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PREFACE

BAMIRAC, the-Ballistic Missile Radiation Analysis Center, is a facility estab-
lished at the Institute of Science and Technology under Contract AF 19(604)-7350
with the Geophysics Research Directorate of the Air Force Cambridge Research
Laboratories (AFRD). The contract is an implementation of Advanced Research

Projects Agency Order Number 30.

The objective of BAMIRAC is to function as a technical information center on
phenomenology, theory, and technology pertaining to the fundamental phen\omena
associated with ballistic missiles and space vehicles which may be significant in
any way to the formulation of defense measures against missile and space-vehicle
systems. BAMIRAC collects and processes information concerned with electro-
magnetic and acoustic radiation emanating from or caused by ICBM's or IRBM's
during their entire trajectory from launch to impact. The information includes
field measurements, laboratory studies, and theoretical studies, and is available at
the BAMIRAC reference library for use by representatives from all organizations
presenting a properly authorized request. BAMIRAC conducts analyses in which
experimental and theoretical results are evaluated and examined for correlations.
Some theoretical and experimental investigations are carried out, and the results
are combined with the technical information obtained from outside sources. In its
capacity as a technical information center, BAMIRAC disseminates information by
means of such technical media as: abstracts, indexes, bibliographies; technical re-
ports and journal articles; technical meetings; Proceedings of the Anti-Missile Re-

search Advisory Council; and technical guidance services.

BAMIRAC is under the technical direction of the Infrared Laboratory. It draws
also, however, upon the capabilities of the Computation Department of the Institute
of Science and Technology, and upon those of the Aircraft-Propulsion Laboratory of
the Department of Aeronautical and Astronautical Engineering within The University

of Michigan's College of Engineering.
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SYMBOLS
A area
M Mach number
P pressure
r radial coordinate
r dimensionless radial coordinate, ;/Fn
R radius of curvature
ds element of length along jet boundary
X axial coordinate
X dimensionless axial coordinate, x/ ;n
o angle made by jet boundary with axis at nozzle edge, immediately after expan-
sion
¥ ratio of specific heats, CP/CV
) half angle made by nozzle wall with axis at exit
U Mach angle, p = gin™} 1/M
1% Prandtl-Meyer angle
¢ angle made by jet boundary with axis
Superscript
* conditions at nozzle throat
Subscripts
b boundary of jet plume
e conditions at jet boundary at nozzle exit immediately after expansion
i initial radius of equivalent radial flow corresponding to first point of jet bound-
ary where ¢ = o (used only with radius of curvature)
n conditions at nozzle exit before expansion
0 ambient conditions external to jet flow






APPROXIMATE METHODS FOR CALCULATING THE
STRUCTURE OF JETS FROM HIGHLY UNDEREXPANDED NOZZLES

ABSTRACT

Approximate expressions are presented for the calculation of the jet-boundary
and intercepting-shock locations of a jet flow from a highly underexpanded rocket
nozzle. The gas is assumed to be an inviscid nonreacting perfect gas with constant
specific heats, exhausting to an ambient atmosphere. One new method and two pre-
viously known methods of approximating the jet boundary are discussed, and numer-
ical examples of each are compared with calculations based on the method of char-
acteristics and with experimental results. A new method for approximating the
intercepting-shock position is presented and compared with theoretical and experi-
mental results. Although the accuracy varies, depending on the approximation em-
ployed, it is shown that with any of the methods presented, the initial part of the
jet boundary and intercepting shock is well represented by the approximate solu-
tions. The location of the first Mach disc is discussed briefly.

1
INTRODUCTION
The hot exhaust gases issuing from a highly underexpanded rocket nozzle expand rapidly,
forming a plume with a very complex structure. Although very little reaction takes place with-
in the jet itself, the aerodynamic structure of the hot gases is complicated by internal shocks.
Further, in the viscous mixing region along the periphery of the plume, considerable reaction

does take place.

Because the thickness of the mixing region is small compared to the diameter of the jet,
at least in the region near the nozzle, it is possible to neglect viscous and reaction effects in
considering the aerodynamic structure. Thus, the problem is generally divided into two parts.
First, the jet is taken to be an ideal gas, and the internal structure and boundary are calculated.
Second, a mixing problem with chemical reaction is considered, with one fluid being the ex-
ternal flow and the other being the jet fluid at those conditions occurring along the idealized
boundary. Also, in order to further simplify the problem, first calculations usually involve
the assumption that the external fluid is at rest, so that a constant-pressure boundary condition
results. The effects of altitude may still be included by varying the external pressure, but
effects due to the velocity of the vehicle are neglected. Presumably, methods devised for the
ambient atmosphere case may be extended to cover the case of an external stream with a rel-

ative velocity.
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In this report, only the aerodynamic structure is considered. An inviscid fluid with con-
stant specific heats is assumed to expand from a rocket nozzle into an ambient atmosphere.
Only approximate solutions to the problem of calculating the jet boundary and internal shock
structure are presented. By approximate solutions are meant those solutions which do not
make use of the exact method of characteristics. Such solutions are important because they
will allow rapid, relatively accurate estimates to be made of the growth and development of
the jet structure as altitude, fluid, and nozzle-exit conditions are varied. Further, because
the solutions are functional rather than numerical, they will allow more insight as to which
parameters are important in assessing a given variation in structure. Finally, it is clear that
even with modern computing machines, the accuracy of the characteristic solution decreases
the further downstream of the nozzle the solution is continued; hence simpler, less expensive

approximations become attractive alternatives.

In order to illustrate the terms used hereafter, a sketch of a typical underexpanded jet is

given in Figure 1.
_ Constant Pregg,,..

Flow Direction

Immediately After
Expansion at
Nozzle Lip

Slip Line

< — : Mach Disc
NS 1 X" -~ — Expansion Fan at
y Nozzle /\> N i ~ Nozzle Lip
Flow Direction at \ AN
End of Nozzle VAN

— — Center Line

FIGURE 1. AERODYNAMIC STRUCTURE OF JET FROM HIGHLY UNDEREXPANDED NOZZLE

2
JET BOUNDARY

Previous papers (References 1-4) describe the original work done on approximating the
jet boundary. Hence only a short review of the results and improvements will be presented

in this report.

Since viscous effects are generally neglected in aerodynamic jet calculations, either exact

or approximate, the boundary of the jet becomes the bounding streamline along which the pres-



Institute of Science and Technology The University of Michigan

sure is constant. Since the turning of the boundary is done isentropically, the total pressure
and total temperature are constant. Hence, the Mach number, velocity, and density are also
constant along the jet boundary. Figure 2 illustrates the changes in Mach number, for ex-
ample, which occur due to the interaction of the boundary and left- and right-running char-
acteristics which, in this case, may be pictured as weak expansion and compression waves,
respectively. Although variations in Mach number, pressure, etc., exist across the weak ex-
pansions, they are cancelled by identical negative variations across the weak compressions.

The weak expansion is reflected as a weak compression because of the constant-pressure con-
dition. Figure 2 illustrates physically the mechanisms which occur at the boundary correspond-

ing to the results found in a characteristic solution.

M, =M, + AM - AM =M

2 1 1

+ AM Right-Running Characteristic
/ (Weak Compression)

/
Left-Running Characteristic
(Weak Expansion)

FIGURE 2. REFLECTION OF CHARACTERISTICS AT JET BOUNDARY

The approximate methods so far developed make use of the condition of constant pressure
but replace the actual mechanisms described above by two approximations. Thus the expansion
process is assumed to be that due to an infinitesimal increase in area, in an isentropic channel
flow, and the compression back to atmospheric pressure is that due to turning the supersonic
flow through an infinitesimal change in angle. The two effects balance each other, resulting
in a constant pressure. However, it is important to note that the isentropic expansion process
in a channel implies a change in Mach number. This is true only insofar as the calculations
are concerned. That is, the resulting boundary configuration is that of an isentropic channel
flow wherein the differential change in pressure with respect to change in angle, at a given
boundary point, is that which would be given by the linearized expression for the change in
pressure due to a weak wave turning a supersonic flow through the given differential angle.
Hence the approximate boundary shape is found from a fictitious isentropic nozzle fulfilling the
above-mentioned boundary conditions on the pressure. The results of these calculations
(Reference 1) is that along the boundary

Vv + ¢ = constant = v, + @ (1)
where v is the Prandtl-Meyer angle associated with the Mach number at a given point on the

boundary, ¢ is the angle made by the boundary with respect to the flow axis, Ve is the Prandtl-
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Meyer angle of the flow at the nozzle exit immediately after expanding to atmospheric pressure,
and a is the initial inclination of the free-jet boundary with respect to the flow axis. The bound-

ary is calculated using Equation 1 and the relation

(o))
lop

=tan ¢ (2)

|

as well as an equation relating v to T. Figure 3 indicates the notation used in Equation 2.

As Latvala (Reference 2) has pointed out, the best results are obtained if, when'the ficti-
tious channel areas are calculated, spherical rather than planar areas are considered. Thus,
with the notation given in Figure 4, the spherical area corresponding to a given point on the

boundary is
-2
27r

S -
A_1+cos¢ (3)

*
Further, if A , the area corresponding to M = 1, is assumed to be constant all through the

fictitious flow (all along the calculated boundary), then

A

A er2<1+cosa) @
* T Tk 1+ cos &
A A b \1 + cos ¢>
where Ae is the spherical area at the exit of the nozzle (at the beginning of the free jet) where
¢ =a, and ;b
'y =— (5)
r
n
\J
_ e
- A 5%

¢ Boundary

=

NN\
\S\ Nozzle& ; ) i
r
‘ —_— —— > — Center Line
xb X

FIGURE 3. NOTATION USED IN JET-BOUNDARY CALCULATIONS. o = 6 + Ve = Vn. Vp = Prandtl-
Meyer angle at nozzle exit. v, = Prandtl-Meyer angle after expansion.
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Boundary

Projection of Spherical
Surface in Meridian Plane

i

FIGURE 4. SPHERICAL CROSS-SECTIONAL AREAS USED IN BOUNDARY APPROXIMATION

is the dimensionless boundary radius. ? is the actual radius at the nozzle exit. Thus,

A / A is the area ratio corresponding to M o’ and A/A is the area ratio corresponding to
some M along the boundary.

A dimensionless axial distance Xb is defined as

"
1}

(6)

L] M
=] I'O"I

*
In order to use Equation 2, it is necessary to calculate d(A/A )/drb. This involves the
derivative d¢/drb. However, from Equation 1,

d _ _ dv _ dv _dM  d(a/AD)
drb drb dM a(A/ A*) drb
Now,
(r+1)/2(y-1) (y+1)/2(y-1)
A [ 2 1/, y-1_2
A (2 (e tw?) Q
A
and

Wyl ) ?
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For details see any standard reference on compressible flow, e.g., Reference 5. Thus,

de/ drb and the derivative of Equation 4 may be combined to give

* -1
dA/A)) _ 2 A [1 . sin ¢ (9)
ThA" \|M2—1(1+cos¢):|

Then, integrating Equation 2, one finds for Xy

1 b sin ¢ A
X, == 1+ df— (10)
b2 fl (A/A") tan ¢[ \M2 - 1 (1 + cos ¢)] (A*)

with
_ |A (1 +cos ¢ '
Tp = _*<1+cosa> (47
A
- - - '
p=a-@-v) (1
and
a=90 + Ve ~ ¥y (11)

being the necessary additional relations for the boundary calculations. Simpson's rule for

numerical integration may be used to find Xy The integrand at any point is found as follows:

(1) Find Ver Yy for*given Me and Mn and calculate a (Equation 11),

(2) Choose an A/A .

(3) Knowing A/A*, find M and v from compressible flow table for the proper 7.

(4) Calculate ¢ (Equation 1').

(5) Calculate T, (Equation 4")

(6) Calculate integrand.

Latvala (Reference 2) has used difference equations rather than the above formulation,
but it is believed that this numerical integration is nearly as easy to use and gives more

accurate results.

Calculations for a number of initial conditions are compared with experimental results and
solutions calculated by the method of characteristics in Figures 5 to 7. The intercepting-
shock results presented on these graphs will be considered later. The curves labeled experi-
mental on Figure 7, were obtained from schlieren photographs; some error certainly exists
as a result of transferring the results from photograph to graph, although great pains were
takento make this error as small as possible. It should be noted that this approximate method

does not give accurate results insofar as calculation of the maximum radius of the jet is con-
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cerned. However, for the initial part of the boundary, the comparison both with experimental
results and the method of characteristics is quite satisfactory, the maximum error in radius

being approximately 10%.

There are other approximate methods which promise great simplification and better accu-
racy. However, at the present time these other methods are incomplete in that considerable
experimental data are required for their use. For example, use of the so called circular-arc
approximation (References 2 and 3) depends on the knowledge of the maximum radius of the jet,
or some comparable piece of information. Hence, at this time, such methods are useful only
for filling in the boundary between the nozzle exit and the maximum radius. For example, they
would not be useful for predicting the growth of the free jet as the pressure ratio increases.

Of course, the latter prediction is most desirable, and so considerable effort has been ex-
pended in attempting to analytically calculate the maximum radius without performing a com-
plete characteristic solution. Up to the present time, such efforts have been unsuccessful.
However, it is informative to study the derivation of these other methods and to assess their

accuracy in the event that the necessary additional information becomes available.

In the following derivation, the turning of the flow along the jet boundary is assumed to be

due to two separate mechanisms, in a manner similar to that considered in the first method.

3
— Boundary
/”/
-
9 A -
/’-'
- frmarm— .
- _ ~ L __ Intercepting Shock
P //——'“__'_
n
1
—— Characteristics Solution
— —— Approximate Solution
0
0 1 2 3 4 5
X=x/T

n

FIGURE 5. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON FICTITIOUS-
JET METHOD WITH SOLUTION BY METHOD OF CHARACTERISTICS FROM LOVE
AND GRIGSBY. (Reference 3.) Mp = 1; v = 1.40; Py/P = 10; 6 = 0.
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10

Je/t Boundary
: | /' /
/

/ /
: /|

4

/ / Intercepting Shock

/

/

— Characteristics Solution
/ ——- Approximate Solution

0 1 2 3 4 5 6
x=x/ r
FIGURE 6. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON FICTITIOUS-JET

METHOD WITH SOLUTION BY METHOD OF CHARACTERISTICS FROM LOVE AND LEE.
(Reference 6.) My = 2.5;y = 1.4; P,/P_ = 1346; 6 = 150,
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/4

10 /él //,y
9 / /

7/

/

Jet Boundary / / Intercepting Shock

Experimental
— —— Approximate Solution

0 1.0 2.0 3.0 4.0 5.0 6.0
= ; T
X =x/ r
FIGURE 7a. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON FICTITIOUS-JET METHOD

WITH EXPERIMENTAL VALUES OBTAINED FROM SCHLIEREN PHOTOGRAPHS BY LATVALA.
(See Reference 2.) My = 1.5;y = 1.4; Pp/P,_ = 305; 6 = 15°.
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N
\\
~

i/
A
/

8 /
Jet Boundary / // Intercepting Shock

1 /

_ /
r=r/rn
l/

6 /l,
]
- |

y
I
ll

|
,/}IV
|
|

Experimental
— —— Approximate Solutions

-1.0 0 1.0 2.0 3.0

FIGURE 7b. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON

FICTITIOUS-JET METHOD WITH EXPERIMENTAL VALUES OBTAINED

FROM SCHLIEREN PHOTOGRAPHS BY LATVALA. (See Reference 2.)
M, =15y=14 Pn/Poo = 2510; 6 = 150°.
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5
4 e
Jet Boundary - // -~
_ 7 -~
r=r/r - -~
! ~ //I tercepting Shock
n
3 ~ e pting
-
2
Experimental
— —— Approximate Solutions
1
0 1.0 2.0 3.0 4.0 5.0
X =%/ r

FIGURE 7c. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON FICTITIOUS-
JET METHOD WITH EXPERIMENTAL VALUES OBTAINED FROM SCHLIEREN PHO-
GRAPHS BY LATVALA. (See Reference 2.) My = 2.97; ¥ = 1.3; P,/P_ = 30; 6 = 15°,

Thus, at a given point on the boundary, the flow expands along a surface (represented by a line
in the meridian plane) tangent to the boundary at this point, and turns through an angle sufficient
to compress it back to the original pressure. Furthermore, the pressure decrease in the ex-
pansion process is taken to be that due to an increase in the radial length of a supersonic
spherical source-flow. In a spherical source-flow, the Mach number is a function of radius
alone. Hence the pressure gradient for the given expansion is calculated at the radius cor-
responding to the Mach number at the jet boundary. In essence, this method may be pictured

as follows: a radial element of a spherical source flow, with length R, is placed tangent to

the boundary so that its end point coincides with the point in question. Then the pressure de-
crease due to a differential increase in R is balanced by the pressure increase due to a differ-
ential decrease in ¢ (see Figure 8 for notation). It is important to note that the two mechanisms
need not occur in the order given. One could consider, also, a decrease in angle followed by

an increase in the length of the tangential-line element.

In view of the above remarks, the equation which holds along the jet boundary is
_oP oP
M=M M=M
e e

11
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12

Boundary

/

FIGURE 8. APPLICATION OF APPROXIMATION BASED ON SPHERICAL SOURCE-
FLOW TO JET-BOUNDARY COMPUTATION

where
aP__ 2)/PM2 (13)
R rm2-1)
and
P _yPM® (14)
a¢ M - 1
Since M = Me = constant, if a is defined as
Me2 -1 1
a= 2 ~2tan Mg (15)
then Equation 12 becomes
g_g = -aR (16)
Within the order of the approximation,
dR =ds = dr—b (1)
sin ¢

Two possibilities exist in the interpretation of Equation 16. First, if one considers that
R is a function of M alone, and due to the constant M is thus constant, then Equations 16 and 17

may be combined and integrated to yield
I‘b -1 = aR(cos ¢ - cos a) (18)
This is the equation which gives a circular-arc approximation with radius of curvature

R, =aR (19)

* *
On the other hand, it may be argued that in reality R/R = f(M), where R is the radius cor-

responding to M = 1, and if one allows the sonic radius to vary in the same way as R so that

The University of Michigan
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*
R/R = constant, then R is not necessarily constant, and Equation 16 may be integrated with

the followi esult:; -
e owing resu R - Riea(oz o) (20)

where Ri is the radius corresponding to ¢ = a. Thus, dR = —aRiea(a_¢), and with Equation 17
one may solve for r. .
b
aR.
i
1+ az)

b ]
so that, in this case, there is an exponential dependence of rb on ¢. It should be noted that since

r, -1=

b l:ea(a_¢)(a sin ¢ + cos ¢) - a(sin a + cos a):, (21)

dxb/ ds = cos ¢, one may easily find equations for Xy for each of the above cases.

Although the above two cases are encouraging in that they result in equations which agree
well with experimental and characteristic-solution results, they both require additional infor-
mation in that R or Ri must be known. Efforts to derive relations defining R or Ri in terms of
the nozzle parameters have been unsuccessful. In order to compare each of the above results
with known solutions, R and Ri were calculated by substituting a known value for the maximum
radius for a given nozzle and flow condition in Equations 18 and 21. Using the corresponding
equations for Xy in each case, the boundaries were calculated and compared with a character-
istic solution for a sonic nozzle with pressure ratio Pn/Peo =10 and y = 1.4. The results are
known in Figures 9 and 10. It is clear that the circular-arc approximation is quite good, and
the "exponential' solution is even better. However, until a means of calculating R or Ri for a

given set of nozzle parameters is discovered, these equations have limited value.

3 ' i
= —— Jet Boundary
9 = = =—t=Intercepting Shock
/ - -1
- _ = | ———]
r=r/ r /
1 - ‘
Characteristics Solution
— —— Circular-Arc Approximation

0 |

0 1 2 3 4 5

:g_
X /rn

FIGURE 9. COMPARISON OF APPROXIMATE SOLUTIONS BASED ON CIRCULAR-ARC METHOD
WITH SOLUTION BY METHOD OF CHARACTERISTICS FROM LOVE AND GRIGSBY. (Reference 3).
Mn = 1; ¥ = 1.40; P,/P_ = 10; 6 = 0.

13
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/O/——__-ﬂ0

Characteristics Solution

r= ;/;
n @ Points from Approximate
Solution
1
0 1 2 3 4 5

x = X/r
/n

FIGURE 10. COMPARISON OF APPROXIMATE SOLUTION BASED ON RADIAL

SOURCE-FLOW ("EXPONENTIAL" SOLUTION) WITH SOLUTION BY METHOD

OF CHARACTERISTICS FROM LOVE AND GRIGSBY. (Reference 3). My = 1;
Y = 1.4; P,/P, = 10; 6 = 0.

3
INTERCEPTING SHOCK

A sketch of the typical shock structure in a highly underexpanded jet is shown in

Figure 1. The intercepting shock is one which is very weak immediately downstream of the
nozzle, but which grows in strength in the downstream direction. Initially, this shock is
tangent to the last ray of the expansion fan which exists at the nozzle lip. In a gross fashion
one might explain the existence of the intercepting shock by the fact that as the outer part of
the jet expands to atmospheric pressure, the inner core of the jet overexpands, and a shock
is then necessary to relieve the pressure difference. More precisely, the shock is formed
by the coalescence of the many weak compression waves emanating from the jet boundary.

The boundary is curved inward as a result of the constant-pressure condition.

It is well known that in a characteristic solution, the right-running characteristics from
the jet boundary intercept each other and form an envelope (References 3 and 7) called the
limiting line (or surface in this case), unless additional calculations involving the shock equa-
tions are included. The existence of a discontinuity in this region is implied mathematically
by the fact that three simultaneous solutions exist downstream of the limiting line. Generally,

this difficulty is overcome by assuming that the envelope, or limiting line, gives the intercept-

14
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ing-shock position and by choosing the proper solution so that the calculations may be continued
downstream of the envelope. Evidently this assumption is quite good since the comparison of
theory and experiment gives good results (Reference 3), i.e., when calculated results are
superimposed on schlieren pictures of actual jets, the po‘sition of the intercepting shock agrees
satisfactorily with the calculated envelope. Hence, in this approximate development, it is
assumed that the intercepting shock exists very nearly at the envelope of the right-running

characteristics initiated at the shock boundary.

A consideration of a typical characteristic solution reveals that although there are small
local variations, the right-running characteristics which form the limiting line are nearly
straight lines. As the pressure ratio increases, this appears to be a better and better approxi-
mation, and so this assumption is made. Further, since the Mach number along the boundary
of the jet is a constant, the Mach angle, 1, the angle which the right-running characteristics
make with the boundary tangent, is a constant. Therefore, finding the position of the intercept-
ing shock reduces to the calculation of an envelope of straight lines, each of which leaves a
known curve with a known angle. In summary, the intercepting shock is the curve which is
initially the last right-running characteristic of the expansion fan at the nozzle, and thereafter
the envelope of the (assumed) straight right-running characteristics which leave the boundary
at the relative angle u (Figure 11). Initially, the intercepting shock is of infinitesimal strength,

but the shock strength grows as more and more right-running waves coalesce with it.

The straight lines which form the envelope are a one-parameter family; for example,

prescription of the axial distance to a point on the jet boundary allows one to calculate the

Tangents to Boundary

Boundary

— — — Right-Running Characteristics
from Boundary. Assumed to
be Straight Lines

— — — Center Line

FIGURE 11. FORMATION OF ENVELOPE OF RIGHT-RUNNING CHARACTERISTICS REFLECTED FROM
BOUNDARY

.~ +— Last Right-Running Characteristic
-~ of Expansion Fan at Nozzle

Envelope — Intercepting Shock
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boundary radius and boundary angle. Then, since u is known, a line can be constructed. The
notation employed is given in Figure 12. The equation describing the line which includes the
boundary point X Ty is

r-r = (x - xb) tan (¢ - W) (22)
Equation 22 may be written in the form
fx, r,c)=0

where c is the parameter indicating which line is being considered. In order to find the en-
velope, then, one solves the above equation simultaneously with the relation

of

e 0 (23)

(See, e.g., Reference 8.) In this case, one may choose c to be Xy the axial distance, as T Xb’

¢, and ., the parameters appearing in Equation 22 are all functions of Xp- Then Equation 23

becomes
-dr
b S - (- 2, Al -pu)
& ttan(e-p) - (x-x)sec” (¢ - p ————-——dxb =0 (24)
However, as noted previously,
drb
——=tan ¢ (2)
b
Tangent to
r=r/r Boundary

T,
A n Boundary
/ Right-Running Characteristic
“j/.< (x, r)
¢

\ Nozzle

je—— = —»
1
[y

FIGURE 12. NOTATION USED IN INTERCEPTING-SHOCK CALCULATION
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and since u = constant = Mg Equation 24 becomes, with the use of some trigonometric identities,

-sin u cos
X -x = M M

. W(l +tan U tan ¢) (25)

Next it is necessary to calculate d¢/dxb, the rate of change of the angle which the boundary
makes with the axis, with respect to the axial distance. Hence d<¢>/dxb depends on the boundary
approximation being considered. The method first derived will be used in the following cal-
culations. It is important to keep in mind the fact that, in this approximate method, the bound-
ary Mach number of the fictitious jet is not constant. In order to emphasize this point, the
subscript b will be employed to indicate this fictitious boundary Mach number in the following

intercepting-shock calculations.

From Equation 1,

b _ T (26)
dXb dXb
where Vb is the Prandtl-Meyer angle corresponding to Mb' Also,
dv dvb de aa/A" drb

and employing Equations 2, 7, 8, and 9,

1

d¢ _ -2 tan ¢ sin ¢ :

d, . v -1[“ M2-1(1+cos¢)] @D
b VM b

Substitution of Equation 27 into Equation 25 gives the equation for x. The parametric equa-

tions which define the intercepting shock are then
x=x +r —DHCOSU Mz-l(cot¢+tanu) 1 4S50 (28)
b b 2 b 2
\Mb -1(1 + cos ¢)

r=r <+ (x - xb) tan (¢ - w) (22"

and

Several calculations of the intercepting shock were made for the same cases considered
in the jet-boundary examples. They can be seen in Figures 5 to 7, where they are compared
to theoretical and experimental results. It can be seen that the downstream distance to the

region where the approximate results diverge considerably from either the characteristic

17
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solution or the experimental curves is roughly equal to the corresponding distance for the jet-
boundary curves. Before this divergence occurs, the accuracy is somewhat better for the

intercepting shock than for the boundary approximations.

It is interesting to derive the equations for the intercepting shock employing the circular-
arc approximation for the jet boundary. In Section 2 it was shown that in this case, substitut-

ing Equation 19 into Equation 18,

r - 1= Rb(cos ¢ - cos a) (29)
The corresponding equation for Xy is
X, = Rb(sin a - sin ¢) (30)
Hence,
d¢ 1
o . (31)
dxb Rb cos ¢
and substituting Equation 30 into Equation 25 one obtains,
X=x + Rb sin @ cos (¢ - ) (32)

Equations 32 and 22 then define the intercepting-shock position. In Figure (9) a comparison

of the circular-arc approximation with corresponding intercepting-shock calculation is shown,
compared to a characteristic calculation. This comparison indicates that with the circular-arc
boundary, the approximate shock radii are larger than shown by the characteristic calculations.
Of course, this is a very low pressure ratio; for larger pressure ratios, the agreement should

be much better.

It is informative to consider the geometry of the boundary and shock structure when the

circular-arc approximation is employed. Equations 32 and 22 may be written in the following

form:
r-r,=R cosp [cos (¢ - 1) - cos (@ - u)] (33)
X - X =Ry cos p[sin (@ - p) - sin (¢ - w)] (34)
where T, and X are the values of r and x when ¢ = a. Thus,
ry = 1+ Rb sin usin (o - W) (35)
Xq = Rb sin @ cos (o - w) (36)
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It should be noted that in Equations 33 and 34, as in all equations dealing with the intercepting
shock, the parameter ¢ refers to the angle made by a tangent to the boundary at the point Xps
ry corresponding to point x, r of the shock. The above relations indicate that the intercepting

shock is another circular arc with radius Rs’ such that

R =R, cos i (37
Rs has the same center as Rb, and the arc is tangent to the straight line leaving the nozzle lip
at an angle o - u with respect to the axis (i.e., tangent to the straight-line approximation to the
last ray of the Prandtl-Meyer expansion fan at the nozzle). Figure 13 illustrates the construc-
tion of the boundary and the shock in this case. It can be seen both from the equations and
from Figure 13 that according to this approximation, the maximum radius of the shock occurs
at the same point at which the maximum radius of the boundary occurs. This is not found in
characteristic solutions, but is a result of the circular-arc approximation used for the bound-
ary. This fact indicates that the approximate circular-arc equations, while quite good for the
boundary, give less accurate results when used for the approximate shock location. However,
the error should decrease as the pressure ratio increases, since the proper limit is given as

the pressure ratio tends toward infinity.
Tangent

to Boundary
at Nozzle

v

)

- - Center Line

FIGURE 13. GEOMETRIC INTERPRETATION OF CIRCULAR-ARC APPROXIMATION TO
BOUNDARY AND INTERCEPTING SHOCK
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At the present time, no calculations have been made using the so-called exponential bound-
ary equations (Equation 21) as a basis for the intercepting shock. This will be done in the

future.

In summary, it is clear that the accuracy of the calculation of the intercepting shock, with
the approximate methods described above, depends to a very great extent on the curvature of
the jet boundary. With the first boundary approximation made, employing a fictitious nozzle,
the curvature is initially very large, so that the calculated shock lies below the proper position.
In the circular-arc approximation, the boundary has a constant average curvature which is too
small initially, so that the calculated intercepting shock lies above the proper position. Hence,
it is desirable to find a closer approximation to the actual jet boundary. In view of the more
accurate representation given by the "exponential" boundary approximation, it is believed that
a more accurate shock position will also result when the shock relations are based on this

boundary approximation.

FIRST M‘}\CH DISC

A method for calculating the position of the first Mach disc in the jet plume from a highly
underexpanded nozzle has been given by Adamson and Nicholls (Reference 1). In this method,
it was assumed that the pressure behind the shock was atmospheric, and a superposition method
was given for calculating the disc position for various nozzle Mach numbers and pressure
ratios. The comparison between theory and experiment was very good. Since the original work
was published, experiments in a different facility have indicated that the pressure behind the
wave is indeed very nearly atmospheric, but that it could vary up to 1.3 times atmospheric.
Hence, some spot checks were made on the theoretical calculations, using a back pressure of
1.3 atmospheres. It was found that very little change in the Mach-disc location resulted in the
3.

)

Mach-number and pressure-ratio range covered in the original report. (1 <M

~ “"nozzle =
10<P /P <100.)
nozzle’ = w

Another check on the original calculation was made using the exact relation for the leading
Mach line in the flow emanating from the nozzle as opposed to the straight-line approximation

used originally. Again no change could be noted in the final results.

In order to apply the above-mentioned method, it is necessary that the Mach-number dis-
tribution along the center line of the jet be known. While the superposition method reported

seems to give good results in the given pressure-ratio range, it is clear that more accurate
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results would be given by employing the Mach-number distribution obtained from a character-
istic solution for a given nozzle. This Mach-number distribution would apply for all pressure
ratios for this nozzle since the inner-core flow, up to the enclosing shocks, is identical for

all pressure ratios.

5
DISCUSSION of RESULTS

Three approximate models, each with varying levels of approximation, have been dis-
cussed with regard to calculating the boundary and intercepting shock of a jet plume. Only
the method first discussed (fictitious-jet model) is completely defined analytically at the pres-
ent time, in that no additional information beyond the nozzle parameters and pressure ratio is
necessary. However, since this model does not predict the maximum diameter reached by the
jet, it may be applied only a few jet diameters downstream of the nozzle. Within this region
of applicability both the jet-boundary and intercepting-shock locations are predicted satis-

factorily.

The second model considered (circular-arc approximation) gives excellent results for the
jet boundary, presuming the maximum radius is known. However, due to the dependence of the
equations derived for the intercepting shock on the curvature of the boundary, relatively poor

results are obtained for the intercepting shock.

The last model presented (equivalent radial flow with variable radius— "exponential" model)
seems to give excellent results for the boundary for the conditions in the one case considered.
However, more comparisons, especially at higher pressure ratios, must be made before further
comment can be made. If this model is as successful on high pressure ratios, then, since the
curvature obtained is a much better approximation to the actual boundary curvature than those
given by the other two methods, the intercepting-shock calculations based on this model should
give correspondingly better results. However, use of this model is still seriously hindered by
the fact that as yet it has not been possible to derive an analytic expression for Ri’ the initial

radius of curvature. Thus, as in the circular-arc model, additional information is necessary.
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