviation (SD), and the root mean square error 
(RMSE).” The biases of the estimates can be derived by comparing their mean 
values with the true parameters. There are some small sample biases. For the 
sample size 30, the largest bias is about 0.164. The biases tend to decrease as the 

91n Lee (1992) for the esttmatton of r m the truncated regresston model, we have expertmented 
wtth dtfferent values of d m A. = da: ’ m a Monte Carlo study. The semtparametrtc esttmates of 
r are not senstttve to the values of A,. For details, see table 1 m Lee (1992). 

“‘The standard devtatton IS derived as the square root of the btas-adjusted sample vartance. The 
vartance component m RMSE IS not btas-adjusted 



L.-f Lee, Semiparametric two-stage emmation of sample selectron model5 325 

sample size increases. For the sample size 200, the largest bias is about 0.006. 
Variances decrease as the sample size increases. Comparing the variances and 

the root mean squared errors across different distributions, the estimation 
procedure performs best for the model with the mixed negative gamma-normal 
distribution followed by the model with the normal distribution. The negative 
gamma-normal distribution is skew to the left before truncation. On the other 
hand, the gamma-normal distribution is skew to the right. As the disturbances of 
the two equations in our model are positively correlated, the sample selection 
mechanism implies that the left tails of the disturbances are truncated. The 
better performance for the model with the negative gamma-normal distribution 
may be related to the fact that such a distribution has a thinner upper tail and 
a smaller variance after selection than the other two cases. 

Table 2 reports simulation results derived with six different bandwidth fac- 
tors. The c varies from 0.10 to 4.00. This range seems to be quite wide. The 
sample size is 100. The two-stage estimates do not seem to be very sensitive to 
the different bandwidths. The biases are small. The standard deviations and the 
RMSEs are similar m magnitude. In practice, one may report all these estimates 
or select one of them by some intuitive criteria. One possibility is to select the 
best-fitted model in terms of the residual sum of squares (RSS). Another 
possibility is to take average values of the estimates. The row marked ‘Min’ 
reports the performance of the estimates derived from the best-fitted criterion. 
The row marked ‘Ave’ reports the performance of the averaged estimates. These 
results are quite encouraging. The biases are reasonably small. The variances 
and RMSEs are even slightly less than most of the variances and RMSEs of the 
estimates based on fixed bandwidth factors. These two strategies seem good for 
our estimation procedure. 

In table 3, we compare our semiparametric two-stage estimates with ordinary 
least square (OLS) estimates and some parametric estimates of (6.2). The OLS 
procedure ignores the sample selection bias and is inconsistent. For all the 
sample sizes and the distributions considered, the OLS estimates of fll are biased 
downward and the OLS estimates of p2 are biased upward. On average, the 
biases are about 23%, 30%, and 20%, respectively, for the normal, gamma- 
normal, and negative gamma-normal models. The biases persist as the sample 
size increases. Comparing the OLS estimates with our semiparametric two-stage 
estimates, the OLS estimates have smaller SDS for all the cases. However, for 
sample sizes 100 and 200, the biases dominate the SDS, which results in larger 
RMSEs than the RMSEs of the semiparametric estimates.” 

“The btases of the OLS esttmates would be severer, as the sample selectton btas becomes harsher. 
t.e, the correlatton of u and c becomes larger Thts can be seen from the Monte Carlo stmulatton 
results for the truncated regressron model m Lee (1992) whtch corresponds essenttally to the case 
that u and r are perfectly correlated For the latter case, the semtparametrtc esttmates (the first-stage 
estimates) can even have smaller RMSEs than the OLS esttmates [see table 3 tn Lee (l992)] for the 
sample stze 50 
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In table 3, we report also some parametric two-stage estimates based on 
a normal distribution formulation. The first-stage estimate of CI in (6.1) is derived 
from the following nonlinear least squares procedure: 

(6.5) 

where 4 and @ are, respectively, the standard normal density and distribution 
functions. With the first-stage estimates B and ~?i from (6.5) the second-stage 
estimate of /zI is derived from 

(6.6) 

This parametric two-stage procedure is similar to Heckman’s procedure 
[Heckman (1976)]. The parametric estimates of /I are reported in table 3 with 
the legend ‘PN-OLS’.” The estimates reported with the legend ‘PN-ROLS’ 
differ from the estimates ‘PN-OLS’ in that the intercept term of (6.2) is known 
and restricted to be zero. For the normal distribution model, this parametric 
two-stage procedure provides consistent estimates. However, for the mixed 
gamma-normal and mixed negative gamma-normal distributions, this proce- 
dure is, in general, inconsistent. The PN-OLS estimates do not perform well for 
our simulated models.13 The variances and RMSEs for these estimates are 
larger than those of the semiparametric estimates. The restricted PN-ROLS 
estimates perform much better. The PN-OLS estimates apparently suffer from 
the problem of multicollinearity. l4 B knowing the intercept term to be zero, y 
this exclusion restriction reduces the severity of multicollinearity for the para- 
metric two-stage estimation. The PN-ROLS estimates have smaller variances 
than the semiparametric estimates in all cases. There is some evidence that for 
the misspecified distributions, the parametric two-stage estimates are biased.15 
The biases of the estimates of p2 of the mixed distributions models are larger 

“Some of the first-stage parametrtc estrmates of r are reported in Lee (1992). 

131n table 3, we have reported only esttmates of the regresston coeffictents The esttmates of the 
intercept term and the coefficient of the sample selectron adjustment term are even worse. Then 
vartances are three or four ttmes larger than the vartances of the regression coeffictent esttmates. 

14The parametric two-stage method has not uttlized the additional structure (2 12). It suffers from 
the multtcollmeartty Issue mentroned m section 3 

15The estimates of the coeffictent of the sample selectton btas adJustment term are also btased 
Whtle the true coeffictent tmphed by our data-generatmg process IS 0.75, the estimates of the mtxed 
gamma-normal model and the mtxed negattve gamma-normal model are about 0.83 and 0675, 
respectively. 
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than the biases of the semiparametric estimates. For the sample size 200, the 
biases of the estimates of pi are also larger than the biases of the semiparametric 
estimates. These biases are, however, not very large; hence, in terms of RMSE, the 
parametric PN-ROLS estimates still perform better for all the cases considered.” 

As we have pointed out before, sample selection models are index models. 
Since semiparametric methods based on index restrictions have broad applica- 
bility, it is worthwhile to compare our semiparametric estimates with 
semiparametric estimators derived with index restrictions. Identification in 
index models requires exclusion restrictions of explanatory variables on the 
outcome eq. (6.2). For comparison, simulated data are generated from a mode1 
with (6.2) replaced by 

II: = pisi + a,C. (6.2’) 

The pi can be identified with the index formulation. A semiparametric two-stage 
estimator of pi based on the index restriction [see Powell (1987) and Ichimura 
and Lee (1991)] is 

2 Sl, KT(s,, .SJ’ 4 
Jfl I' 

1 ; 

the weight function W,*(s,, s,, Z) is 

K,* i 
s,c? - .s,!l 

\ 

(6.7) 

(6.8) 

“We should pomt out that the PN-ROLS IS not a practical approach m practice. In this Monte 
Carlo design, the true Intercept term IS zero, so there IS no omltted variable problem In a practical 
apphcatlon, there are usually no good reasons to Impose zero restnctlon on the Intercept term For 
the semlparametrlc estlmatlon, the intercept term In (2.2) 1s absorbed m the disturbance 13 and has 
lmphcltly been captured m the nonparametrlc estimates of the sample selection bias term The 
mtroductlon of the PN-ROLS IS Intended to demonstrate that the extremely poor performance of 
the PN-OLS IS indeed due to multvzollmearlty but not due to programmmg errors 
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and the kernel function K,*( ) is 

(6.9) 

with 

K”(t) = 
$$(l - t2)3 for It\ < 1, 
0 

otherwise, 
(6.10) 

and 

h, = clntiS 5. (6.11) 

The function K*(t) is a proper density function, which is twice continuously 
differentiable with a bounded third-order derivative. The kernel function KT is 
a high-order kernel with its first three moments being zero. The way of con- 
structing such a high-order kernel function from a density function is suggested 
in Bierens (1987). This kernel function and its bandwidth rate (6.11) satisfy the 
regularity conditions in lchimura and Lee (1991). The simulations are based on 
the sample size 200. The estimates from (6.7) and our estimates (2.8) for the 
model (6.2’) are presented in table 4. Various values of c in (6.11) have been tried. 
The semiparametric estimates based on the index formulation are relatively 
sensitive to the bandwidth factors. The magnitudes of the estimates as well as 
their variances decrease as the values of c in (6.11) increase from 1.0 to 20.0. The 
biases are the smallest around the factor value of 5.0 or 7.5. The corresponding 
RMSEs decrease but, eventually, increase as the bandwidth factor increases. 
Comparing these estimates with our semiparametric estimates from (2.8), the 
latter estimates have smaller biases and smaller RMSEs. Taking into account 
the independence property, our proposed semiparametric estimates seem likely 
to be more efficient than the estimates that have utilized only the index 
restriction.” 

Appendix I 

In this appendix, several propositions are collected here for convenient 
reference. The proofs of these propositions have been established in our previous 
works. 

“The asymptotic covarlances of these two dkferent two-stage estimators are, however, not 
analytlcally comparable. Both estimators are consistent but not efficient as only some hmited 
mformatlon in the sample have been utilized 
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Proposition I (Uniform Law of Large Numbers). Let { yt } be a sequence 0fi.i.d. 

random vectors and yi,, . . . , y,, be 1 distinct observations. Suppose that the 
measurable function g(y,,, . . . , yI,, a,,, a) can be represented in the form 

dY,,, . . . 3 y,,,% 4 = $t(x,, . , y,,)h Y,,, . . , Y,,, 
S(Yll> . . 3 Y,,74 

n a, 

where a, = O(l/nP), p > 0, d 2 0, c( E B, and s(y!,, . . . , y,,, CC) is a jinite-dimen- 
sional vector value function, and the following conditions are satisfed: 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

B is a compact subset of ajnite-dimensional Euclidean space. 
The function t(yI, . . , y,) is bounded by a finite-order (say, order 6) poly- 

nomial of y,, . . . , y,. 
The first 6. r moments of y exist, where r 2 2. 
The function h( .) is a bounded function. 

E 
i 

t2(yl, . . > Yt)h2 Y,, . . . , YI, 
[ 

QY,, . . . 9 Yt, xl Ii 
_ = O(ai) uniformly in 

a, 
XE B, where 61 d. 
The functions h(y,, . . . , y,, a,,, s) and s(y,, . . , y,, M) satisfy the bounded 
Lipschizian condition of order 1 with respect to c( and s, uniformly in yl , . . . , yt 

If lim,,,(n/lnn)a,2’1f”“‘d-d = a~, then (l/n(‘))C,,t {g(y,,, . , y,,, a,, a) - 

E(g(yl, . . . , yl, a,,, 4)) z 0, uniformly in CC E: B, where n(t) = n(n - 1) . . . 
(n - 1 + l), and the sum Cn,[ is taken over all I-tuples of distinct integers not 
exceeding n. 

Furthermore, in addition to the above conditions, tf 

(7) E(g(y,,, . . . 3 yZ,, a,, CZ)) converges to a limitfunction g*(x) uniformly in cc E B, 
then 

~Cg(Y”,...‘Yi~,a..2)-g*(a) f:Q 
Il.1 

uniformly in z E B. 

Proof This is a uniform law of large number with a kernel function, which 
generalizes a uniform law in Ichimura (1987) to cover unbounded random 
variables and U-statistics. The proof of this law can be found in Ichimura and 
Lee (1991). 

Propositon 2. Let K(w) be a function with zero mean and a bounded support. Let 

g(wlz)denote thedensityfunctionof(u(cc),x,r) withasupport W= {wlw, + w2 >O, 
where w = (wI, w2)}. 
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Suppose that there exists a Lehesgue measurable function h(u) such 

-5 CE(c(y, x)l(u(a), x14 = w)s(wlsr)l I h(u), 
s9p w;“,;,, awaw’ 

333 

that 

,for some neighorhood N6(u) of v in W with radius 6 > 0 (6 is independent of v), and 

F 7 h(u,z)dudz< CC, 
-5 -z 

then 

u, xlct = z)g(u, zIcx)dudz = O(az), 

where (A,) is a sequence of positive numbers such that lim,,,A, = 0 and 
lim .-,(A,&,) = m. 

Proof: This is lemma 1 in Lee (1992). 

Proposition 3. Let K(w) be afinction with zero mean and a bounded support, and 
let g(wla) denote the density function of (u(a), xlc() as in Proposition 2. Suppose 
that there exists a Lebesgue measurable function h(v) such that 

a2 
---~~(C(Y, x)l(44, x14 = wMwl41 2 h(v), yp w;;;I., awaw’ 

,for some neighborhood N,(v) of v in W with radius 6 > 0 (6 is independent of v). 

(4 If JT, sup, h(u, z) du < a , then 

(x”;t, / _~~..~[c~y,x)~K(~,rl,x+~~-x,r)]du 

- 7 
-x,131 

D[c(v, x)\u(u-) = U, xl~l = .Xlia + An] 

X g(U, xliC( + A, IZ)du = O(ai). 
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(ii) If j?, sup,h(u, z)dz < cc, then 

x g( - ~,,a, zlcc)dz = O(a,2). 

Proof This is lemma 2 in Lee (1992). 

Proposition 4. Let F(w) be a bounded function with a bounded support, and let 
g(w 1 ct) denote the density function of (u(a), x1 CC) as in Proposition 2. Suppose that 
there exists a Lebesgue measurable function h(v) such that 

sup sup EClc(y, XII IW), x14 = WI s(44 I h(v), 
a weN,(v) 

for some neighborhood Ns(v) of v in W with radius 6 > 0 (6 is independent of v). 

(4 1. JY, sup,, h(u, z) dz < cc , then 

7 F 
- Xl@! - U(m) 

(x~rn+A,-xtor)/a, 
a, -, z]dz}‘) = O(a,). 

(ii) If J?, sup= h(u, z) du < co, then 

j; = o&J. (-x1,or-u(a))/a, 
Proof This proposition is lemma 3 in Lee (1992). 

Proposition 5. Let fn(zl, . . . , z,_ 1, z,+ 1, . . . , z,; zi) and gn(zl, . . . , z,- 1, 

zi+l,. . > z,; zi) be two sequences of random functions of an i.i.d. sample {z,}. 
h(z,), fn(z,), and &(z,) are measurable functions of zi. Suppose that: 

(1) Elh(z)l < cc, 
(2) sw,IE(fnh, . . . > z,; z,)lz,) -_%)I = WC,‘), 
(3) suPz,lE(g&l, . . . 9 &I; z,)lz,) - &(zJl = WZ), 
(4) suPZZvar (fn(zl, . . . , z,,; zi)lzi) = O(l/nar,‘), and 

(5) supr,var (gn(zl, . . . , z,; zz)lzi) = Wln4F). 
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If2sI > rz 2 0,2sz > rl 2 0, lim,,, WZ~‘+‘~ = cc. and lim,,, na~‘“*f”2’ = 0, 

then 

f!t 2 ,cI Ih(z Ifn(z1, . . . > Zni Zi) -f,(Z,)I 

.lSn(Zl, , 48; 4 - S&I)I = 0. 

proof This is lemma 6 in Lee (1992) with some slight generalization. The result 
follows from the Markov and Cauchy inequalities. 

Proposition 6. Let {z,] be a sequence of i.i.d. random variables and @,,(z,, z2, a,,) 
be a sequence of measurable functons with a bandwidth sequence {a,}, where 
a, > 0. Suppose that: 

(1) E(@,(z,, zz> a,)) = O(4) and var(@,,(zI, z2, a,)) = 0(1/G), 

(2) there exist squared integrable functions h,(z), j = 1,2, such that 

IE(@n( zl,zz, 4zI)l I hI(zI) and IE(@,(z2,zI, dzI)l I h2(zI), 

(3) lim,-,E(@,(zI, Zz, U,)lZj) = 0, a.e., j = 1, 2. 

Zflim,,,&ai = 0 and lim,,,na; = cc, then 

(l/J;z(n - 1)) i i @n(Zi, Z,, 4) s 0. 

1=1 J#l 

Proof This is proposition 6 in Lee (1989). 

Proposition 7. Let {zl} be a sequence of i.i.d. random variables and Qn(zl, z2, a,) 
a sequence of measurable functons with a bandwidth sequence {a,}, where a, > 0. 
Suppose that: 

(1) E(@,(z, > z2, 4) = WC) and var(@,(z,, z2, a,)) = W4h 

(2) lim,-, E(@,,(zl, z2, 4lz1) =.h(zl) and limn+,E(@,(zl, z2, 4)lz2) =fz(zA, 
a.e., for some measurable functions fi (z) and fz(z), and 

(3) lim ECCE(%(zI, z2, 4zI) + HQn(z2, zl, dzI)l 
n-m 

x CE(@&, > ~23 an)1 z,) + E(@rdz,, ~1, dz,)l’) 

= E{C.h(z,) +fi(z~)l C.h(z~) +f2(~1)1’1 

where C is a $nite matrix. 
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Iflim,,,&a; = 0 and lim,,,na’, = cc, then 

(l/J& - 1)) i i: Wz,, z,, a,) 5 N(0, C). 
1=1 j#;l 

Proof This is lemma 8 in Lee (1992). 

Appendix 2: Proofs of asymptotic distribution 

From (4. l), 

L 

where 

= ~,~iblL - Xl,)'~ZJ i 5 
@~,a+&-x~,a)lan a, 

- XlP - u,(4 
,z dz 

a, > 

- & i txli - xJr2, 7 Lc u, ( Xl,cl + Ll” - Xljcl 

du 
J#i (-x,,a-u,(n))la” an a, 

= xl,,+,n& $ (~1, - xljJrrzJ$IC( - xlL:n' uJ(')> F)dZ ? 
J+I 

$’ txli - xlj)‘rzj AK du, 
J+l a, 

q, x1’r* + ” - xlJM 

a, 

(A.9 
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with rz = 1, yZ, or xz.Under properties (l.iii) and (2.ii) of Assumption 3, Prop- 
osition 4 implies that var((aC,(r,lxll,~)/aa)lxl,) has order O(l/na,) uniformly 
in xI1 E X. Under Assumption 3, Proposition 3 implies that 

sup II ( E ac,(r,Ix,,,4 X,r 

(a,xI,)EOl xx a3 I 1 

- i E((xI, - xl)‘rllu, xllz + A, Co 
-X,8= 

x .4(u, xlrr + 4,l4du Ill = O(a,2). (A.3) 

The limit functions in (A.3) are uniformly continuous in (x1,, 3, d,, ) on 
X x 0, x [0, l] by Assumptions 2 and 3. With d = 1, d= 1, 6 = 2, and Y = 2, 
Proposition 1 implies that as lim,,, (n/in n)az = K, 

- E((xli - xl)‘r21x1~0 = XILao) 

x j: Au, xl,~ol~o)du> 
~X,1ZO 

(A.4) 

uniformly in x1( E X. With (3.5) (3.8) and (A.2.4) 

( ac,(YZiXlt, 4 
ai - 

acn(.dXlrr 4 
/Ib acre - En(uIx~r, @ 

ac,wh~ 4 
ad > 

uniformly in x1, E X, where 

G(xI,> ~0) = i 3 g(u,zlae)dudz -’ 
Xl!=0 -x,130 1 

X 
i 

7 E(r(xr, - xl)I - XliKo, z, ao)g( - xliao> zlao)dz 
x,dm 

- 5 Eta,, - x1)1 u, XIPO, aoMu> xl,dro)du 
-x,lacl 
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- E(UlU > - XlicLo) 4 (Xii - E(X, IX1Eo = Z)) 
X,2*” 

xd - xlr~o, zl~o)dz 

+ E(ulu > - xI~o)(xI, - E(x, lxlro = XIPO)) 

x ‘T,., g(u> wola,)du). (A.61 

The density g(u, z I ao) equals the product of the marginal density&(. ) of u and 
the marginal density h(z) of xIuo, i.e., 

dU> zlmo) =.L(uPW (A.7) 

Using (A.7) and that (u, u) is independent of x in the latent model, G(x,,, !xo) can 
be simplified to 

X A( - XI~~O) CXli - E(XI IXI~O > XI,~O)I~ (‘4.8) 

where i(z) =fu(z)/J,“fU(t)dt is the hazard function of u. The expectation of 
u conditional on u > z, where z is a constant argument, is E(ulu > z) = 
Jz J Yo, uf(u, u) du du/j,” f,(t) dt. It follows that 

aE(u(u > z) 
_i: uf(u, 4du 

=- 
i3Z 

~f,(O dt 

+ E(ulu > z)A(z) 

= - [E(ulu = z) - E(ulu > z)]A(z). 

(A.9) 
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where r(z) denotes aE(ulu > z)/az. With the uniform convergence of the non- 
parametric functions and their derivatives, the first term on the right-hand side 
of (A.l) will converge in probability to E(IX(xli)[x2~ - E(x~Ix~c(~ > x~itto)] 
x 7( - XIPO) CXll - E(x, lxlaO > xlpO)] and the second term will converge in 

probability to a zero limit. This establishes (4.3). 

The asymptotic distribution of &L,,(Q, PO) can be analyzed as follows. 
Define 

L,,(%, PO) = I&l,) CX2l - En(XZIXli, ~o)I’(u~ - En(uIx11, ~1). iA.10) 

By a Taylor series expansion up to the second order, Ln,,(clO, /lo) = S,(Y,i, xI, 
No1 PO) + K(Y2r, x,, uo, PO), where 

c(x;lxIi~ uO, dn) 

C2(1 IxIi, EO3 An) 
(~1 - Em(~Ix~r, xo> An)) 

+ (x21 - J5m(X2IXILr ao> A,)) 
C(u IXI,, ao, A,) 

C2(1 IXIr, MO> An) 1 
x(cn(l IXIi3 4 - C(l IxIi, NO, An)) 

- (X2, - 
1 

~co(xzIxI,~ @o, An)) c(llxl,, c(o, d,) 

X(G(UIXIr, MO) - C(UIXIrr Ho, An)) 

- t”i - Em(“IXli~ c(O> d~)) 
1 

C(lIx11, @.O? An) 

X(CrI(X2IX1L, c(o) - C(XZIXlr, ao> A,)) 
I 

> (A.1 1) 
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and 

MY21, XI, a09 PO) 

= lX(xli) 
11 

Cn(UIXlr) ~n(x;lxli) - Cn(X;lxli) C(4XlL) 

cc1 1x1,) ecllxd ( v’ - cu 1x1,) 1 

x Ml IXl*r MO) - cc1 I% a09 dn)) (cn(4xli, %I) - c(vlxIi9 cIO~ dn)) 

X(Cn(X21Xl*r c10) - C(X2IXI*, a09 Ai?))’ 

1 

+ m IXlr) 
(Cn(u\XIi, clO) - c(ulxli, go, dn)) 

x(Cn(X2JXlir UO) - C(X21XIr, c1Ot dn))’ 
I 

) 

with c,,(sIxIL) lying between C,,(sIxIz,ao, A,) and C(slxl,,ao, A,) with s = 1, x2, 
v. If follows that 

&Ln(aO, PO) = 5 il Sn(Y2z, A, ao, Bo) + $ tl UY2lt xit ‘07 PO). 

(A.12) 

The remainder (l/&)C:=, R,(y2,, Xi, uo, PO) converges in probability to zero. 

Consider, for example, the last component in the remainder: 

II $ i$, I,Y(Xli) p(~,xIt) (cn(Vlxlt, a01 - C(VIXI,, a0, A,)) 

X (Cnb21 Xii> a01 - Chl XI,, a0, A,))’ 
II 

S Optl).+ !I ~X(XIr)lCn(VIXIi~ aO) - c(ulxIi, t103 dn)l 

x IIG(x~IxI~, a01 - W21xII, a0,4Jl. (A.13) 
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With the order of bias in (3.4) and the order of variance in (3.2), Proposition 
5 implies that as lim,,,na,, s = 0 A 13) converges in probability to zero. Simi- ( . 
larly, the other components in the remainder converge to zero in probability. 

Some of the terms in (l/&) CL1 S,,(yZr, xi, cq,, j&) will also converge to 
zero in probability. Since v is independent of x in the latent model, 
E,(vlxI,, LQ, d,) = E(vlu > - x1,x0). It follows that 

x (Cn(l IXlr, a01 - C(ll.~l,, uo> 43)) 

(A. 14) 

and 

Qn. 1(r,, r,) 

= I&l,) 
c(x;Ixl,, x0> dn) 
C’(1 (Xii, c(O, d,) “’ 

X i K(u, z)dudz - C(l(xI,, cxo, d,) . (A.15) 
(XI&+&-x,,aoVa, (-x,,ao-~,)/a, > 

The variance of @n,l(r,, r,) has order O(1). Since E(@J,,~(~,, rj)(X,, r,) = 0. 

E(@,, l(r,, rj)) = 0. The conditions in Proposition 6 are satisfied for @,,, 1( .). 
it follows from Proposition 6 that (A.14) converges to zero in probability. 

Similarly, Proposition 6 implies that (l/&)x:= 1 I,(xI,)(l/C(l 1x1,, uo, d,)) x 

(GMX11, %k C(X21Xlir xO> dn))‘E2r --% 0. Hence, (A.12) is reduced to 

JL(~O, PO) 

_ ; ,& [x(x,,)(x2i - E(X2lXl% ’ xllclo + dn))’ 
1 

i 

1 
x Ezz + c(l Ix1,, cIo, d,) CWvlu > -~lPo)G(1Ixl*~ c(o) 

- Cn(VIXIit aO)l + O,(l) 
I 
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= ,;;;(i _ 1) i$l ]ci lX(xli)(xZt - E(x21xlcr0 > xlic(O + An)) 

X 

i 

E2, _ Cvj - E(ulu > - XlPO)) 

C(lIXlr, uo, A,) 

7 $K(yz-;Juo)dudz}+ o,(l). (A. 16) 
n ~XllcQ 

The asymptotic distribution of (A.16) can be derived by the central limit theorem 
for U-statistics in Proposition 7. Denote 

‘Y,, lklr ‘J) = ‘x(~I~)(~z~ - wGlxl% > XlPO + A”))’ 

x EZ, (‘J - E(4u ’ - XII~O)) - 
C(1 Ixlit c(O> dn) 

X x,,,;, 

n 
7 $ K(=$,’ -;j”)dudz). (A.17) 

- XI,c(O 

Eq. (3.4) implies that 

- E(ulu > - Xli~o)C(llXlr, ~0, An) 

= O(a,2). 

It follows from (3.4) and (A.18) that E(Y,, l(ri, rJ)) = O(a,f), and 

(A.18) 

km E(Y’,, l(ri, rJ) Ir,) = Yy'(ri), 
n-cc 

(A.19) 

where Y\“(r,) is defined in (4.6). On the other hand, 

E(YY,,,(rjT r,)lr,) = - E 
i 
I,Y(x,,)(xI, - E(xJx~Q > xljao + A,))’ 

x U, - E(~Ju > - X,jCro) 

c(l IxIj, cIO3 dn) 

X 
i; i 

K(u, z) du dz Ir, (A.20) 
(x~,ao+A,~x~,ao)/a,(-x,,aa-~,)/a, 



L.-j: Lee, Semlparametrrc two-stage estrmation of sample selectron models 343 

The function J&o+d~_xI,oroI,a, J~xI,ao-u,~,o, K(u, z)dudz converges to 1 if 

~1~x0 < X~,MO and - xlJxo < Ui> to JYa; Jz K(u, z)dudz if xl,ao < xl,ao and 
U, = - xl,ao, and to 0 otherwise. The event ui = - xljaO occurs with zero 
probability. By the LDC theorem, 

(A.21) 

where u/y)(r,) is defined in (4.7). The limiting distribution of ,/‘~L,(z,, /IO) 
follows from Proposition 7. This establishes (4.5). 

With i in (4.8), it follows from (4.2) and (A.16) that 

(A.22) 

where yn(rlr r,) = (Yk, l(ri, rj), Yi,,,(r,, r,))‘, and 

yn,2(rL, rj) = I~(xl,)(x~, - E(xlJxlao > xliclo + A,))’ T1(xl’cIo) 
Cl1 1x11, MO> A,) 

x.,..!+A n 7 t”ipu)$K ( u - u, z - Xl,@0 dudz. 

Xllc40 ” a, ’ 4 > 

(A.23) 

The CLT in Proposition 7 can be applied to derive the asymptotic distribution 
of(A.22). For Y,,2(rL. rj), it has been shown in Lee (1992) that E(Y,,2(r,, rJ)) = 

o(a,2), var(Y,,2(r,, r,)) = O(l), 

and 

lim E(y.,2(rLT r,)lrJ = ~x(xJ(x~~ - WXI Ix1 a0 > x~~~o))'~~(x~,~~)~~~, 
n+cc 

(A.24) 

lim WJ,,2(r,, ri)lrJ 

n-‘I 

XllJO 

= - f ECIX(xlj)(xlj- E(xllxlxO > xl~zO))‘lxljaO = zl 
-u, 

X 
UI - yu ’ - 4hjz)dz. 

J 4t)dt 

(A.25) 
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Proposition 7 implies that as lim,,,na~ = 0, 

(A.26) 

where C = E(Y(r,)Y’(r,)) defined in (4.13). These establish the asymptotic 
distribution of the two-stage estimator [ in (4.11). 
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