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In the past, cyclide surfaces have been used effectively for the 
variable radius blending of natural quadric intersections. 
However, attempts to use cyclides for constructing realistic, 
freeform composite surfaces met with rather limited success. 
The paper presents a simple procedure for creating and 
manipulating geometrically complex objects using tubular 
cyclide pieces. The method described is intuitive from the 
designer's point of view, and it is based on the fundamental 
definitions and properties of the cyclide. Various practical issues 
involved in this design procedure are discussed, several 
extensions of the basic technique are described, and 
implemented examples are provided. 
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Cyclides were discovered in 1822 by Dupin, a French 
mathematician 1. He defined a cyclide as follows: 

Definition: A cyclide is the envelope of all variable radius 
spheres that are tangent to three fixed spheres. 

Cyclide surfaces received considerable attention from 
classical mathematicians of the late 19th century. Some 
of the most noted works on these surfaces were written 
by Maxwell 2 and Cayley ~. However, interest in these 
surfaces tapered off gradually, resulting in their omission 
from many classical geometry textbooks. In the early 
1980s, these surfaces were rediscovered for use in 
computer-aided geometric design (CAGD), mainly for 
surface composition using principal patches*. Subsequent 
investigation of the properties ofcyclides t'or use in surface 
modelling 5-7 revealed that these surfaces have a strong 
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potential for applications in geometric design. In 
particular, the cyclide might be a good addition to the 
set of existing constructive solid geometry (CSG) 
primitives (sphere, cone, cylinder, torus), with potential 
benefits such as enhanced geometric flexibility and a 
broader application domain. Additionally, all existing 
primitives are special cases of cyclides - a fact that can 
potentially lead to a unified computational framework. 
More importantly, owing to the enhanced geometric 
flexibility afforded by cyclides, a certain degree of 
freeform-like object modelling can be achieved in the 
CSG domain for the first time. 

The use of cyclide patches for freeform surface design 
was initiated about a decade ago. A principal-patch 
formulation for the cyclide surface was given by Martin*. 
De Pont 6 outlined several different versions of this 
formulation, and used them for surface intersections. He 
also explored the possibility of putting these patches 
together to form composite surfaces. Sharrock s studied 
the patch composition problem in depth, and developed 
techniques for surface design using cyclides. McLean 9 
described a different approach to patch composition 
using spherical mapping. This method is not tied to a 
particular formulation of the patch, but is based on the 
geometry of the patch. 

However, the use of cyclide surfaces for freeform 
surface design has seen few practical applications. One 
reason, we conjecture, for this lack of acceptance is the 
nonintuitive nature of the synthesis techniques 9,1 o. While 
many of the formulations referred to above are 
mathematically compact and elegant, a designer might 
conceive them to be mathematically complex and 
somewhat abstract in nature. Most designers are simply 
more comfortable dealing with concrete quantities such 
as radii, areas and volumes than with abstract 
mathematical concepts such as pentaspherical spaces. 
Consequently, synthesis techniques that are intuitive and 
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geometrically less taxing to the mechanical designer will 
be helpful. This is the motivation for the present 
work. 

Sectioning the cyclide surface with these planes yields a 
pair of bounding circles in each plane. Further, the cyclide 
is uniquely determined by the specification of the 
bounding circles in either of these planes. 

SOME RELEVANT PROPERTIES OF 
C Y C L I D E S  

Cyclides are 4th-degree algebraic surfaces (quartics) with 
several interesting properties, such as circular lines of 
curvature, closure under offsetting, and closure under 
inversion. A good treatment of the geometric properties 
of cyclides can be found in References 11 and 14. For the 
purpose of the present work, we select a few of these 
properties for detailed discussion. 

Property 1 (fundamental definition of cyclide)." A cyclide 
is the envelope of all spheres that are tangent to three 
fixed spheres 1. 

The planes of symmetry of the cyclide are the planes that 
also contain the spine curves* of the cyclide ~4. The cyclide 
has two spine curves and each is a conic. The two conics 
are in the orthogonal planes such that the foci of one 
coincides with the vertices of the other, and vice versa. 
Two conics in this spatial configuration are referred to 
as anticonics. Since a plane of symmetry passes through 
the centres of all the spheres of one family, these spheres 
are sectioned into great circles in this plane (see Figure 
2). Thus, the bounding circles are the envelopes of a family 
of circles with their centres on the spine curve. It is evident 
that the bounding cycles are uniquely determined by 
specifying three circles from this family. This observation 
is stated in the following corollary: 

From this definition, it follows 14 that the cyclide surface 
separates two distinct and nonintersecting families of 
spheres, which together span the E 3 space. It also is 
evident that a particular cyclide can be uniquely described 
by specifying three spheres from either of the families. 
An example is shown in Figure 1, which shows a section 
of the cyclide on the plane passing through the centres 
of the three defining spheres. This property is used in the 
composition procedure described below. We state this 
property as a corollary for future reference. 

Corollary 1: Three distinct, maximal spheres, with the 
condition that they belong to one family, uniquely 
determine a cyclide surface, and also the complementary 
family of spheres. 

Property 2: The cyclide possesses two planes of symmetry. 

\ J J 

Figure 1 Ring cyclide section on plane through centres of defining 
spheres 

Corollary 2: The bounding circles (and the corresponding 
cyclide) are uniquely determined by specifying three 
circles in a plane of symmetry, which is equivalent to 
specifying three spheres belonging to one family. 

Property 3: Along a line of curvature on the cyclide, the 
surface normals form a right circular cone whose apex 
lies on one of the spine curves. 

This property can be explained in the following manner. 
Consider the cyclide and the family of spheres that are 
either 'inside' or 'outside'. Each member sphere of this 
family shares a circle (in general not a great circle) with 
the cyclide surface. These circles are lines of curvature 
on the cyclide. At these circles, the collection of surface 
normals to the cyclide is identical to the collection of 
surface normals to the sphere. On the sphere, these 
surface normals form a cone. The apex of the cone is the 
centre of the sphere which lies on the spine curve of the 
cyclide. 

An interesting observation is that the tangents to the 
surface along this line of curvature also meet in a cone, 
which is referred to as the tangent cone of the surface. 
Hence, it is possible to 'twist' the cyclide about the axis 
of the tangent cone of a line of curvature without 
disturbing the G1 continuity of the surface along that line 
of curvature. An example of such an axis of rotation is 
shown in Figure 3. This observation enables us to 
generate truly 3D constructs using cyclide Pieces. The 
following corollary summarizes the above discussion: 

Corollary 3: A tangency-preserving rotation can be 
applied to a piece of the cyclide surface at any line of 
curvature by twisting the piece about the axis of the 
tangent cone corresponding to that line of curvature. 

*Spine curves refer to the loci of the centres of the spheres that belong 
to the two families. 
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Figure 2 Sections of ring cyclide on two planes of symmetry 

Figure 3 Tangent cone of cyclide at line of curvature 

Having discussed these properties and observaiions, we 
now proceed to the description of the proposed 
composition technique. In the following sections, we 
first discuss the unconstrained circle composition tech- 
nique (UCCT), followed by the tangency-constrained 
circle composition technique (TCCT). We then describe 
two editing methods for local modification of the 
composite surface. This is followed by a set of 
implemented examples that illustrate the results obtained 
using these methods. 

UNCONSTRAINED (BASIC) CIRCLE 
C O M P O S I T I O N  T E C H N I Q U E  

A circle composition technique (CCT) was first 

2 3 

1 S 

Figure 4 Tubular surface generated by UCCT 

develope d12 for the generation of tubular pipe layouts 
and motion planning in 3D. The method extends to the 
present goal of freeform-like object composition in a 
natural manner. In the UCCT procedure, the object is 
composed by joining cyclide pieces together. Using 
Corollary 2, we can define each cyclide piece using three 
spheres. However, since we require some degree of 
connectivity between these pieces, we also require that 
the ith cyclide piece share a common sphere with the 
( i-1)th and (i+ 1)th cyclide piece. In other words, given 
a series of ordered spheres, we interpolate three of them 
at a time, in sequence, to obtain a composite volume 
bounded by cyclide pieces (see Figure 4). This process 
can be stated in pseudocod¢ form as follows: 

Procedure UCCTO { 

Circle c [number_of_circles'I;/* defining 
circles */ 

Cyclide piece [number_of_cyclides]; /* cyclide 
pieces */ 

int i=O; /* circle count */ 
int count=0; /* cyclide count */ 
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repeat { 
get_circle (c[i]); 
get_circle (c[i + 1]); 

(i= =0) {/* this is the first segment */ 
get_circle (c[i + 2]); 

/f 

/f (maximal (c[/], c[i+ 1], c[i+2])) 
{/* circles must be maximal */ 

/* in other words, both inscribing and 
circumscribing tangent circles */ 

/* should exist for this set of three circles */ 
piece [count] =computeinterpolating_ 

cyclide (c[i], c[i + 1], c[i + 2]); 
/* trim this cyclide at c[i] and c[ i+2]  and 

choose segment that contains c[i+ 1] */ 
trim_cyclide (piece [count], c[i], c[i + 2], 

c[ i + 1]); 
count = count + 1; 
/f (i= =0) i= 3; 
else i = i + 2; 

} 
else { 

print_error ("-Circles must be maximal!"); 
} 

} until (i > num_circles); 
}/* end of procedure */ 

Comments on U C C T  

First, we observe that the centres of the spheres need not 
be in a single plane. For each piece, the plane of symmetry 
of the cyclide segment is determined by the centres of the 
three defining spheres. In the examples presented, we 
restrict ourselves to the planar case only to maintain 
visual clarity. 

Second, we note that, since each piece is defined 
uniquely for the corresponding spheres without any 
constraints, these pieces in general will not match up, 
resulting in intersections (overlapped cyclide segments) 
or gaps. For the UCCT, the only way to avoid the 
intersection of successive segments is to control the 
location and size of the circles. In the case of gaps between 
successive segments, the problem can be alleviated by 
including a part of the surface of the spheres at the 
junctions. By using this remedy and choosing the location 
and the size of the circles with some care, one can obtain 
a connected surface (volume) that is piecewise-tangent- 
continuous. This procedure is used to describe the free 
volume for motion-planning applications 12, where the 
mathematical description of the volume is much more 
critical than the aesthetic appearance of the surface. 
However, this might not be suitable for applications with 
stringent shape requirements. At the junctions, the 
introduction of spherical surfaces results in the 'spherical 
kneecap' phenomenon 13, as shown in Figure 5. This 

Figure 5 Spherical kneecaps on surface generated by UCCT 

Figure 6 

I I 

i I 

/" 

Choice of cyclide surface on basis of junction sphere 

results in a sharp change of curvature and sometimes 
even a change in the sign of the curvature across these 
junctions. The result is a surface that might not satisfy 
aesthetic and functional requirements. For a more flexible 
freeform composition, we need to ensure tangent 
continuity between these pieces without interposing a 
spherical surface. 

TANGENCY-CONSTRALNTED C ~ L E  
COMPC~.JelTION ~ Q U E  

In the UCCT, we constructed each cyclide piece without 
constraints on the adjoining pieces. In the TCCT, we 
consider the situation in which the ith cyclide piece is 
required to be tangent-continuous with the (i-:l)th piece, 
without the intermediate spherical surface. Let c j, c~+1 
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and cj+ 2 be the circles corresponding to the ith cyclide 
piece. To construct bounding circles, we note that one 
point and the tangent at that point are fixed for each of 
these circles. Since a circle is determined by three 
constraints, it is not possible to interpolate c j, c~+ 1 and 
cj+2 while satisfying the tangent constraints. Therefore, 
we choose to interpolate two circles, namely c i and c j+2, 
with the given constraints. This results in a unique pair 
of bounding circles and thus a unique cyclide piece that 
joins the previous piece in a tangent-continuous manner. 
This cyclide piece, in general, will not interpolate the 
middle circle ci+ 1. However, the circle c~+ 1 can be used 
to determine which segment of the cyclide to use. 

In 3D, only the junction spheres determine the cyclide 
pieces; the middle spheres act as bias spheres for the 
selection of the appropriate portion of each cyclide, as 
shown in Fioure 6. This method is described by the 
following pseudocode: 

Procedure TCCTO { 

Circle c [number_of_circles]; 
/* defining circles */ 

Cyclide piece [number_of_cyclides]; 
/* cyclide pieces */ 

Tangents t; 
int i=O; /* circle count */ 
int count=0; /* cyclide count */ 

repeat { 
get_circle (c[i]); 
get_circle (c[i + 1); 

/f (i= =0) {/* this is the first segment */ 
get_circle (c[i + 2]); 
get_initialtangent (t);/* for the first piece 
, /  

} 

/f (maximal (c[/), c[i+ 1), c[i+2])) {/* circles 
must be maximal */ 

piece [count] = compute_tangent_cyclide 
(c[i], c[i + 2], t); 

/* trim this cyclide at c[0 and c[i+2] and 
choose segment biased towards e[i + 1] */ 

trim_cyclide (piece [count], c[i], c[i+2], 
c[i + 11); 

t = get_end__tangent (piece [count]); 
/* for the next piece */ 

count = count + 1; 
/f (i = = 0) i= 3; 
else i = i + 2; 

} 
else { 

print_error ("Circles must be maximal!"); 
} 

} until (i > hum_circles); 
} /*  end of procedure */ 

Fig~e 7 Smoothly joined piecewise cyclide surface generated by 
TCCT 

C o m m e n t s  on TCCT 

We again point out here that the centres of the spheres 
need not be coplanar. The spine curve of any given 
segment of a cyclide lies in the plane determined by the 
axis of the tangent cone at the start of the segment and 
the centre of the sphere at the end of the segment. 

The TCCT ensures that adjacent cyclide pieces join 
with tangent continuity, without spherical kneecaps. This 
technique, in comparison with the UCCT, results in a 
marked improvement in the quality of the freeform 
objects generated. All the examples shown below are 
generated using the TCCT. Figure 7 shows a typical 
construction. 

One potential problem with editing objects created 
using the TCCT arises when the designer alters a 
junction sphere. Since the TCCT depends on tangent 
constraints from the previous piece, such a modification 
produces a cascading effect, resulting in a global change 
in shape, which is probably not desirable. What we ideally 
need is an editing method that allows the designer to 
alter any junction sphere, but that localizes the effect (for 
example to two or three adjacent pieces). We describe 
such an editing technique below. 

LOCAL E D I T I N G  O F  C O M P O S I T E  SURF ACE 

We present two techniques fgr achieving local modification 
of the composite surface. The first method limits the 
effects of modification to two segments. The second 
method affects three consecutive segments, but also 
provides additional flexibility. 

D o u b l e - c y c f i d e  blend edit ing technique 

The double-cyclide blend editing technique (DCET) is a 
technique for local modification of the composite 
surface that is based on the methods for a double-cyclide 
blend*. It is well known that a family of double-cyclide 
blends exists for joining two cyclides in space t t. In fact, 

*A double-cyclide blend is a blending technique in which two pieces 
from (different) cyclides, joined in a tangent-continuous manner, are 
used to produce a smooth blending surface. Owing to the increased 
number of degrees of freedom, a double-cyclide blend is more flexible 
than a single-cyclide blend. 
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Triple-cyctide blend editing 

Figure 8 Doubte-cyclide blend editing 

the cyclide pieces [ i+ 1] and [ i+2]  belong to a family 
of double-cyclide blends that join the cyclide pieces [/] 
and [i+3].  By relocating the junction sphere between 
the cyclide pieces [ i+1]  and [ i+2]  appropriately, we 
can obtain different members of the double-blend family 
(see Figure 8). In Figure 8, the first three spheres define 
the piece [i], and hence the tangent cone T~ at the end 
of piece [/]. Similarly, the tangent cone T 2 at the 
beginning of the piece [i + 3-] is fixed. The junction sphere 
(crosshatched) is labelled as c~. Also, the bias spheres for 
each of the two cyclide segments are shown as broken-line 
circles. The junction sphere cannot be moved arbitrarily, 
but is constrained by the biarc requirements as described 
in Reference 11. Thus, the DCET allows us to restrict 
the modifications to two pieces at a time, but, because 
of constraints on the location and size of the junction 
sphere, it provides only limited flexibility. 

Triple-cydide blend editing technique 

The triple-cyclide blend editing technique (TCET) is a 
hybrid scheme that combines the advantages of the 
TCCT composition scheme and the DCET editing 
method. It provides the ability to alter a junction sphere 
arbitrarily (see Figure 9). Let us suppose that circle c~ 
(crosshatched) is moved to a new location and possibly 
resized. Then, we recompute the piece corresponding to 

Ci--2, Ci-- 1 and ci (and tangent cone To) using the TCCT 
composition scheme. This procedure fixes the tangent 
cone T1 on sphere ci. Next, we compute a double-cyclide 
blend between ci and ci+4 using the DCET method 
described above. For this step, the junction sphere is ci+ 2 
(crosshatched), and the beginning and ending tangent 
cones are T1 and T 2, respectively. In this process, we 
obtain another degree of freedom, which can be 
constrained if it is not required. Thus the change is 
localized to at most three pieces of the composite surface. 
The TCET allows a designer to make arbitrary changes 
to the shape of the composite surface. 

E X A M P L E S  

In this section, we provide a few examples that illustrate 
the results of applying the proposed synthesis techniques 
to geometrically complex shape design. These examples 
were generated on our native modelling system using the 
TCCT. It should be pointed out that the circles used for 
this composition are purely for the purposes of 
construction. The corresponding spherical surfaces do 
not contribute to the final composite surface (except when 
the U C C T  is used). 

The first example (see Colour Plate 1) shows a crane 
hook designed using cyclide pieces. In all, 13 spheres and 
six cyclide segments were used to construct the hook. The 
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Colour Plate 1 Crane hook designed using TCCT Colour Plate 3 Design of aesthetic shapes using TCCT 

Colour Plate 2 Outer shell of jet engine designed using TCCT 

Each example was constructed using the TCCT in 
approximately 2 min. 

S U M M A R Y  A N D  C O N C L U S I O N S  

We have described a simple, intuitive approach for 
composing freeform-like objects using tubular cyclide 
pieces. The designer chooses the spheres that the 
composite surface will  interpolate. The techniques 
described in this paper generate the composite surface 
from these defining spheres. The designer can choose to 
automatically enforce the tangent-continuity require- 
ments on the composite surface. We have also described 
two editing methods of modifying these composite 
surfaces locally. 

The examples illustrate the effectiveness of this method 
for the rapid design and modification of practical 
objects. The potential applications of these methods 
include diverse areas such as piping layout, wire-harness 
design and motion planning, as well as the design of 
mechanical parts. 

second example (see Colour Plate 2) shows the outer 
surface of an aircraft jet-engine housing. It was designed 
using seven spheres, and it is composed of three cyclide 
segments. The inner housing was then generated by 
offsetting the outer housing by the thickness of the 
housing wall. This example uses the property that the 
offset of a cyclide surface is another cyclide surface. In 
the third example (see Colour Plate 3), we show an 
assortment of aesthetic objects generated using the 
user interface and techniques proposed in this paper. 
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APPENDIX 

In this appendix,  we give the mathemat ica l  details of  the 
central steps of  the U C C T  and the TCCT.  The core 
problem is the generat ion of  a circle satisfying one of  the 
following two conditions:  

tangency to three given circles (the UCCT),  
tangency to two circles, and the satisfaction of  a point  
and tangent  constraint  on one of  the circles (the 
TCCT).  

Generation of circle tangent to three maximal 
circles 

It is well k n o w n  that  three circles in general possess eight 
different tangent  circles. However,  in the present work,  
we are only interested in those tangent  circles that  either 
circumscribe or  inscribe the given set of  circles. This is 
because we impose the restriction that  all of  the three 
spheres that  specify the cyclide segment belong to the 
same family. 

objects using cyclides: Y L Srinivas and D Dutta 

Outer (circumscribing) common tangent circle to three 
circles 
Let the centres and radii of  the three circles be (see Figure 
10) as follows: 

• circle 1: centre (a, b), radius r 1, 
• circle 2: cen t re  (c, d), radius r2, 
• circle 3: centre (e, f ) ,  radius r3. 

Let the centre of  the outer  tangent  circle be (x, y), and 
the radius be R. We can then write the geometric 
equat ions describing the problem as follows: 

(x - a )  2 + (y- -  b) 2 = ( R  - r t )  2 (1) 

(x - c) 2 + (y - d) 2 = (R - r2) 2 (2) 

(x - e) 2 + ( y - f ) 2  = (R - r3) 2 (3) 

Since we have three equat ions for three unknowns  (x, y 
and R), we can proceed to solve for the unknowns.  This 
set of nonlinear  equat ions admits  a solution in closed 
form. 

Inner (inscribing) common taagent circle to three circles 
Here, the problem is very similar to  the one  pos e d a b o v e .  
We can write the geometric equat ions describing the 
problem as follows: 

(X -- a) 2 + (y -- b) 2 = (R + r t)2 (4) 

(x -- c) 2 + (y- -  d) 2 = (R + r2) 2 (5) 

(X -- e) 2 + (y __f)2 = (R + r3) 2 (6) 

These equat ions are solved in a manner  similar to that  
used for the outer  tangent  circle. 

/F- ",, / 1 

Figure 10 Bounding tangent circle specified by three given circles 

334 Computer-Aided Design Volume 26 Number 4 April 1994 



Intuitive procedure for constructing geometrically complex objects using cyclides: Y L Srinivas and D Dutta 
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\ 

Figure 11 Bounding tangent circle specified by two given circles and 
one point of tangency 

automatically fixed. We let C(x, y) be the centre of the 
required tangent circle, and R be its radius. 

We can then write the equations describing the 
situation for obtaining the outer tangent circle as follows: 

ICTI = R  (7) 

CT. CC1 = 0 (8) 

ICC2[ = R - r 2 (9) 

In Equations 7-9, the bold characters are vectors (e.g. 
CT is a vector from C to T). These equations are a set 
of three nonlinear equations for the three unknowns 
(x, y, R). Again, this set of equations has a closed-form 
solution. 

Generation of circle tangent to two maximal circles and 
satisfying point and tangent constraint on one circle 
In this case, two solutions exist, However, we are 
interested in only a circumscribing or an inscribing 
circle. This additional constraint assures that the solution 
is unique. 

The following quantities are specified (see Figure 11): 

• circle 1: centre Cl(a, b), radius r 1, 
• circle 2: centre C2(c, d), radius r2, 

and T(p, q) is a point on circle 1 that the tangent circle 
must pass through. The tangent direction at T is 
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