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A semiparametric two-stage esimation method 1s proposed for the estimation of sample selection
models which are subject to Tobit-type selection rules. With randomization restrictions on the
disturbances of the model, all the regression coefficients in the model are, in general, 1dentifiable

without exclusion restrictions The proposed estimator is shown to be \/;-consmem and asymp-
totically normal. Some Monte Carlo results, to demonstrate 1ts finite sample performance, are
provided.
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1. Introduction

Econometric models of discrete choice, limited dependent variables, and
sample selection have found interesting applications in empirical studies.
Models with parametric distributions, however, may be subject to distributional
misspecifications, which might result in inconsistent estimates. Recent research
efforts on the estimation of such models have focused on semiparametric
methods, which relax parametric distribution assumptions. Semiparametric
methods have been proposed for the estimation of sample selection models with
discrete choice decision rules. Semiparametric estimation of sample selection
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models subject to Tobit-type selection rules have not been explicitly considered
in the literature.

Tobit-type sample selection models differ from sample selection models with
discrete choice rules in that the decision equations in such models are Tobit
equations instead of discrete choice equations. An example is a model of female
labor supply in Heckman (1974) where the market wages can be observed only
for the individuals whose hours of work are positive. Consider a model of two
equations:

Y1 = xot + u, y2=xf + v, (L.

where y; and y, can be observed only when y; > 0. This model provides much
more information than the model with a discrete choice equation for yq, in that
the positive values of y, can be observed instead of just the sign of y,. For the
semiparametric model with a discrete choice equation for y,, Chamberlain
(1986) has shown that, under the assumption that (u, v) is independent of
regressors in the model, the identification of f requires exclusion restrictions on
the regressors of the y, equation. Semiparametric methods for estimation of
such a model have been suggested in Cosslett (1991), Robinson (1988), Powell
(1987), Ichimura and Lee (1991), Newey (1988), and Lee (1990). For the model
with a Tobit-type selection equation, observability of y, in a continuous range
may provide enough restrictions for the identification of . This article proposes
a simple semiparametric two-stage method for the estimation of f. Given a
consistent estimate of a, the bias of the observed outcome equation can be
adjusted, and f can be estimated by a regression procedure. Qur procedure
differs from the two-stage estimation procedures in Heckman (1976), Cosslett
(1991), Robinson (1988), and Powell (1987) in the way of constructing the bias
adjustment term. Our adjustment term is designed for Tobit-type sample selec-
tion models. Under general regularity conditions, our two-stage estimator is
\/;-consistent and asymptotically normal.

The article is organized as follows. Section 2 describes the estimation proce-
dure. Regularity conditions for our model are listed in this section. Consistency of
the estimator is discussed in section 3. Asymptotic distribution of the estimator
is described in section 4. Section 5 provides a consistent estimate of the
covariance matrix of the estimator. Several Monte Carlo simulations are per-
formed to investigate the finite sample performance of the proposed estimator.
The simulation results are reported in section 6. Appendix 1 summarizes some
relevant results for our analysis. Some proofs of asymptotic properties of the
estimator are provided in appendix 2.

2. A two-stage semiparametric estimation procedure

The model considered has two equations. One of them is a Tobit-type
selection equation. Let x be a k-dimensional vector of regressors in the model.
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To be specific, x does not include a constant term.” The x, and x, are subvectors
of x of dimensions k, and k,, respectively. The underlying latent equations in the
model are

Y1 = X0 + U (2.1
and

V2= X280 + v, (2.2)

where o, and f§, are the true parameter column vectors of dimensions k, and k,,
respectively. Values of y; and y, are defined on the whole real line, but they can
be observed only when y, > 0. Eq. (2.1) is a censored regression model if
max{0, y;} and the corresponding x are observable. It will be a truncated
regression model if only the positive values of y; and their corresponding x are
available. In this article, the disturbances v and v in (2.1) and (2.2) are assumed to
be independent of x in the model. If observations of y; are censored, oy can be
estimated by, for example, Powell’s least absolute deviations method [Powell
(1984)].> With a truncated sample, the method in Lee (1992) is applicable.
Estimation of f, is the remaining issue. In this article, we generalize the
semiparametric estimation method in Lee (1992) for the truncated regression
model to the estimation of the above sample selection model.
Conditional on y, being observable and x, the regression function of y, is

E(y2ly1 > 0,x) = x380 + E(v|u > — xy00, X). (233)

The two-stage estimation method in Powell (1987) and the semiparametric
nonlinear least squares method in Ichimura and Lee (1991) have used the ‘index
property’ that E(viu > — x;a,, x) is a function of xyag, 1.e. E(v|u > — xy0, X) =
E(v|u > — x;09,X1%), but not the ‘independence property’ that 4 and v are
independent of x in the latent structure. When x; = x, or x; is a subvector of x4,
the index property alone does not provide enough restrictions for identification
of S, [see Chamberlain (1986), Powell (1987), and Ichimura and Lee (1991)]. For
our model, let f (v, u) be the joint density of (v, u), let f,(-) be the marginal density
of u, and let h(-) be the density of x;a,. Then

}O f vf (v, u)ydu dv
E@|u > — x109,x) = — 2 . 24)
[EAGL

"For our model, since no moment restrictions are imposed on the disturbances, constant terms in
the equations are absorbed into the disturbances

2Powell’s approach assumes that u conditional on x has zero median, which 1s weaker than the
independence assumption
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For the index formulation, the property that f'(v, u) is not a function of x,a, has
not been imposed on estimation. Imposing this property of the model is the key
for identification. At first sight of (2.4), one might attempt to estimate f' (v, u) and
J(u) with observable residuals v and u by some nonparametric density estimates.
Unfortunately, the problem is not so straightforward with truncated (or cen-
sored) data, because the joint density of (v, u) given y; > 0is f(v, u) [ h(1)dt/D,
where D = [* ([*_f(t)dt)h(z)dz is the probability of the event y; > 0, and the
density of u given y, > 01is f,(u) [ h(t)dt/D. Estimation of any relevant function
of this model should take into account the distribution of x;a,. Multiplying
both the numerator and denominator of (2.4) by j:ao h(z)dz, (2.4) can be
rewritten as

j‘ [ of @ wh(z)dudzdv
E(v|u > — X1%g, X) — % X100 —X1%g . (24/)

oo o<

i | f®h(z)drd:z

X1%0 — X120

With a random sample (yy,, y2,, X,}, ¥1, > 0,i = 1, . . ., n, consisting of indepen-
dent observations drawn from a common population, (2.4') can be estimated
nonparametrically. At x;, the proportion of sample observations of (x;aq, ),
which satisfy the conditions x 0 > x1;00 and u > — xy,,, will provide a con-
sistent estimate of the probability (conditional on x,) of the event u > — xy,0,
and x,00 > Xq,0; 1.€.,

1 a o
; z I(UJ > Xq1,00, X1;%0 > xliao) 2‘) j I j;(t)h(z)dtdz,
J=1 X4 %0 X120

by the strong law of large numbers. Similarly,

v, I{u; > x1;00, X100 > X1,00) LN vf (v, wh(z)dudz do.
. J 7 J
=

T oL X120 T X1:%0

=

The ratio of the latter sample average over the former sample average provides
an estimate of (2.4") at x,. These sample averages are, however, not easy to work
with due to their nonsmooth characteristic as functions of o,. Instead of
frequency estimators, we consider smooth kernel density estimators. The in-
tuition behind these formulations is based on the observation that the density
of (v,, u,) conditional on y;, >0 and x,,a, is the same as the density of any
(v,, u,) conditional on x,;0ty, 4, > — X1,00 and x, o > Xq,%0.> In particular, the
conditions x 0y > x,00 and u > — x,,00 iIMply y; = x %5 + u > 0.

3See also Lee (1992) for the estimation of a truncated regression model and a geometric
interpretation
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Before we proceed further, let us clarify some of the notations and conven-
tions that will be adopted throughout this article. The random variables y,, y,,
x, u, and v are referred to the random variables in the latent eqs. (2.1) and (2.2).
Sample observations are always referred to truncated observations.
¥, = (V1,, ¥2;. X,;) is a row vector of the jth sample observations; ry; = (vy,, X1,)
is a subvector of ,. All the expectations and probability functions are taken with
respect to the distribution of the latent random variables before truncation. P(S)
denotes the probability of an event S under the distribution of the latent random
variables. As a convention, with a realization x, appearing in any expectation or
probability function, x, will be regarded as a parameter. For example,
Pxy2o > x,,00) refers to the probability of the set {x|x;00 > x;,%}, and
E@|u > — xy,20, X1%s > X1,%) 18 the conditional expection of v conditional on
the set {(u, x)|u > — xy,00, X320 > X1,%)}. Is(-) denotes the indicator
of a set S. x and f are possible values of oy and S, respectively. @, x @, is
the parameter space of (o, ). We dcefine the variables u(x) = y; — x;o and

o(f) =y, — x,f8, and their  realizations uj(o) = yq,; — X0 and
v,(B) = y2, — x5,B. g(-|x) denotes the density function of (u(x), x;«), and
E(-},- «) is a conditional expectation conditional on (u(x), x,2). The u, = u,(xo),

v, =v,(Bo) &1,= Y1, — X100 — E(@|u > — xy,00), and &y, =y, — x2,80 —
E(v]u > — x,;00) are regression residuals. More notations will be introduced in
the due course.

Let K(-) be a kernel function on R? and a, > 0 be a bandwidth parameter
[Rao (1983)]. For any random variable s, define

x A

1 " u—ule) z— xq,x
Culslxyp)= | | mZ%K[ aj( ), 2 ]dudz,

xpxtAn —Xxqn nog# n
(2.5)
where 4, > 0 is a trimming parameter, and
C,,(S | xlzs O()
E, L) =— 2.6
R NI 20

As shown in the subsequent sections under some regularity conditions and the
design that a, and 4, go to zero as n goes to infinity, E,(v(f)|x;;, @) provides
a consistent estimate of E(v(f)|u(a) > — xq;0, x> x,,2). Given a consistent
estimate & of o, our proposed estimation method is a semiparametric least squares
procedure:

.
min — ¥ Ix(x1)(y2 — X2 = Es0(B) X1, 9))°, 27)
B =1



310 L.-f. Lee, Semiparametric two-stage estimation of sample selection models

where the set X is constructed by trimming the regressors in x;. The necessity of
trimming the regressors will be explained in a later paragraph. The estimator § from
(2.7) has a closed form expression:

ﬁ = { Z IX(xli) [x21 - En(xllxlb d)]/ [xli - En(x2|x1n &)]}

1=1

n

X Z Ie(x1) [x2 — En(x2 1 %15, 8] [ 2 — En(y2|x1:, 4) 3 (2.8)

=1

This two-stage procedure is similar in a certain way to the two-stage procedures in
Robinson (1988) and Powell (1987) Define a weight function:

I j K[ aj(a), — N ]dudz

a
+dn =
W14, 1y, o) = —herin — 20 h

S o] TKliu_aul(a),z—x”a}dudz'

l#£ixy,0t 4, —X1,a a,

29

The two-stage estimator B can be rewritten as

= { Z IX(xlt)I:xZI z xZJ xlu rl_]’ a):l
1=1

J#

-1
XI:XL Z XZJ xlnrlp &)}}
IE3!

n I
IX(x11)|:x2: - Z Xy WX 10, 7y, 5‘)]
1 J#i

X
t

™=

><|:J’2i— Z Vo Walxqi, "1,',5()]. (2.10)

Jj#i

The weighting functions in the two-stage procedures in Robinson (1988) and Powell
(1987) are, however, quite different from ours. Our weighting function is specific to
the sample selection model with a Tobit selection rule. Their weighting functions
use index restrictions only. Qur semiparametric estimation procedure can also be
understood from an angle different from (2.7). At each x,, (2.1) and (2.2) imply (2.3).
E(yaly1, >0, x;) = x9;80 + E(vlu > — xy;00, X,). In addition, they imply also that

E(yz|u > — xy00, X1%0 > X1;0)

= E(x3|x100 > x1;00) o + E(v|u > — X000, X109 > Xy,0g). (2.11)
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As E@|u> — xq;00, X100 > X1;00) = E(v|u > — X80, X;) 18 an unknown
function, it can be eliminated by taking the difference of (2.3) and (2.11) which
gives

Vo — E(yalu > — xq,00, X100 > X1,%)
= [x3, ~ E(x3{x1%0 > x1,%)] B0 + &2;. (2.12)

With E(y,|u > — xq;000, X10g > X1;00) and E(x,]|x 2 > x;,&9) replaced, re-
spectively, by the nonparametric estimates E,(y, | xy,, &) and E,(x; ]| x;;, d), a least
squares procedure applied to (2.12) provides the estimate § in (2.8). From this point
of view, we see that the estimation procedure has explored the information in (2.12)
in addition to (2.3).

The f can be shown to be consistent and asymptotically normally distributed
under some regularity conditions if a, and A, are chosen to converge to zero at
certain rates as the sample size n increases.

To justify the statistical properties of our estimator, the followin

conditions are assumed:

Assumption 1

(1) The disturbances u and v in the latent equations are independent of x.

(2) The samples (yy;, y2i, %), i = 1, ..., n, where y,, > 0 for all i, are 1.i.d.*

(3) The first four order moments of (y,,, x,) exist.

(4) & is a consistent estimate of a.

(5) Foreach o € @,, where @, is a compact neighborhood of a, the index x o is
a continuous random variable.

(6) X is chosen to be a compact subset of the support S of x; such that
Mmax, ¢ xX oo < Max,, .sX;do.

(7) For each x;, € X, there exists, with postive probability, some x, in the set
{x1]x109 > x1;00} such that P(y; > x 09 — X;00]|x) > 0.

Assumption 2

(1) For each a e @,, the density function g(w|a) of (y, — x,2, x,«); and the
conditional expectations E(x|w, a), E(y,|w, o), E(y2x; |w, &), and E(x;x;|w, )
conditional on (y; — x;a, x;%) = w are twice differentiable in w on
W= {w|w, + w, >0 where w = (w;, w,)}.

(2) gw|a), E(x5|w, o) and E(y,|w, o) are continuous in ¢ € & ,.

*Qur two-stage estimation method does not use information of the event y; < 0 once a consistent
estimate of a4 1s given The sample can simply consist of truncated observations.
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Assumption 3
There exist Lebesgue measurable functions h,(w), j = 1, . . ., 4, with the follow-
ing domination and integrability properties:

(1) Domination properties: Let r = 1, x5, or y,. In some neighborhood N4(w) of
w in W with radius ¢ > 0 that does not depend on w,

(i) sup sup [E(tls, x)g(slo)| < hi(w),

x€ @) s Ny(w)

az
(i) sup sup “ [E(t]s, o)gls|o)] \Shz(w),

’
x€ @1 s€ Nsin) asas

(i) sup sup  E([l(xy, — x,)tlI%]s, 2)g(s| %) < ha(w),

(a,x1,)€01 x X seNs(w)

. 02
(iv)  sup Sup |\ =50 LE((x1, — x1)'t]s, @) g(s] )] ’ < ha(w),
{(a,x1,)6@1 x X seN;(w) $OS
(2) Integrability properties:
@0 | | hjwzdudz< oo for j=1,2.
(i) | suphu,z)dz< oo and | suph,(u,z)du< oo
for j=3,4.

Assumption 4

(1) The kernel function K(w) on R? is bounded and has a bounded support.

(2) { Kw)dw =1 and [ wK{w)dw = 0.

(3) The bandwidth sequence {a,}, with a, > 0, converges to zero at a rate such
that lim, ., (na}/lnn) = oo and lim,_ , nat = 0.

(4) The {4,} is a positive sequence such that lim,.,4,=0 but
lim,_ . (4,/a,) = 0.

Assumption 5 (Identification condition)

The matrix E(Ix(xy,)[X2; — E(x3| X100 > x1;80)] [X2, — E(X2 | X1%0 > X(,%0)])
is nonsingular.
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The conditions in Assumption 1 are some basic regularity conditions for our
model. The regressors in x,, are trimmed in Assumption 1(6) to gurantee that, for
each x;, € X, P(x %y > X100 ]| xy,) 18 strictly positive. Assumption 1(7) together
with X implies that P(u > — x;x0) 1s also strictly bounded away from zero on
X. This assumption is always satisfied if u is unbounded from above. Without
trimming of x;, we have some technical difficulty to prove the uniform conver-
gence of E,(v(B)|xi,,«), which is a ratio of C,(v(f)|x,, a) over C,(1|x,,,a) to
a well-defined limit. This is so, because at some boundary points of §, say X, it is
possible that the event x,o > x,a will occur with zero probability. At those
points, 1/C,(1]x,, o) will not converge. For the points close to the boundary,
even their limits may exist, the limiting values might be very large.> Assumptions
2-4 are used to guarantee convergence of the nonparametric functions in (2.5)
and (2.6), and their derivatives to some proper limit functions. The conditions in
Assumption 3 permit interchange of order for limiting operators and integration
operators by the Lebesgue dominated convergence theorem (LDC). The rate of
convergence of g, controls the rate of convergence of the nonparametric func-
tions. The trimming parameter 4, is used to avoid complicated biases of the
nonparametric functions along the boundary of y; > 0 so that some uniform
rate of asymptotic biases can be established. To clarify this issue a little bit more,
consider the point { — x,;,a9, X;;%0). In any neighborhood of this point, some
values (&, 2) of (u, xy00) With # < — x,%9 would not be observable because
¥, =z 4 @ could be negative. The kernel density estimate (1/(n — 1)a?) x
Yo K((— X120 — u))/ay, (x1,00 — X1,%0)/a,) would not necessarily converge
to the density of (u, x1%0) at ( — x,%9, X1,2%9) When the kernel puts some positive
weight on every point in its neighborhood. This difficulty might prevent the
conditional expectation of C,(1]xy,, %) (with 4, = 0), conditional on x,,, to
converge to I % fAt1)h(tz)dt; dt, with the rate of Of(a?) as required in
Proposition 2 of the appendix. The 4, is designed to overcome such irregu-
larity.® For our proposed estimation method, since the rate of convergence of a,
is not too slow, K( -} can simply be a density function. The regularity conditions

of our assumptions are sufficient to prove that our two-stage estimator is \/_-
consistent and is asymtotically equivalent to the sum of an asymptotic normal

SInstead of trimming x,, an alternative suggestion 1 Powell (1987) can be apphied to our model
Powell’s approach 1s to weight the squared residual at each pomt x, by C3(1|x,,, &) so as to elimmate
each denominator in the semiparametric least squares procedure. Following Powell’s approach, the
semiparametric least squares procedure would be a semiparametric weighted least squares proce-
dure. However, such a weighting has nothing to do with optimal esimation as 1n the classical
Aitken’s estimator for linear regression models.

SAn alternative approach, that might be useful to overcome this difficulty, 1s to select a kernel
function K(ty, t;) with the property that 1t vanishes whenever t; > 0. Such a kernel for the density
estimation of (u, x;%y) at ( — x,00, X1,%0) will put zero weight on any value (g, 2) with @ < — x;,2
However, such a kernel could not be a proper density function under the zero mean condition n
Assumption 4(2). Kernel functions with some negative values would be needed.
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variable and a variable involving 4. With a ﬁ-consistent and asymptotic
normal &, our two-stage estimator is asymptotically normal.

3. Consistency and identification

Asymptotic properties of f depend on properties of the nonparametric func-
tions in (2.5) and (2.6). Let t = 1, y,, or x,. By a change of variables,

1 n oC o0
Cltlxye) =—— ) 4 § ) K, z)dudz. (3.1)
Jj#r (xnetdn—xye)fan (—xua—uy(e)/an

Since the second moments of y, and x, are finite and (¥ |K(w)|dw < oo,

sup var (C,(t|xy,a)| x;) = O(1/n). (3.2)

X1,

For any random variable s and a constant 4 > 0, denote

C(s|xq,a, A) = Of }O E(s|u, z, 0)g(u, z|o) du dz. (3.3)

xja+d4 —xja

Under Assumptions 3 and 4, Proposition 2 of appendix 1 implies that

sup | E(C,(t]x1, @) x1) — C(t]xy, o, 4,)] = Ofaz). (3.4)

x1.a

With the LDC theorem, Assumption 2(2) and Assumption 3 imply that
C(t|xy,a, 4) with t = 1, y,, or x, are uniformly continuous on X x @ x [0, 1].
The uniform law of large numbers in Proposition 1 of appendix 1 can be applied
to (3.1) with d = d = 0. Since & is consistent, it follows that

plim sup |C,(t|xy, &) — j j E(tlu, z, 09)g(u, zlog)dudz|{ = 0. (3.5)

n—>oo x1eX X100 — X140

<}

On X, Assumption 1(7) guarantees that the probability | flaoj_xm glu, z|og) X
dudz is uniformly bounded away from zero. As u and v are independent of x,
E(w|lu > — x1,00, X1%p > X1,00) = E(v|lu > — x,00) and E(xplu > — xy;9%,
X100 > X1,00) = E(xa|x 0 > Xx1,%0) for all x,,. Therefore

plim sup |E,(y21xy,, &) — E(y2lu > — xy,00, X100 > X1,%0)| = 0 (3.6)

n2>w xg,eX
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and
plim sup |E,(xz]x1,, &) — E(x2]|x 020 > X1;00) = 0. (3.7)
n—oc xneX

Since C,(v(B)|x1,, &) = Cu(y2|x1,, @) — Calx2]x1i, @) B, (3.6) and (3.7) imply that
plim sup |E,(v|xy,,d) — E(v|u > — x;;00)] = 0. (3.8)

n—x x1:€X

Eqg. (2.8) implies that

n -1
ﬁ— ,50 = { Z, IX(xll)[XZi - En(x2|xln &)],[XZL - En(xZIXIH d)]}

X Z Iy(xy) [x2i — Ea(x2[x1:5 8)] (v, — En(vlxy,, ) (3.9)
i=1

Since the first two moments of (y,, x,) are finite, (3.6)(3.8) and Kolmogorov’s
law of large numbers imply that

I(x1:) [x2, — En(X31X10 8)] [X2: — En(x2lX1,,8)] > A, (3.10)

™=

1
n I

"
—

where 4 = E(Ix(x,,) [x2, — E(x2]x1:000 > x1,80)] [x2: — E(x2]x1%0 > X1i%0)]),
and

IX(XII) [th - En(lexln &)]’(Uz - En(leln &))

= -
0=

il

=1

5 E{Ix(x1,) [x2, — E(X3] X180 > X1,00)] €2,} = 0. (3.11)

The consistency of f follows from (3.9)(3.11) and the identification condition in
Assumption 5.

The identification condition requires that the components of the random
vector x; — E(x3|x; %9 > X1,%), With x{, € X, are not linearly dependent a.e.
This identification condition is apparent as the estimation procedure is applied
to the estimation of (2.12). For the special case that x, is independent of x, this
condition will be reduced to the requirement that the variance matrix of x, is
nonsingular. For models with a single regressor and x, = x, = x, the condition
is simply E[1x(x,)(x, — E(x|xao > x,00))*] > 0, which holds as x, < E(x|x >
x;) and x; > E(x|x < x;) for all x, e X. The identification of f is based on
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information contained in both the bias-adjusted egs. (2.3) and (2.11). Eq. (2.3)
alone may not be enough for identification of f when x; = x, = x. For example,
if E(v|u) is a linear function of u and E(u|u > — xuy ) is a linear function of xaq,
E(|lu > — xa,x) will be a linear function of xx and f in (2.3) will not be
identifiable due to perfect multicollinearity.” Eq. (2.11) provides additional
identification restriction because even if E(v|u > — x,00) were linear in x;0,

E(x|xoty > x,29) would, in general, not be linear in x,a,.

4. Asymptotic distribution
The asymptotic distribution of f can be derived from (3.9). Denote

Ln(aa BO) =

S

Z, IX(xll)[XZI - EII(XZIXIU :x)]l(vi - En(lelta (X)) (41)

By a Taylor expansion,

oL,
AL o) = Lo, Bo) + ) iy, “2)

where & lies between & and o,. 8L, (&, B)/0c’ depends on the derivatives of the
nonparametric function in (3.5). As shown in appendix 2, with the rate of
convergence for the bandwidth sequence {a,} in Assumption 4(3),
0C,(t|xy, %)/0a, where t =1, y,, x,, converges in probability uniformly in
x, € X to some well-defined limits, and

@Ln(o?,l Bo) », B, (4.3)
oo

where
B = E(Ix(xy,)t( — xy,00) [X2: — E(xa|x300 > Xxy;00)]
x [xy; — E(x(|xy00 > x1,00)]), (4.4)
and 7(t) = (0/0t) E(v|u > t, o). The asymptotic distribution of \/;zL,,(oco, Bo) can be

analyzed with Propositions S, 6, and 7 in appendix 1. The details are in appendix 2.

When u 1s either a uniform variate or an exponential variate, E(u|u > — xa,) will be a hnear
funtion of xa,. The uniform varnate case is known in Olsen (1980) Professor Peter Schmidt has
pointed out the exponential variate case to me.
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It follows from appendix 2 that

Lo fo) 2 —= 3 (#0(r) + YD), (4.5)

ni=1

where 2 means that the statistics on both sides have the same limiting
distribution,

l‘U(11)("1) = Ix(xy,) (X2 — E(x2]x1%0 > X1,%0)) &2, (4.6)
and

'1’(12)(’:) = - E{E [Ix(x1,)(x2;, — E(xz] X100 > Xx1,80)) | X1,%0]

v, — E(vlu > — xy,%0)
B(XIJ, aO’O)

I (o0 < x1,%)

X (= Xy,000 < 1)

X y,} 4.7)

X100

- j E[Ix(x1,)(x2, — E(xa]x 100 > x1,000)) | X1,00 = 2]

xgﬂz_—z)h(z)dz.

{ h(yde

The asymptotic distribution ofﬁL,,(o‘c, fo) depends on the joint distribution
of \/;L,,(oco, Bo) and ﬁ(o‘z — 24). To complete the asymptotic distribution f,
one needs to be specific about the distribution of ﬁ(o? — %5). As a specific
example, consider the estimator & in Lee (1992). Under the regularity conditions
in that article, it was shown that

= mg) = €

nn—1)

x
’M=

Z Ix(x1)(x1i — E(x1|x109 > X1,00 + 4,))
J#

o0 o0

] f w—uw

X120 +dn ~ X1:20

% Ty (X1,00)
C(l 'xlz’ %o, An)

1 - -
L K(u 4y LM)dudz + 0,(1), (4.8)

a, a, a,
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T (2) z E o
1 a { (u1u> z, 0)}

Sl —2)

=12 _“
[ AGLL

(z + E(ulu > — z,a)) (4.9)

is the derivative of the regression function of y, conditional on x and y; > 0 with
respect to x,a,, and

C= E{Ix(xli) T%(xuflo)[xu — E(xq|x1% > xq;8%0)]’
x[x1, — E(xy[x100 > x1,20) 1} 4.10)

With this &, appendix 2 proves that ﬁ is asymptotically normal:

JnB = Bo) BN@©,Q), (4.11)

where
Q=A'"I,BC"'1X[I,BC ')A ", 4.12)

I is an identity matrix, A is the limit matrix in (3.10), B is the matrix in (4.4), C is
defined in (4.10), and X = E(¥(r;) ¥'(r,)) with

Y(r) =

1(x1) (x2, — E(x2]x 100 > X1;00)) €2
X (1, — E(xq]xq00 > x1,00)) T4 (X1,%0)€1,

— e (E[Ix(xu)(xu — E(xz|x120 > xy500)) [ X100 = z](v; — E(v]u > — Z”)
E[Ix(xy,)(x1, — E(xq]x;00 > X100)) | Xy 00 = z](u; — E(ulu > — z))

—u,

h(z)

- dz. (4.13)
§ h(t)de

There are some interesting similarities between the asymptotic distribution
of our two-stage semiparametric estimator and the asymptotic distribution of
a parametric two-stage estimator of this model. If the functional form of
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E(@(P)lu(e) > — xy,0, xqo > xy,0) were known, a parametric two-stage esti-
mator 8, could be derived from

min - 3 (e (2~ %~ EL(Blu) > — xidxz > xi g1
B =1

4.14)
For any random variable s and a constant A4 > 0, denote E(s|x,, 2, 4) =

C(s|xqy, o, 4)/C(1|xy,a, Ayand E . (s|x1, o) = E(s|x;, o, 0) for simplicity. Since
E@(B)lu(e) > — xya x100 > x3,0) = E, (0(B)x1s, @),

n -1
gp: { Z IX(xlt)[xZI - Eac(XZlen &)]/[le - Em(x2|xlt’ ti)]}
=1

M=

X

!

Ty(xy) [x2, = Eo(x2]x15, )] (V2i — Eco (V2] X1, 8)) (4.15)

1
implies

n -1
ﬂp — Bo= { Z Ix(x 1) [X2i — Epx20x44, @)1 [x2, — Eo(x2]X1,, 5‘)]}
1=1

X Z Ix(xn)[xzz - Eoc(x2’x1n o)E)],(Ui - Eoo(leln &)) (416)
=1

By a Taylor series expansion, (4.16) implies that

N 1 "
\/E(ﬁp — Bo) 2/1*1{‘“‘ Z Te(x1)[x2 — E(x3]x00 > X1,00)] €2,
\ﬁ 1=1
+ B\/;(o‘z—ao)}. 4.17)

For the semiparametric estimator f3,

- 1 2
Jn(B = o) =4~ {ﬁz (PO + PP(r) + By/n@ — ao)},
i=1

(4.18)
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from (3.9) and (4.1}+4.5). Comparing (4.17) with (4.18), the difference is that an
extra term, namely (1/\/;)2?:1 Y3 (r;), appears in (4.18) for the semipara-
metric estimate. This extra term reflects the error introduced by replacing
E@(p)lu(e) > — x,o, x1o > xq;%)  with  the  nonparametric  estimate
E.(v(B)|x,,, %) in the second-stage estimation.

5. Covariance estimation

The covariance matrix of the limiting distribution of ﬁ(ﬁ— Bo) 1s Q in
(4.12). From (3.10), A can be consistently estimated by

I |-

Z IX(xlt)[XZi - En(xl | X145 d)]’ [xZi - En(XZ | X1is é\()] (51)

The B can be consistently estimated by 0L,(4, ﬁ)/aa’. As suggested in Lee (1992),
C in (4.10) can be estimated by

1 (xl,)[x’,, + M:H:x“ + G_M,_oc)} (5.2)

HM:

1
n, Ot Oo’

where

n

> ]C Oj( K(u—auj(o?)’z X1, >dudz

J#FL X3+ Adn — x4 an

Y o[ uK(“_*i“),ﬂﬂ>dudz
* 4 a a,

En,l(xliad)—__ (53)

is a nonparametric estimate of E(u|lu > — x20). If ¥(r,) 1n (4.13) could be
evaluated, an estimate of X would be the sample covariance matrix of ¥(r,). As
in appendix 2, ¥(r,) is the limit function of E(¥,(r,r,)|r,) + E(¥,(r,, 1)),
where ¥, (r,,r,) = (¥, 1 (r,,r;), ¥, 2(r, r;)) in (A.17) and (A.23). This motivates
the following estimate of X:

n

.. p) = 2 Y N [Hyrer, 4 B)+ Hur,,r. 4 b)]
=1y#1k#1,y

x [H,(ri, 1, & B) + Holry, 70, 6, B)Y, (5.4)
where n'® = n(n — 1)(n — 2),

Hn(ris r]s o, ,B) = (H;l.l(rl’ rja £, ,B)s H;.Z(ru r}a a, ﬁ))/v (55)
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Hn.l(rl’ j’a ,B)_ IX(xll)(XZI En(xllxlts&)) {(l’ (.B) E (U ﬁ)'xll’“))

= (&) = Eno(B)lx1, 0) gy s

XJ (rls J’“ An)}v (56)
aEn l(xlua) 1
Hn u > - ] 1 i -
2o B = Ix(x, )(‘Cl du Co(lx1 %)
x Ja(ry, 1y, % Ay, (5.7)
o x 1 — J—
Nrerpnd)= | [ - < u() 2 x”“)dudz, (5.8)
Yx + Adn — oy an an an
xX oL 1
JZ(rnrJ’O(sAn): j j' (ylz_xlxa*u)ﬁ
R 2 e P W 1 n
u—ulx) z— X0
x K| ——, ——— |dudz. (5.9)
a, a,
Define
1 n n n
L= ¥ ¥ [Hirr, B e, 4,)+ Hepro B, 4,)]
h =1 3#1 k#1817
x [H(r, re, & B, ay, 4,) + H(ri v, o B a,, 4,) 1 (5.10)
where

H( Ty ]’CX ﬁ anaA )—(Hl(r,,rj,:x ﬁ an’A ) Hl(rh'pu ﬁ a,,,A ))
(5.11)

Hl(rn rj’ %, ﬁs Ay, An) = IX(xlt)(XZz - Ea( (lexln oA, An))l
X {(Ul(ﬂ) - E{ir(v(ﬁ)\xlh %, An))

— WP — E.(0(B)|x1, 0 4,))
1

_—J, 5.12
X xrn e Ay ”“”“A)} ¢.12
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(. OE(x;, o)\
HZ(rnrj’a’ ﬂaana An):IX(xll) X1+ T)
- Ta(ro gy o, 4,), (5.13)

X——__
C(l]xy;, 2, 4,)

and E(x, ) is the limit function of E, (xy;,®). The consistency of 2. B) will

follow by showing that Z,(4, ) converges in probability to Z and 2,(x, f) — Z.(x, f)

converges in probability to zero uniformly in (e, 8) in a neighborhood of (x,, fo)-
By a change of variables in the integral,

Jilrr, 0, 4,) = | | K(u, zydudz (5.14)

(<2 + An— X alan (— x 2 — u@Ya,

(qx + dn—xy0)/an (= x0 —ul@)/a,
x K(u, z)dudz. (5.15)

The uniform law of large number for U statistics in Proportion 1 can be applied to
Z, (o, B) with d =d =0 and § =4. Under the assumption that the first eight
moments of y;, y,, and x exist, as n goes to infinity,

Zo( B) — EE,o f) = O,

uniformly in some compact
converging to (2, o), with similar arguments fo
and (A.25),

llm E[H(ria rja Oy ﬁn, Ay, An) + H(ria rja Lo ﬁn’ ay,, A")lr,] = lP(rl)'

n—oo

(0.0, po) For any sequence \ut,,, p,,)
or

the proofs of (A.19), (A.21) (A.24),

Since 4 and B are consistent, Z,(& ﬁ) 2 ¥, Uniform convergence of
240, B) — (o, B) to zero in probability is apparent as all the nonparametric

functionsin H ()
n\ 7
()

have converged in probability uniformly in (x,,, o, ff) to their limit

functions in H

6. Monte Carlo simulation

this section, we report Monte Carlo results for the finite sam

In
ur estimator.



L.~f. Lee, Semiparametric two-stage estimation of sample selection models 323

Simulated data are generated from the following latent equations:

Y1 =08 + 035, + 0,0 (6.1)

o~
g

ﬁlsl + ﬂzSz + O’)_E. (62)

Y2

The true parameter vectors are (o, %,) = (1, — 1) and (B¢, B) = (1, 1). The re-
gressors s, and s, are randomly drawn from a normal N(0, 1) distribution and

a uniform IT( — 7 ')\ distribution. respectivelv. s. and s , are independent. Different

13383110 5848] LaSvIaUMRVn, IWSplLuYia Y. 5 anla 1GGOPUlIGaLiiG

experiments are constructed by varying dlstrlbutlons of u and v. Data on i are
generated from three different distributions, namely, the standard normal distribu-

WT/ 1N /NT

tion N(O, 1) (Normai); a mixed gamma and normal distribution (Gamma % Normal):
\/—_ Gamma(0, 1) + \/_ N(O, 1); and a mixed negative gamma and normal dis-
tribution ( — GammasxNormal): — {\/@Gamma((k 1)+ \/(EN(O, 1)}, where
Gamma(0, 1) is a standarized gamma random variate with zero mean and unit
variance of which the density function is fG = §(.9 + 2P exp[ — 2(¢ + 2)],

o~ [ JERTS7S FO R DI 1 am e grnpratad  faoes o

& 2~ T o4, WILL AL VUG at — 3. llIC UlbLuanllL«C U lb gencratwcu oin v =

0.254 + /0.754, where 5 is a N(0, 1) random variable independent of i The

distribution of 7 is the convolution of the distributions of . /0.25u and | /0.754. The
correlation coefficient of i and # is 0.5. The variances of i and # are both unity.
However, variances of equation disturbances can be controlled by selecting values

Fnr r‘qln narametarg TI'\ ceale narametere & nd 5 arc set to 1 < which |mr\]\l fhaf
10T sCai L palaiiivit s, 1 C sCaie paraiine s &, ana G, arg¢ s€L 1o vy 1120a1 2001

the R? values for both latent eqgs. (6.1) and (6.2) are 0.5. The correlation coefﬁment of
the two equations’ disturbances remains to be 0.5. For each simulated data point,
the sample (yy, 3, 51, $2) is kept only when y, > 0. The sampie sizes considered are
30, 50, 100, and 200. With these designs, as the latent variable y; has zero mean, the
sample observations of y; are results of 50% truncation.

The bivariate kernel function used for our estimation is the product of two
univariate biweight kernel density functions, ie., K(t,, t,) = K{(t;)}K,(t,), where

L —r?)? f t|< 1,
K, () = 1% ( ) or | |' (6.3)
0 otherwise.

This density has a bounded support and is continuously differentiable. In addition
to its smooth character, this kernel K is chosen for its computational efficiency.®

8The nonparametric function 1n (3 1) involves double integrals When the bivariate kernel function
is a product of two univariate kernel functions, the double integrals become the product of two
univariate integrals. With K, in (6.3), the univariate integral has a simple closed form expression
which is a polynomial function. This bivariate kernel function 1s not the unique choice Many other
kernel functions will also be useful. It is known in the density estimation literature [see, eg,

Silverman (1986)] that different kerne! functions have only some munor differences in terms of

efficiency 1n density estimation.
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Table 1.
Results of 300 replications with various sample sizes, bandwidth factor ¢ = 1
Normal GammaxNormal — GammaxNormal
N Mean SD RMSE  Mean SD RMSE  Mean SD RMSE
30 By 0843 0746 0.761 0834 0.576 0.599 0942 0.544 0546
B, 0.938 0586 0.588 1.037 0.539 0539 0979 0.548 0547
50 By 0919 0422 0.429 0.906 0.516 0.524 0.928 0381  0.387

B, 0.986 0.427 0427 0.996 0451 0.450 0.956 0358 0360

100 B, 0992 0.269 0.268 0948 0.294 0.297 0970 0223 0224
B 0.986 0.248 0.247 1017 0.275 0274 0.983 0222 0222

200 B, 1.005 0168 0.168 0.997 0224 0.223 0994 0.156  0.156
B 0.995 0159 0.159 0.996 0.203 0.203 1.004 0.139 0139

Any bandwidth sequence of the form
a, = ¢/n?, (6.4)

with # < p < 4 and ¢ being a constant factor independent of the sample size, will
satisfy the rate requirement that na2 — oo and na? — 0. For our experiments,
p = 0.3 is set. However, we experiment with different values of ¢ to investigate
the sensitivity of our estimator to the chosen bandwidth parameter. The param-
eter A, is set to 0.1a9°°. For our semiparametric estimation, the regressors are
trimmed whenever |x;| > 1.9 or |x,| > 1.8 to satisfy Assumption 1, which
implies that approximately 15% of the data will be trimmed.

For each case, 300 data sets with the same sample size are generated. All the
summary statistics reported below for each case are based on 300 estimates.
First-stage estimates of the truncated regression function are in Lee (1992). Both
the first-stage and the second-stage semiparametric methods use the same kernel
function and the same bandwidth a,.

Table 1 reports simulation results of the two-stage semiparametric estimation
of (6.2) with various sample sizes and distributions. The ¢ in (6.4) is 1. The true f,
and f, are both 1. The summary statistics reported in the table are the mean
value (Mean) the standard deviation (SD), and the root mean square error
(RMSE).'® The biases of the estimates can be derived by comparing their mean
values with the true parameters. There are some small sample biases. For the
sample size 30, the largest bias is about 0.164. The biases tend to decrease as the

°In Lee (1992) for the estimation of x in the truncated regression model, we have experimented
with different values of d 1n 4, = da? ® in a Monte Carlo study. The semiparametric estimates of
2 are not sensitive to the values of 4,. For details, see table 1 1n Lee (1992).

19The standard deviation 1s derived as the square root of the bias-adyusted sample variance. The
varnance component 1n RMSE 1s not bias-adjusted
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sample size increases. For the sample size 200, the largest bias is about 0.006.
Variances decrease as the sample size increases. Comparing the variances and
the root mean squared errors across different distributions, the estimation
procedure performs best for the model with the mixed negative gamma-normal
distribution followed by the model with the normal distribution. The negative
gamma-normal distribution is skew to the left before truncation. On the other
hand, the gamma-normal distribution is skew to the right. As the disturbances of
the two equations in our model are positively correlated, the sample selection
mechanism implies that the left tails of the disturbances are truncated. The
better performance for the model with the negative gamma-normal distribution
may be related to the fact that such a distribution has a thinner upper tail and
a smaller variance after selection than the other two cases.

Table 2 reports simulation results derived with six different bandwidth fac-
tors. The ¢ varies from 0.10 to 4.00. This range seems to be quite wide. The
sample size is 100. The two-stage estimates do not seem to be very sensitive to
the different bandwidths. The biases are small. The standard deviations and the
RMSEs are similar in magnitude. In practice, one may report all these estimates
or select one of them by some intuitive criteria. One possibility is to select the
best-fitted model in terms of the residual sum of squares (RSS). Another
possibility is to take average values of the estimates. The row marked ‘Min’
reports the performance of the estimates derived from the best-fitted criterion.
The row marked ‘Ave’ reports the performance of the averaged estimates. These
results are quite encouraging. The biases are reasonably small. The variances
and RMSE:s are even slightly less than most of the variances and RMSEs of the
estimates based on fixed bandwidth factors. These two strategies seem good for
our estimation procedure.

In table 3, we compare our semiparametric two-stage estimates with ordinary
least square (OLS) estimates and some parametric estimates of (6.2). The OLS
procedure ignores the sample selection bias and is inconsistent. For all the
sample sizes and the distributions considered, the OLS estimates of 8, are biased
downward and the OLS estimates of 8, are biased upward. On average, the
biases are about 23%, 30%, and 20%, respectively, for the normal, gamma-
normal, and negative gamma-normal models. The biases persist as the sample
size increases. Comparing the OLS estimates with our semiparametric two-stage
estimates, the OLS estimates have smaller SDs for all the cases. However, for
sample sizes 100 and 200, the biases dominate the SDs, which results in larger
RMSEs than the RMSEs of the semiparametric estimates.'!

"'The biases of the OLS estimates would be severer, as the sample selection bias becomes harsher,
Le, the correlation of u and v becomes larger This can be seen from the Monte Carlo simulation
results for the truncated regression model 1n Lee (1992), which corresponds essentially to the case
that u and v are perfectly correlated For the latter case, the semiparametric estimates (the first-stage
estimates) can even have smaller RMSEs than the OLS estimates [see table 3 in Lee (1992)] for the
sample size 50
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In table 3, we report also some parametric two-stage estimates based on
a normal distribution formulation. The first-stage estimate of o in (6.1) is derived
from the following nonlinear least squares procedure:

I P(siofoy)\?
min ) (yl,—s,oc—alm> , (6.5)

2,01 1=1

where ¢ and @ are, respectively, the standard normal density and distribution
Trel 4L O PR ~ Lo

Lo a0 X oA A A M | ~ Y O A
uneuons. wiln uic Irst-stdge CSUrales & dnd o iroi {(9.o),
estimate of § is derived from

I=

he second-stage

¢(s.ot/m>{ 66)

min Z (J’z. —sp -0, D(5,8/5,)

B.o121=1

This parametric two-stage procedure is similar to Heckman’s procedure
[Heckman (1976)]. The parametric estimates of f§ are reported in table 3 with
the legend ‘PN-OLS”.!? The estimates reported with the legend ‘PN-ROLS’
differ from the estimates ‘PN-OLS’ in that the intercept term of (6.2) is known
and restricted to be zero. For the normal distribution model, this parametric
two-stage procedure provides consistent estimates. However, for the mixed
gamma-normal and mixed negative gamma-normal distributions, this proce-

dnrp iQ
Luid b

in general inconsistent. The PN-OLS ectimates do not nerform well for
S, 1n , inconsistent. I ne PIN-OLS estimates a0 not periorm well [or

general
our simulated models.!® The variances and RMSEs for these estimates are
larger than those of the semiparametric estimates. The restricted PN-ROLS
estimates perform much better. The PN-OLS estimates apparentiy suffer from
the problem of multicollinearity.'* By knowing the intercept term to be zero,
this exclusion restriction reduces the severity of multicollinearity for the para-
metric two-stage estimation. The PN-ROLS estimates have smaller variances
than the semiparametric estimates in all cases. There is some evidence that for
the misspecified distributions, the parametric two-stage estimates are biased.'®

The biases of the estimates of f#, of the mixed distributions models are larger

2Some of the first-stage parametric estimates of « are reported m Lee (1992).

31n table 3, we have reported only estimates of the regression coefficients The estimates of the
intercept term and the coefficient of the sample selection adjustment term are even worse. Their
variances are three or four times larger than the varnances of the regression coefficient estimates.

14The parametric two-stage method has not utilized the additional structure (2 12). It suffers from
the multicollinearity 1ssue mentioned 1n section 3

13The estimates of the coefficient of the sample selection bias adjustment term are also biased
While the true coefficient implied by our data-generating process 1s 0.75, the estimates of the mixed
gamma-normal model and the mixed negative gamma-normal model are about 0.83 and 0675,
respectively.
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than the biases of the semiparametric estimates. For the sample size 200, the
biases of the estimates of §; are also larger than the biases of the semiparametric
estimates. These biases are, however, not very large; hence, in terms of RMSE, the
parametric PN-ROLS estimates still perform better for all the cases considered.'®

As we have pointed out before, sample selection models are index models.
Since semiparametric methods based on index restrictions have broad applica-
bility, it is worthwhile to compare our semiparametric estimates with
semiparametric estimators derived with index restrictions. Identification in
index models requires exclusion restrictions of explanatory variables on the
outcome eq. (6.2). For comparison, simulated data are generated from a model
with (6.2) replaced by

y¥ =05 + g,0 (6.2")

The f, can be identified with the index formulation. A semiparametric two-stage
estimator of 3, based on the index restriction [see Powell (1987) and Ichimura
and Lee (1991)] is

By = { > IX(SI)[SII — 2 sy Wi s, &):l

=1 FE
n -1
xi:sl,— Y S“W:‘(S,,SJ,DA()j]}
J#
(6.7)
X Z IX(SI) |:Sll - Z SlerT(susja 52):I
1=1 E X
X[}yjt - Z y21 WVT(SH Sy, &)jls
J#F
the weight function Wk(s,, s, 2) is
KI(S,O(—S,O()
b,
WE(s,, 8,, %) = — ; (6.8)
5 K*<S'1 - s,oc)
P
I #1 bn

'*We should point out that the PN-ROLS 15 not a practical approach in practice. In this Monte
Carlo design, the true intercept term 1s zero, so there 1s no omitted variable problem In a practical
application, there are usually no good reasons to impose zero restriction on the intercept term For
the semiparametric estimation, the intercept term in (2.2) 1s absorbed 1n the disturbance r and has
imphicitly been captured in the nonparametric esimates of the sample selection bias term The
introduction of the PN-ROLS 1s intended to demonstrate that the extremely poor performance of
the PN-OLS 1s indeed due to multicollinearity but not due to programming errors
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and the kernel function K¥(-) is

t
| — 6.
K (ﬁ) ©2)

KZ(t) =2K*(1) —

Sl-

with
31— for |tj<1
K@) = 2 ’ 6.10
® {O otherwise, (6.10)
and
b, = c/n’ 3. (6.11)

The function K *(t) is a proper density function, which is twice continuously
differentiable with a bounded third-order derivative. The kernel function K is
a high-order kernel with its first three moments being zero. The way of con-
structing such a high-order kernel function from a density function is suggested
in Bierens (1987). This kernel function and its bandwidth rate (6.11) satisfy the
regularity conditions in Ichimura and Lee (1991). The simulations are bascd on
the sample size 200. The estimates from (6.7) and our estimates (2.8) for the
model (6.2") are presented in table 4. Various values of ¢ in (6.11) have been tried.
The semiparametric estimates based on the index formulation are relatively
sensitive to the bandwidth factors. The magnitudes of the estimates as well as
their variances decrease as the values of ¢ in (6.11) increase from 1.0 to 20.0. The
biases are the smallest around the factor value of 5.0 or 7.5. The corresponding
RMSEs decrease but, eventually, increase as the bandwidth factor increases.
Comparing these estimates with our semiparametric estimates from (2.8), the
latter estimates have smaller biases and smaller RMSEs. Taking into account
the independence property, our proposed semiparametric estimates seem likely
to be more efficient than the estimates that have utilized only the index
restriction.!”

Appendix 1

In this appendix, several propositions are collected here for convenient
reference. The proofs of these propositions have been established in our previous
works.

'"The asymptotic covarances of these two different two-stage estimators are, however, not
analytically comparable. Both estmators are consistent but not efficient as only some limited
information 1n the sample have been utilized



331

L.-f Lee, Semiparametric two-stage estimation of sample selection models

39v'6Ct £S1°0 £510 £660 80T'LSE vico PiTo 9860 £15°0¥¢ 8910 3910 1001 ool
[epow uoNd3[3s Nqo |
81 6T¢ 610 2610 ¥86'0 Sv0 IS¢ Peeo See’o €101 yLISEE SETO 9¢C0 SO0l g wW
[43:Xi43 1610 0s10 1880 16¥°09¢ ££C0 9510 LI80 £L6'IPE L0T0 1o 6580 ' oo0z
T183C¢ 0810 LS10 160 9L9'85¢ £€C0 961°0 PL3O S6t Ove 9610 8910 6680 ‘0§l
L16 LTt 8610 P61°0 0960 00995t 6L70 o LE60 [334:1%9 00 6610 2960 'y ool
918 ¢£€¢ 8570 85T 0 $860 S10°95¢ Tieo z1€0 $86'0 §50 0¥t 6v20 6vC0 £860 oSl
LOL 15¢ L8Y0 980 6v6'0 81685¢ Lye0 8re0 (410! 819°6H¢ 62£0 0te 0 200°1 Y oos
68C 6¢¢ ¥€T0 SE€TO $00°1 vL8 ¥9¢ 6vt°0 8t 0 [€0 1 768 66¢ PLTO Leo S0l oSt
660 TLE LEY'Q LEVO £eQ'l 010'8LS 00s°1 66v 1 [ Y4 68L98¢ §940 $344 820'1 Yoot
[epowr xapu]
SSd ASIWY as Ueajy Ssd dSIWY as UBo SSH dSIWY as UBIN 10prq
[PULLON ¥ WWED) — [BULION *BUWItI D) [eULION

007 9z1s o[dwes ‘uonewsa suswelediuss pue [ppowl xapuj

¥ 2l9eL



332 L.-f. Lee, Semiparametric two-stage estimation of sample selection models

Proposition I (Uniform Law of Large Numbers). Let {y;} be a sequence of i.i.d.

random vectors and y;, ..., Yy, be | distinct observations. Suppose that the
measurable function g(y, , . .., y.,, s, o) can be represented in the form
1 Sy oo s Vipp )
g()’z,v cees ,V,,, ay, (1) = _dt(ytl7 LS y;,)h[y,l, RO y;,,—l‘—_l 5
a, ay
where a, = O(1/n?), p >0,d >0, a€ B, and s(y,, . . ., y,,» %) is a finite-dimen-

sional vector value function, and the following conditions are satisfed:

(1) B is a compact subset of a finite-dimensional Euclidean space.

(2) The function t(yy, ..., y,) is bounded by a finite-order (say, order ) poly-
nomial of yi, ..., y.

(3) The first 0-r moments of y exist, where r > 2.

(4) The function h(-) is a bounded function.

(5) E{tz(J’u ceey y:)h2|:Y1, ceea Vi S(y#—a—"MJ} = O(afl_) uniformly in

ae B, where d < d.
(6) The functions h(yy, ..., Vi, as, S) and s(yy, ..., v, o) satisfy the bounded
Lipschizian condition of order 1 with respect to o and s, uniformly in yy, ..., y.

If lim, ., (n/Inn) a2 *oM4 4 = oo, then (1/n)L, {g(¥.,s -\ Vip G, @) —
E(g(yi, .\ v an, %))} 2o, uniformly in oeB, where n® =nn—1)---
(n—=14+1), and the sum ¥, is taken over all l-tuples of distinct integers not
exceeding n.

Furthermore, in addition to the above conditions, if

(7) E(g(y.,, - . - » Yi,» Gn, 0)) converges to a limit function g*(x) uniformly in a € B,
then

1
Wx;g(yzla EREE) yil’ama) - g*(a) > 0’

uniformly in « € B.

Proof. This is a uniform law of large number with a kernel function, which
generalizes a uniform law in Ichimura (1987) to cover unbounded random
variables and U-statistics. The proof of this law can be found in Ichimura and
Lee (1991).

Propositon 2. Let K(w) be a function with zero mean and a bounded support. Let
g(w|a) denote the density function of (u(a), x,x) with a support W = {w|w; + w, >0,
where w = (w;, w,)}.
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Suppose that there exists a Lebesgue measurable function h(v) such that

2

owow'

sup sup

a  weNy(v)

[E(c(y, ¥)|(u(x), x,2) = w)g(wla)]| < h(v),

Jor some neighorhood Ns(v) of vin W with radius 6 > 0 (6 is independent of v), and

| f hu, z)dudz < o,

- —Z
then

o d]

{ T E[c(y,x)%K(u_—u(a),z—xla>}dud2

xpatd,, —xya a (l,, an

sup

(xtr.a)

9

- T E(c(y, X)|u(®) = u, x 00 = 2)g(u, z|a) dudz

XpatAn —Xpa

= O(a;),

where {A,} is a sequence of positive numbers such that lim,. A,=0 and
lim, -, (44/a,) = 0.

Proof. This is lemma 1 in Lee (1992).

Proposition 3. Let K(w) be a function with zero mean and a bounded support, and
let g(w|a) denote the density function of (u(x), x,0) as in Proposition 2. Suppose
that there exists a Lebesgue measurable function h(v) such that

2

0
sup sup ‘%[E(C(y,X)I(u(a),xld)=W)g(WIOt)]

< h(v),
2 WweN;(r) Swow’ < h(v)

Jor some neighborhood N;(v) of v in W with radius 8 > 0 (3 is independent of v).

() If {=_ sup,h{u, z)du < oc, then

}“ E[c(y, x)glz’K(u -~ u(a)’ X1+ Ay~ xla)]du

—X1.a n an ay,

sup

(x1,,a)

- g E[c(y, (@) = u, x10 = Xy + An]

X

xg(u, x 10 + 4,]2)du| = Ofaz).
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@) If {°_ sup,h(u, z)dz < oo, then

°j.° E|:c(y, x)%K( — X0 — u(oz),z — x1a>]dz

sup
(xte,0) | xpa+dy n An a,
o
— | Ele(y,0)ul®) = — x4 %0 = z]
X+ A4y,

xg(— xq1,0 z|o)dz

= O(a2).

Proof. This is lemma 2 in Lee (1992).

Proposition 4. Let F(w) be a bounded function with a bounded support, and let
g(w|a) denote the density function of (u{x), x, ) as in Proposition 2. Suppose that
there exists a Lebesgue measurable function h(v) such that

sup sup E[|c(y, x)[|(u(@), x,2) = w]lg(w|a) < h(v),
a weN;{(v)

Jor some neighborhood N;(v) of v in W with radius 6 > 0 (3 is independent of v).

(i) If {©_, sup,h(u, z)dz < oo, then

9] _ ~ 2
sup E<|c(y, x)|{ { F[M@, z]dz} > = Olay).
X11,2 (xpa+ 4, —x1a)/an ay

@) If {=_, sup, h(u, z)du < oo, then

* i An - 2
sup E<|c(y, x)|{ [ F[u,M“LTX—‘“]du} ) = O(ay).
X110 (—x1.a—u(@)) /an n

Proof. This proposition is lemma 3 in Lee (1992).

Proposition 5. Let f,(zy, ... Zi—1+Zi41s- - -5 Zny Zi) and gu(zy, ..., Zi-1,
Zit1s- -+ Znl Z;) be two sequences of random functions of an iid. sample {z,}.
h(z,), f.(z,), and §,(z,) are measurable functions of z;. Suppose that:

(1) Efh(z)| < oc, B

(2) sup, |E(fulzi, . . -, 24 2)12) — fulz)] = Ofay)),
(3) SUPzJE(gn(Zh s Zns zl)lzl) - g—n(zt)l = O(aflz)’
(4) sup, var (fu(z,. . . ., 24 zi)|2i) = O(1/nay}), and
(5) sup, var (gn(z1, . . ., za; Z)12;) = O(1/nay?).
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If2s, >ry > 0,25, >r; 2 0,lim,. . nal! "2 = oo, and lim, ., na2t *52) = 0,
then

phm Z |h(Z l |fn(zlv cees Zns Zi) _f_;l(zx)l

n— o ni=1

'Ign(zl’ ey Zns Z:) - g_n(zt)' =0

Proof. Thisislemma 6 in Lee (1992) with some slight generalization. The result
follows from the Markov and Cauchy inequalities.

Proposition 6. Let {z,} be a sequence of i.i.d. random variables and @,(z,, 24, a,)
be a sequence of measurable functons with a bandwidth sequence {a,}, where
a, > 0. Suppose that:

(1) E(D,(z21, 22, a,)) = Ofay) and var(®,(zy, 22, a,)) = O(1/ay),

(2) there exist squared integrable functions h(z), j = 1,2, such that
|E(®y(z1, 23, an)|20)| < hi(z() and  |E(D,(22, 2y, an)]21)| < hy(zy),

(3) lim, .,  E(®,(zy, 23, a,)|z;)) = 0, ae, j= 1, 2.

Iflim,,ﬂo\/;af, = 0 and lim,_, . na,, = oc, then

(1/3/n(n — 1)) L T Ozzaa) B0,
=121
Proof. This is proposition 6 in Lee (1989).

Proposition 7. Let {z,} be a sequence of i.i.d. random variables and ®,(z,, z,, a,)
a sequence of measurable functons with a bandwidth sequence {a,}, where a, > 0.
Suppose that:

(1) E((Dn(zla Z3, an)) = O(afl) and Var((pn(zl’ Z2, an)) = (l/af,),
(2) limnﬂooE((pn(Zl’ZZaan)lzl) zﬁ(zl) and limn—moE(‘pn(ZlaZZaan”ZZ) :f2(22)7

a.e., for some measurable functions f,(z) and f,(z), and

(3) hm E{[E(¢n(zls Z3, an)lzl) + E((pn(ZZ’ Z1, an)'zl)]

n— o

X[E((p (ZI’ZZ’ )’ Zl) + E(‘p (22921’ n”zl)] }
= E{[fi(z1) + /a(z,) I[ fi(z1) + £2(21)]"}
—:2,

where X is a finite matrix.
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If im, , ./nal = 0 and lim, , cnal, = oc, then
(1//nn—1) Y Y Pulznza,) >N, ).
=1 j+#1

Proof. This is lemma 8 in Lee (1992).

Appendix 2: Proofs of asymptotic distribution
From (4.1),

OLy(2, B)
do’

12 1
= ;; x(Xnm[xzi—En(Xﬂxu,“)T

X[acn()’aﬂfﬁi, %) ﬂ,GCn(X'zl/xl,,a) CE(B)x a)aC,.(llfu,a)}
o O O
1 n
—El; Ix(x1) (0(B) — E,(v(B)| x4, )m’——)
X[M—En(x’zlxma)w], (A.1)
Oa O

where

acn(rllxln [X)

O
x 1 — x,00— u,(x
Z (x1,— xy1,) 12, § #K(_#-J()’ z)dz
-1 J#i (x1,a+ dn — x1,0)/an Dn ay
< 1 x1,0+ A4, — xq;0
Z (x1; — x1,) 12, j —K<u,—1l—"——i>du
n - 1 J#i (= X1:0~ uy(@))/an ap a,
< | 1 — x1,0 + u, () z — x9,2
= 5 z (x1, — x1j)’7'21_2K< L i ), L )dz
xl,a+Ann - lj;éz ay a, a,
< 1 u—ui(e) x,2+ A4, — X1,
_ j 1 Z (X“ xlj)/ij _2K< ]( )’ 8] n 1y >du,
—xa P j#e an a, a,

(A.2)
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with r, = 1, y,, or x,.Under properties (1.iii) and (2.ii} of Assumption 3, Prop-
osition 4 implies that var((8C,(r;|xy,,%)/0x)]x1,) has order O(1/na,) uniformly
in x, € X. Under Assumption 3, Proposition 3 implies that

E<acn(r2|x1n O() X1,>

Ox
—{ j E((xy, — x1)'ra] — xq,9, 2, 2)g( — x1,2, z|a)dz

xnatAn

sup
(@, x1,)e@1 x X

- f E((Xll—xl),r2|u9xlla+An,a)

— Xy

X g(u’ Xq,X + Anlfx)du}

’ = O(a2). (A3)

The limit functions in (A.3) are uniformly continuous in (x,,, 2, 4,) on
X x @, %[0, 1] by Assumptions 2 and 3. Withd=1,d=1,6 =2, and r = 2,
Proposition 1 implies that as lim,. ., (n/lnn)a’ = o,

aCn Mlis X <
—(Lgy 5 j E((xy, — x1)'ra|x 120 = 2)g( ~ X320, 2| 2g) dz

— E((x1; — xy) ra|xq00 = xq1,80)
X 7? glu, x(, %] %) du, (A.4)
uniformly in x,;, € X. With (3.5), (3.8), and (A.2.4),
<6Cn(yzlf€11,0?) _ B 0Ca(x2]xy, @) E (v]x,.. 7) acn(llxluo_()>
0x o’ Oo’
/C,,(llx“, &) B G(xy,, %), (A.5)

/
uniformly in x;, € X, where

o0

© -1
G(Xu,fxo)=< [ g(u,z|a0)dudz)

X120 ~ X140

X{ j E(v(xy, — x1)| — x1:00, 2, %0) g( — X80, z|otg) dz

X1:%0

- I E(U(xll_xl)lu’xllaO’ (x())g(usxlla0|a0)du

T X1:%0
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— E(v|lu > — xy;00) f (1 — E(xq|x 00 = 2))

X1:20
X g( — X100, z|%p) dz

+ E(@|u > — x1,000)(xy, — EQxy|x,2 = X1,80))

X j g(u, X1ifxo|0‘0)du}-

~ X120

(A.6)

The density g(u, z|ao) equals the product of the marginal density f,(-) of u and

the marginal density h(z) of x,a,, it.,

g(u, z|ao) = L(u)h(z).

(A7)

Using (A.7) and that (u, v) is independent of x in the latent model, G(x,, %o) can

be simplified to

G(xyi, 00) = [E(|lu = — x4;00) — E(v|u > — x1,00)]

X M — x1,00) [X1; — E(xy]x 00 > X1,00)],

(A.8)

where A(z) = f(2)/f° f,(t)dt is the hazard function of u. The expectation of
v conditional on u >z, where z is a constant argument, is E(v|u > z) =

[2 > vflo,uydodu/[Z fi(t)dt. It follows that

T vf(v, z)do
aE(”g‘; >3 _ = + E@lu > 2)i(2)
§ fode
= — [E(@®|u = z) — E(v|u > 2)1A(2).
Therefore,

G(xyi,%0) = — T( — x1,00) [X1, — E{xq1|x100 > x1,00)],

(A9)
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where 7(z) denotes OE(v|u > z)/0z. With the uniform convergence of the non-
parametric functions and their derivatives, the first term on the right-hand side
of (A.1) will converge in probability to E(Ix(xq;)[Xx2 — E(xz]|x 00 > X1:00)]
X 1( — X1.%0) [ X1, — E(xq]x100 > x,00)] and the second term will converge in
probability to a zero limit. This establishes (4.3).

The asymptotic distribution of \/;L,,(:xo,ﬁo) can be analyzed as follows.
Define

L, (20, Bo) = Ix(xy,) [x2: — EnfX21%11 %0) ] (0, — E,(v|x14, %9)). (A.10)

By a Taylor series expansion up to the second order, L, (%o, fo) = Sp(yai, X,,
X, ﬁO) + Rn(yZM Xy 00> ﬂO)’ Where

Sn(yZU Xis %o, BO)

= IX(XII){(XZI - Eoc(x2|xln %o, A,,))((U, - Eoo(v|xlia %o, An))

C(x" i %oy Ay
[ﬁzlxl_“o_) (V= EL(0lx1,, %, 40))

CZ(] leia %o, An)

C o %o, Ay
(= En(xalx10s 20, Ay)) <2 X102 %0 )]

C2(1 lxln %o, An)
X(Callxyi, &) — C(1]x 15, oo, 44))

1
—(xy— E ) Ao 4)
(le OO(XZIX“, %o, n)) C(1|X11,°‘0’A")

X(Cn(lelu Oto) - C(U|X1” Ao, An))

1

- i_Ew i’ ’An a0 .
® Whews %o 4)) &y o0 T4

X(C,,(X2|X1“O(0)— C(x2|xln aOaAn))l}’ (All)
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and

Rn(ylla Xy, Qo ,BO)
= Ix(xu){[M C:,,(x’2|x”) — M (Ul — M)

Ca(llxy) C(1x1,) Cu(lxy,)
. Cxalxi) Y Cawlxa) N , .
(le C":n(1|x1i) > C“'ﬁ(ll)ﬁl):l(cn(“xlnao) C(llxlz’aO’An))

[ 1 ( én(le-xlx)>’ 6,,()(12\3(1,)]
+ 7.2—'— X2, ——:—"‘—‘ — T———f
Cn(1|xli) Cn(ll)‘ll) Cn(1|x11)
X(Co(1]x1, 20) = C(1]x1,, %9, 4n)) (Calvlx1i, %0) — C(v] X413, 005 A1)
[ 1 ( c}(vnxln> én(v|x“)}
Cf(llxli) Ca(1]x4,) Ca(1l]x1,)
*(Cul(1]x 14, %0) — C(1x44, 205 44))
X(Crl(x2]X1:5 0tg) — C(X2]X1,, %0, A1)’
1

+ m(cn(v\xn, o) — Cv|xy;, %o, 45))

X (Culxalx1is %9) — Clxa]x1,, %o, An))’}5

with Cn(slxl,) lying between C,(s|xy,, %9, 4,) and C(s|xy,, a0, 4,) with s = 1, x,,
v. If follows that

\/>L (“0’ ,BO) - 7 Z N (y2u X5 g5 ﬂO) +—= f Z Rn(}’ani,“O» BO)

n =1

(A.12)

The remainder (1/\/;)2:;1 R,(¥2.» Xi, 0o, Bo) converges in probability to zero.
Consider, for example, the last component in the remainder:

| 1
ﬁ > IX(xli)m(cn(leln o) — Clvlxy,, %o, 4,))
i=1 n 13

|

1 n
< O,(1)—= X Ix(xy)ICalvlxyis 20) — ClolX1i5 %0, )]

\/;121

X | Ca(x2]X10s %) — C(x2| X414, %o, An) - (A.13)

X (Colx2l X135 00) = Clxz] X414, %o, 44))’
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With the order of bias in (3.4) and the order of variance in (3.2), Proposition
5 implies that as lim,_ . na® = 0 (A.13) converges in probability to zero. Simi-
larly, the other components in the remainder converge to zero in probability.
Some of the terms in (l/ﬁ) Y Sa(Vars X4, %9, fo) will also converge to
zero in probability. Since v is independent of x in the latent model,
E (vlxy,, 20, 4,) = E(v|lu > — xy,%0). It follows that

C(X,ZIXIU %o, An)

—= 1 — (v, — E %o, Ay
ﬁlgl X(xlz) C2(1|X1,,O(O,A,,) (b, oc(lel o ))

X (Cn(l |xlla O(()) - C(1|x11s Ao, An))

HM:

L Pl (A.14)
J#L

\/—(n—l

and

(pn, l(rl’ rj)

C(x;jxln o, An)

=17 3
) 1 w0, 4,)

X < }C T K(u, z)dudz — C(1|xy,, %, A,,)). (A.15)

(x1:00 + An— x1,a0)/an (—x1:00 —t;)/an

The variance of @, (r,,r,) has order O(l). Since E(®, ,(r,rj)lx,.r,)=0
E(®, 1(r,, r;)) = 0. The conditions in Proposition 6 are satisfied for @, ;(-).
It follows from Proposition 6 that (A.14) converges to zero in probability.

Similarly, Proposition 6 implies that (1/\/;)2:': () (/C(L xy,, 09, 4,)) X%
(Co(x2]X1,, 0to) — C(Xa2| X1 %0, 44)) &2, —> 0. Hence, (A.12) is reduced to

\/;Ln(aoa ﬁO)

7

Te(x1,) (x20 — E(x3] X180 > X100 + 4,))

IlM;

1
x {821 + m [E(v|u > x1,00) Ca(1]x1,, 0tg)

— Calv]x1s, 0‘0)]} + 0,(1)
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n

1 n
=— Z Tx(x1;) (X2 — E(x3|x 00 > X1500 + 4,))
N

i

y _(Uj_E(U|u > — X1,%0))
z C(1[xy,, %o, A)

x| j%K(“_“f,m>dudz}+op(1). (A.16)

X100 +An — X120 N a, a,

The asymptotic distribution of (A.16) can be derived by the central limit theorem
for U-statistics in Proposition 7. Denote

W1 (r, ) = Ix(x1,)(x2 — E(xz|x100 > x1,00 + 4,))

e, — (Uj - E(U|u > — xllao))
2‘ C(1]xy4, 2o Ay)

0

< %K(u_uj,h—)m)dudz). (A.17)

X%+ Adn — X180 an a,
xu)

Eq. (3.4) implies that

E( [T _ZK(“ __)dd

xp @+ dn —X1,a0 ax a,

sup

X1y

— E@lu > — x1,000)C(1]x1,, %o, 4y)

— O(a2). (A.18)
It follows from (3.4) and (A.18) that E(¥, ,(r;,r,)) = O(a}), and

lim E(¥, (r;, r,)|r) = P{(r), (A.19)
where ¥{!)(r,) is defined in (4.6). On the other hand,

E(Wn,l(rja rl)|rl) = - E{IX(XIJ)(XZJ - E(X2|x1d0 > xljaO + An))’

v, — E(vju > — xy;00)
C(llxljaaO’An)

o ©
x | [ Kz)du dz|r,} (A20)
(x100+ 4n— X1, @0} /an (— X1 ;00 — ;) /an
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The function {3 . i soyan K(u, z)dudz converges to 1 if

j'oc

(—x1;00—uy)/an
X100 < X100 and  — xq;00 < 4, to [ & K(u, z)dudz if x; 00 < xy,20 and
u, = — Xy,0%, and to 0 otherwise. The event u; = — x ;o occurs with zero

probability. By the LDC theorem,

lim E(¥, ((r,,r)lr) = Y2(r), (A.21)

"= a0

where ¥'?(r,) is defined in (4.7). The limiting distribution of ﬁLn(uo,ﬁo)
follows from Proposition 7. This establishes (4.5).

With & in (4.8), it follows from (4.2) and (A.16) that

A aLn(a_yﬂO) —1} 1 3
L,(@ o) = [, —=—C 2
\/'; (OC ﬁO) |: 0o ﬁ(n—l)t:lj#l

'}’n(ri’ rj) + Op(l)s

(A.22)
Where lI/n(rn r_]) = (qj;,l(riv rj)s ‘Il;l,z(rl’ r_]))” and

T1(X1,00)

¥, 2(r,r) = Ix(xy,)(x,, — E(x oo > X0 A4,)) —————
2(rs ;) x(x ) 0y (X1lx109 > X100 + 4,)) Cllxs. a0, A1)

a0 O

1 —-u, z—
x ] (ui—u)a—z—K<u u’,M>dud2.

a

Xnaotdn — X120 n n

(A.23)

The CLT in Proposition 7 can be applied to derive the asymptotic distribution
of (A.22). For ¥, ,(r,, r;), it has been shown in Lee (1992) that E(¥,, ,(r,, r)) =
O(ar?)a Var(lpn.Z(rl’ r])) = O(l)’

hm E(lpn,Z(rn rj)lrl): IX(xll)(xlz - E(xllxl Oy > Xlzao))'ﬁ(xuao)glu

(A.24)
and
llm E(qln,Z(rj’ri)Irl)
X1:%0
= - j E[Ix(x1;) (x1; — E(xq]x,2%0 > X1;%0)) |xqj00 = 2]
T E -
T Ee> Z2), 000, (A.25)

| h()dt



344 L -f. Lee, Semiparametric two-stage estimation of sample selection models
Proposition 7 implies that as lim, . nas = 0,

n

1 n
\/Y;(ﬂ— 1)1=le#l

where 2 = E(¥(r,)¥'(r,)) defined in (4.13). These establish the asymptotic
distribution of the two-stage estimator § in (4.11).

¥.(r.r) 3 N(@©,Z), (A.26)
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