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In this paper we study the structure of the Brauer centralizer algebras in the case
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774 HANLON AND WALES
1. INTRODUCTION

Richard Brauer introduced the Brauer centralizer algebras o)
(see [Brr]) in order to study the centralizer algebras of orthogonal and
symplectic groups on the tensor powers of their defining representations.
Earlier Schur had used the group algebra of the symmetric group CS, to
study the corresponding centralizer algebras for the general linear groups.
Brauer realized that the .o/} have a richer structure than the CS, (which
are always semisimple). In many important cases the «/}" are not semi-
simple and their algebra structure has been an interesting open problem for
many years. Brauer [Brr], Brown [Brn], and Weyl [ We] proved results
about semisimplicity. Recently, we began an investigation of the radicals of
the .« and found many surprising combinatorial and algebraic properties
[HW1-37. This work led to a number of conjectures several of which are
still open. One important conjecture was proven recently by Wenzl [W2].
In this work Wenzl made use of “the tower construction” pioneered by
Vaughan Jones in his work on operator algebras {see [VJ, GHI}). For
related information see also [RaWe]. In the present paper we refine the
tower construction to give a kind of tower construction for the radicals in
the Brauer algebras.

The main step in the tower construction involves taking two semisimple
algebras % =¥ and constructing from them a third algebra #~ which
contains ¥". This is relevant to the Brauer algebras because it can be
used in the case #=./{", and ¥ =.o/}” to construct an ideal
W =.of (1)< o ¥ for which the quotient ./ ;*/#" is just RS, (see [W2])
where R denotes the reals. We consider the case where #/{¥, is not semi-
simple. It is necessary to modify the above construction somewhat to
handle this case. In the modified version # is the semisimple quotient of
o/, ¥ is an appropriately defined left %-module, and the resulting
algebra #” is a homomorphic image of the ideal .o/ ;(1). It turns out that
¥ =/ {V(1)/N"" where N!'is an ideal contained in the radical of & "\
We are able to identify the ideal N{' explicitly.

The above construction is interesting because it is one of the first cases
where the tower construction has been used when the algebras in the tower
are not semisimple. Recently Wenzl [W1] used different methods to
analyze the Jones algebras and the Hecke algebras of type .o/, in the non-
semisimple case.

We will need some definitions and results from [HW1-3]. In all our
work f is a positive integer and x is a real number. Suppose J is a graph
with 2f points and f lines in which every point has degree 1. Then d is
called a 1-factor on 2f points and the set of these is denoted F,. We view
elements of F, as having the 2f points arranged in two rows of / points, one
above the other. For example,
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is a l-factor with f=7. When ¢ is arranged in this way we may talk about
the top and bottom rows of 4. Lines joining points within a row are called
horizontal lines; lines joining a point in the top row to one in the bottom
row are called vertical lines.

The algebra .o/, is an R-algebra with F, as basis. To describe the multi-
plication * let d, and d, be elements of F Place 6, above 3, and identify
points in the bottom row of 4, with the correspondmg points in the top
row of é,. The resulting graph consists of f/ paths which start and finish in
the top and bottom rows along with a certain number y(d,, d,) of cycles
which use only points in the middle row. Form a new basis element J by
letting the edges of & be the paths in the above diagram. The product
3, % 8, is x71P0 9§,

For example, if

%_/

— e I e e
%= M\% —

then (9,,0,)=1s0 8, *x 5, = xd where

e, SN e
== —

The algebra &/*’ is an associative algebra w1th identity which has dimen-
sion |F | = (2f~ DY =2f—1N2f—3)--

As discussed in [Brr], there is an 1mportant tower of ideals in .o/ ;). The
span of all diagrams with at least k horizontal lines in the top row (and sO
in the bottom row) is an ideal in .o/ denoted «/;'(k). The quotients
o/ {(k)/sf Pk + 1), which we denote g/“’[k] were studled extensively in
[HWI] More generally if 4 is any subspace of o (k) we let A[k]
denote the quotient

ALk = (A + Ok + 1)) Ok +1).

and

We will sometimes want to view o/}, as a subalgebra of .o/}*' via the
obvious embedding. If 8' is a diagram in F, , there is a natural diagram
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d in F, obtained from &' by adding a new point on the right of the top row
and a new point on the right of the bottom along with an edge between
new points. Extend this map linearly-to get an embedding of &/, in o/ |*'.

We also need a linear map & from .o/} to «/{*, invented by Wenzl
[W1]. The map is defined on basis dlagrams as follows. If  is a diagram
in F, which has a vertical line joining the fth point in the top row to the
fth point in the bottom row, define &(8)=xd' where 6' € F,_, is obtained
by deleting the last point in each row. Otherwise the fth points in the top
and bottom row are joined to points u and v, respectively. In this case
§(8)=4,, where J, is obtained from J by removing the fth points in each
row and adding an edge between u and v. For example,

(-2
()= (2)

Extend £ linearly to .«/;*". This map £ has the following important proper-
ties. Let u' be an element in &/ {*, which is 4 when considered in .« ("
Then ' '

and

-~

Euxvy=u'*&0)
Eo*xu)y=80v)*u'

for any ve.o/}".
We will also use the element E, in .o/ (" defined by the diagram

Ef—II =

Note that E;xu=ux*E, for u in d“’ We will also use the
antiisomorphism of «/}* to d}" which turns each diagram upsidedown.
We denote this § — §'. The map is obtained by extending linearly.

In [HW1] we determined the radicals of the .o/ {'[k] in terms of the
nullspaces of certain matrices Z,(x). We use these results later and so we
briefly recall the definitions of the Z,(x) and the results relating them to
the radicals of the o (*'[k].

An unlabelled (m, k) partial 1-factor is a graph with f=m+ 2k points, m
of them isolated and 2k of them having degree 1. The set of unlabelled
(m, k) partial 1-factors is denoted 4,, .. A labelled (m, k) partial 1-factor is
an (m, k) partial 1-factor in which the free points have been labelled with
the integers {1, 2, ..., m}. The set of these is denoted B,, ,.
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Let W, , and #, , denote the vector spaces over R with bases B,, ,
and #,, , respectively. As vector spaces we have W, =%, (®RS, . If
A€ B, . and o€ 8§, we let 4®o denote the element in B, , which is
obtained from 4 by labelling the ith free point from the left by o(i). For
example, if

= e /-—--—-:’m\b .
4 ~

and o= (1, 2, 3) then

AR o= s //—5\\ :
Define a linear transformation Z,, ,(x) on W,, . in the following way. For
4,,4,€B,, ,, the 4,, 4, entry of Z,, ,(x) is determined by considering the
graph 4, U 4,. In this graph the free points of 4, are joined to other free
points of 4, or 4,. We have (Z, ,(x)),, 4,=0 unless the free point
labelled i in 4, is connected to the free point in A4, also labelled ¢ for

i=1,2,.. m In this case,
(Z (X)) gy, a4y = X722,
where y(4,, 4,) is the number of cycles in 4, U 4,. If

4;= s [ —_—— . [ —_— . L

A , = [ o » [ o 1 . Q » .
then

4,04,= w 0 —a__»

The symmetric group S,, acts on B,, , by permuting the labels on the
free points of each 4. This action, extended to W, ,, commutes with that
of Z,, «(x). The irreducible representations of S,, are indexed by partitions
u of m. Let Z,(x) be the restriction of Z,, ,(x) to the y-isotypic component
of W, . Note that Z (x) also depends on k.

We work out three examples, which combined appear in [HW1-3] to
demonstrate these ideas. Suppose f=4, m=0, and k=2. There are three
labelled 0, 2 partial 1-factors

Al ——— ro—
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Now
2
X X X
)
Zolx)=| x x° x
2
X X Xx-

The only partition of 0 points is the empty partition, ¢, and Z,(x)=
Zy, 2(x).
Suppose f=4, m=2, and k = 1. There are twelve (2, 1) partial 1-factors.

4, D R
T T S
45 ¢ \i—/.

A4, é PUNN H
Ay H —a :
A4, —~_ b __ H
4y —_ ‘
4y, St Y H
i ——s H )

The matrix Z, ,(x) is given by

~x 01 001 1 00100
0 x 01 10011011
10x010T1000 01
010 x 01010010
01 10 x 0001 001
1 00 10x000T1T120
101000 x0T10T10
01 01000 x0T101
01001010 x010
100001010 x 01
01010110710 x O
Lot 10100101 0 xd



BRAUER CENTRALIZER ALGEBRAS 779

There are two partitions of 2, namely, 2 and 1% The 2 isotypic component
of W, is spanned by 4,4+ 4,, A5+ A4, As+A4¢, A+ Adg, A9+ 4,4,
4,,+4,,. The 1? isotypic component is spanned by 4, —4,, 4,—4,,
Ads—A¢, A7 —Adg, Ag— A4, 41, — 4,,. The matrices Z,(x) and Z,»(x) are

x 11110
I x 110 1
11 x 01 1
Z,0
0 %1
101 1 x 1
01 1 1 1 x]
Cx 1 =1 1 =1 0]
| X 1 1 0 1
11 x 0 1 1
2o o 1
-1 0 1 1 x -1
[ 0 1 1 -1 -1 x|

Let & be an element in F, having & horizontal lines in its top row.
Then & determines a pair (4,, 4,) of labelled (m, k) partial 1-factors as
follows. The edges of 4, are the horizontal edges on the top row of 4. The
remaining points of 4, are isolated. Similarly the edges of 4, are the
horizontal edges on the bottom row of 6. The vertical edges of & give a
pairing between the isolated points of 4, and the isolated points of 4,. We
label the ith point of 4, with j if it is joined to the jth isolated point of 4,.
In this case we label the jth isolated point of A4, with i Note that
(A, 4,)=(n,®0,7,®0c ") for some n,,n,€A,, . and some € S,,.

Let F,[k] denote the set of elements in £, which have & horizontal edges
in each row. Note that F,[k] is a basis for .«/|"'[k]. The above corre-
spondence § « (4,, 4,) in terms of vector spaces gives the isomorphism

'db([x)[k];wm,k®s,,, Wm,k' (11)

We can now state the main result from [HW1] that we need.

THEOREM 1.2. Letr K, , be the nullspace of Z, (x). In terms of the
isomorphism (1.1) we have

Rad( [ (k1) = (Ko k ® 5, Win i) + (Wi B, Ko i)

We assume that x is not zero in our proofs. Many of the constructions
and proofs apply when x is zero but we will not comment further on this.
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2. THE Tower CONSTRUCTION

The rower construction is a method for constructing a tower of semi-
simple algebras. This construction has the important feature that it gives
precise information about the structure of the algebras in the tower. This
method was invented by Vaughan Jones [VJ] and has been used subse-
quently by several authors to achieve a number of striking results in
algebra, topology, and combinatorics [GHIJ].

In this section we describe this method in a slightly more algebraic form.
The point of this is to obtain a construction that we can use when the
algebras in the tower are not semisimple.

Let R be a finite dimensional semisimple R-algebra with matrix ring
decomposition

R=@ R,. (2.1)

H

Here R, is a d, by d, matrix ring. We let ¥, denote the corresponding
irreducible representation of R. Choose bases z/; and e/ for R, and V, such
that

252%:(2-,:% (22)
zhel=4,el.

Finally, let x — x’ be the anti-isomorphism of R which is transposition on

each R,.

Next let M be a left R-module which decomposes into irreducibles as

M=®g,V,

"

For each u choose g, copies of ¥, in M and denote them V (1), .., ¥V, (g,).
Let ¥, (/) have basis {ef(/)}. According to this notation V, (/) is
isomorphic to ¥, via the map which sends e%(/) to e/. Also let M, denote
the ¥ -isotypic component of the left R-module M.

Finally, assume we are also given a right R-module M’ and a linear
isomorphism m — m’ from M to M’ which satisfies

(rm) =m'r.

If nis in M’, define n’ to be the m in M for which m’ =n. In particular
(m'Y=mand (') =n



BRAUER CENTRALIZER ALGEBRAS 781

DEFINITION 2.3. A J-map ¢ is an R bilinear map from M x M’ to R
which satisfies
(A elrx, y)=re(x, y)
(B} e(x,yr)=¢(x, y)r
(C) &lx, y) =e(y, x').

Let 2(M, R) denote the vector space of J-maps from M x M to R which
we may identify with maps from M ®, M to R.

THEOREM 2.4. There is a natural identification between Q(M, R) and the
space of symmetric matrices in @ , End(R**). In particular,

dim(Q(M, R) =Y. <g"2+ ]>.

Proof. The proof proceeds by a series of simple claims. For the most
part the proofs are left to the reader.

Cramm 1. Let xe M, and ye M where A is different from p. Then

&(x, y)=0.

Cramm 2. Fix p. For Lme{l,2,..,g,} and i,je{1,2,..,dim V,} we
have

lerl), efm) V=Rt 2t

Lm, i j<ij

Jfor some h eR.

H

Lm i, j
The content of Claim 2 is that ¢ applied to the pair e/(/), e¥(m)’ is some

multiple of z/.

Cramm 3. hj, . is independent of i and j.

Proof. WY i 2 =e(ef(l), et(m)’)
=¢g(zl ef(l), ef(m) 24,
=28 m, 124, 2%
=1 125-

So k¥, .;=h} . for all i j which proves Claim 3.

In view of Claim 3 we can define a g, x g, matrix H, whose /, m entry
is the common value of A%

Lm i j*
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CLaiM 4. H, is symmetric.

Claim 1-Claim 4 show that any J-map ¢ determines a sequence (H )
of symmetric matrices in @ , End(R*). Conversely any sequence (H )
determines a J-map ¢ by

e(ef(l), ef(m))=hil, 2}

Lm<ij*

It is straightforward to check that this correspondence between J-maps and
sequences of symmetric matrices is an isomorphism. §

Given a J-map ¢ we call the corresponding sequence (H,) the
characteristic sequence of e.

DEerFINITION 2.5. Given a J-map &: M ®z M — R define an algebra
o = (R, M, ¢) with R-basis M’ ® , M and multiplication * given by

(W @u)y*x(a@b)=u"-e(v,d' )R b
=u'®e(v,a’)b.

Conditions (A) and (B) on ¢ imply that * is well-defined on M’ ® M. Also
one can easily check that x is associative.

In this paper we will be interested in the structure of the algebras
(R, M, e). As we have seen, the map ¢ is determined by the sequence of
symmetric matrices (H,). So we can ask how to determine the structure of
the algebra (R, M, &) from the matrices (H,). The next two results
explain how to do this.

DEFINITION 2.6. Let H be a symmetric d by d matrix over R. Define an
R-algebra A(H) with R-basis R“® R“ and multiplication - by

(u®v)o(a®b)=(v'Ha)(u®b).

The following result is not difficult to prove (see, for example, [HW11]).

THEOREM 2.7. Let N and I be the nullspace and range of H. Then

(1) Rad(A(H))=(N®R')+(R‘®N)
(2) A(H)/Rad(A(H))= End(/).

Proof. The subspace N® R? is a left ideal in A(H) for which all left
products are zero. Consequently N ® R? is a nilpotent left ideal and so in
Rad(A(H)). Similarly R*® N is in Rad(A(H)). The dimension of N® R +
RY‘®N is 2sd—s? where s is the dimension of N. Let v,,..,v, be an
orthogonal basis of eigenvectors for I where H(v;) = A,v; with 1,%# 0. There
is such a basis as H is symmetric. The subalgebra spanned by {v;®uv,} is
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isomorphic to End(/). Consequently A(H)/(N® RY+ R“® N)=End([)
and Rad(A(H))=NRR‘+ R‘Q@N. |}

Using this it is a simple matter to determine the algebra structure of
A(H) given the eigenspaces of H. We now come to the result which
describes the algebra structure of «/(R, M, ¢) in terms of the characteristic
sequence (H,) of e

THEOREM 2.8. Let e: M@z M >R be a J-map with characteristic
sequence (H,). Then

AR, M, e)=D AH,),

where the sum on the right is a direct sum of algebras. In particular, the
algebra structure of o/ (R, M, ¢} is completely determined by the nullspaces
and ranges of the matrices H,,.

Proof. It is straightforward to see that
M@ M=@ (M, ®xM,) (29)
u

and that each summand on the right is an ideal in &/(R, M, ¢). So the
direct sum on the right side of (2.9) is a direct sum of algebras. Hence it
is enough to show that M, ® . M, is isomorphic to A(H,,).

By Schur’s Lemma we have

M, @rM,=(R*®n R*), (2.10)

where (2.10) is an isomorphism of vector spaces. An explicit isomorphism
¢ from the right-hand side of (2.10) to the left-hand side is given by

P(a®B) =Y a,B,(ei(l) ®ei(m)). (2.11)

Lm

Recall that a vector space basis for A(H,) is R**® R* It is straightforward
to check ef(/) ®@ef(m)=et(!) ®ek(m) and e!(/) @el(m)=0 if i#])
Consequently, ¢ is surjective. So we can consider ¢ to be a vector space
isomorphism from A(H,) to M, ®, M. It remains to show that ¢ is an
algebra homomorphism. For @, §, v, 8 R% we have

P((a®B)(Y®8))=((B'H,¥)(a®38))
={z (ﬂ/hlllm‘))m)}{z aréfe‘l‘(r),®e‘|‘(s‘)}
Lm rs

= Y % Bymd{(ef(ry ®ei(])) » (ef(m) ®el(s))}

fmr.s
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here using the observation that

(ef(r) ®ef(l)) » (ef(m) @ ef(s)) = ef(r) (h] 2%} ®€i(s)

ef(r) (
hi (ei(r) ®@ei(s)).
So

o((a@P)-(Y®))= {Z ayﬁfef(r)'(@e‘{(l)} * {Z 1’m5se‘{(m)’®e‘{(8)}

m,s

=pa®b)*xo(y®3d). 1

Theorems 2.7 and 2.8 together give a complete description of the algebra
(R, M, ¢) in terms of the eigenspaces of the characteristic matrices H,.
We end with an example which demonstrates how we use these results. See
[Bour] for properties of Rad(A(H)).

ExaMpLE 2.11. Let R=.o/{" and M =o/{" where x is nonzero. Recall
the linear map &: &/{" — &/{" and the anti-isomorphism & — &’ each of
which is defined in Section 1. Let ¢: M ®; M — R be defined by

a®@b)y=8&axb).

It is easy to check that ¢ is a J-map. Wenzl [W2] showed that &/(R, M, ¢)
is isomorphic to </ §*(1) by using the fact that o/ is semisimple. So the
algebra structure of /{’(1) can be determined from the characteristic
sequence of ¢ via Theorems 2.7 and 2.8. We now briefly discuss the
computation of the matrices in the characteristic sequence of e.

R has three one-dimensional irreducible representations. The corre-
sponding matrix rings in R are spanned by the idempotents:

] T X))
vl - X)

Qo)
| =1( )
® X

L g

The 15-dimensional left module «/{" splits into 6 copies of the first
irreducible (g,=6), 6 copies of the second irreducible (g;2=6) and 3
copies of the third irreducible (g,=3). So matrices (H,, H;2, H,) in the
characteristic sequence are 6 by 6, 6 by 6, and 3 by 3 respectively. We
compute some sample entries in the matrix H,. To do so we need to
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determine the V,-isotypic component in /¢ explicitly. It is spanned by
the following 6 vectors:

{111 X 14T )
wi{] 0 7))
{0 D)
(] X+ A -HZ )
w3+ ) H )
W (3 XA

To compute the i, j entry in H, we apply ¢ to the pair D,® D] (ie., we
compute & D, * D;)). This will yield a multiple of /, in «/{*. That multiple
is (H,), ;. We do three examples:

(1) Computation of {(H,)s s. We need to compute &(Ds® D)=
(D * D3).

wesi=t (| 14X D4 D)
e <l [+ X) - ()=

Thus (H2)5'5=x.

(2) Computation of (H,); ;. We need to compute ¢(D;® D))=
E(D:; * DQ). But D3 * DI4=0 SO (H2)3‘4=0.

(3) Computation of (H,),s. We need to compute &(D,, D)=
&(D, * Dy).

481/164/3-13
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SUEE | EE VI D2 AR NN
ATD)-HTA) - HN-HC D)
o opm= (] ]+ X - 2)) -

Thus (H,), ¢=1.

These three computations are typical of those needed to compute the
entries of H,, H,:, and H,. The final matrices turn out to be

FNE

Cx 1111 07
I x 1 1 0 1
1 1 x 0 1 1
=l 0«11
1 01 1 x 1
| 0 1 1 1 1 x_|
~ o 1 -1 1 -1 07
1 x 1 1 0 1
-1 1 x 0 1 1
e N S B
-1 0 1 1 x -1
o 1 1 -1 -1 x|
X2 x x
H,=| x X «x
x x x?

The reader should compare these matrices to the matrices Z,(x), Z(x),
and Z,(x) from Section 1.

3. THE GENERAL CONSTRUCTION

3.1. An Example

We begin by looking at a specific example which demonstrates our
general procedure. Return to the situation considered in Example 2.11 but
this time assume x=0. So R= ./} is not semisimple. We want to see how
the method used in Example 2.11 can be modified to analyze .&/{'(1) in
this case.
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N=<:>.

R/N is a sum of two 1-by-1 matrix rings with idempotents

(17 X )+
AT X))

As explained in Section 1, consider N in &/ {".
Let R=R/N and let M = M/NM (where M = .o/"). It is straightforward to
check that NM has basis

P P P—1
{ o=rg I ' o—-wa\ ' s—\ }
So M is 12-dimensional. As an R-module it consists of 6 copies of the

irreducible ¥, and 6 copies of the irreducible V..
The map ¢: M ® M — R satisfies

gENM@y M)S N
eM®g (NM))S N.

The radical of R is

1

I

So ¢ induces a map &: M ® s M’ — R which turns out to be a J-map.
There are two main ingredients to our general construction.

1. Inheritance. Let J'"' < o/ ®(1) be the span of all vectors obtained by
taking our vector 7_. in N and adding a new horizontal edge in the top

row and a new horizontal edge in the bottom row. So N‘" is the span of
the nine vectors below:

Pt St ot St et
PO SIS L) -
s L I L
s S Sy /\g) \_l—y
& e o  —
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We show that ¥N'" is a 2-sided ideal contained in the radical of .o/ {'(1).
We say that N'" is the piece of the radical inherited from the radical
of o7,

2. Tower Construction. We then show that
o O(1)YND = o/(R, M, &).

Recall that .«&/(R, M, ) may have a radical # of its own. That gives us the
following picture of .« {(1):

AO(1) — (R, M, §)

inheritance procedure 1
N —~ N

o N©® n g
0

—>

where N'© is the true radical of .« {"(1).

3.2. The Inherited Piece of the Radical

Assume we are in the situation where ./}, has a non-trivial radical
N, _,. In this subsection we show how to construct, from N, ,, an ideal
N/ in the radical of +/{*. We say that the ideal N|") is inherited from the
radical of & {*',. For convenience of notation we denote /"' by .

DerINITION 3.2.1.  Let 6 be a diagram in F,_, and let (r, s) and (a, b) be
pairs of numbers with 1 <r<s<fand 1 <a<b</f Define 6}, to be the
diagram in F, obtained from & by inserting a new horizontal edge in the
top row joining points r and s and a new horizontal edge in the bottom

row joining points a and b.
\ >< € Fs then
\-/’

*
5.7
62’3 =
=g
v

The stars in the diagram 83 ] indicate the new edges that were added to 4.
Extend this notation linearly, i.e., given

For example, if

U=za(§5€ed/ 2
[
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define v} %, =3 ;a;6; €. Note that if v is in & ,(¢) then v} is in
A (t+1).

We begin with a technical lemma.
LEMMA 3.2.2. Let (a, b) and (u, v) be pairs satisfying 1 <a<b<f and

I<u<v<f Then there exists p=p(a, b, u,v)ed,_, such that for any
8, me F,_, and any pairs (r, s), (y, z) we have

S mt= (G xpr )L
Proof. We define p according to the following three cases:

Case 1. a=u, b=v. In this case we have

r,s
»oz?

oL *xmyi=x(éd*m
so we can take p to be x times the identity.

Case 2. Exactly one of the equalities a=u, a=v, b=u, b =0 holds. We
assume that a<u<b=1v (the other possibilities are handled in a similar
way). Pictorially we have

6r‘s
b
a a+l u b :
\—/
(3.2.3)
hd v L NS
a a+l u v 4
y.z

Consider the points {a,a+1, .., u}. In 873 the points {a+1, .., u} are
incident to the edges that were incident to {a,a+1,..,u—1} in 6. In 7%
the points {a,a+1,..,u—1} are incident to the same edges they were
incident to in n. So when the product 47 % * ! is formed one goes from

the edge that was incident to p in é to the edge that was incident to p in
n where p is defined by

p+1 if pef{aa+l,.,u—1}
p=4¢ a if p=u (3.24)
p otherwise.

The case p=u in (3.2.4) can be seen by considering the diagram (3.2.3).
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It follows that we can take p to be the permutation
p=(a,a+1, ., u)

in this case.

Case 3. None of the equalities a=u, a=v, b=u, b=v hold. We
assume a < u < b < v (the other possibilities are handled in a similar way).
Pictorially we have

rs
6a.b
a a+l u b v
(3.2.5)
— m——
a A+l u b v uv

Y.z

When the product 67 % * n % is formed, one goes from the edge that was
incident to p in the bottom row of 4 to the edge that was incident to j in
the top row of n where

. {p+! if pela,a+1, . u=2}u{b-—1,.,v-3}
p= p if pe{l,2,.,a-1}uiu . b=2}uf{v—1,.,1}

Also one goes from the edge that was incident to a in the top row of n to
the edge that was incident to »—1 in the top row of = and from the edge
that was incident to ¥ —1 in the bottom row of é to the edge that was
incident to v—2 in the bottom row of . It follows that we can take p

LIS NT TR

This completes the proof of the lemma. |}

DEFINITION 3.2.6. Let .# be a linear subspace of <7, _,. Define £’ to be
the linear subspace of ./ spanned by the set of all v’} such that ve.#,
I<r<s<fand 1<a<b<f
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LemMa 327, Let .# and § be subspaces of o, _,.
(a) If F is a left (respectively right) ideal in o, _, then #'V is a left
(respectively right) ideal in o,
(b) If # is aleft ideal or .# is a right ideal then
I My g (Fa g)b,

Proof. We first prove (a). We assume that .# is a left ideal in o/, ,. It
is enough to show that

Sdxvite g

for all diagrams ¢ in F, and v in #.

Case 1. & is a permutation. One easily sees that
Sxvil=(d%0)2 """ for some SeF, ,
Since .# is a left deal, § » v is in .# which completes this case.

Case 2. J is not a permutation. Then we can write 6=5§_‘;,’ for some
pairs (p, q) and (a, ) and some ¢ F, ,. By Lemma 3.2.2 we have

Sxvii=(8xplab,r,s)xv)iie s

The last inclusion holds because .# is a left ideal containing v.
This proves part (a).
To prove (b), suppose ue ¥ and ve #. Then

uyyxoli=(uxpla b, p,g)xv); e(f* £

The latter inclusion holds because u x p(a, b, p, g)e F or p(a, b, p, q) xvE §
depending on whether .# is a right ideal or # is a left ideal. This proves

part (b). §

DEerNITION 3.2.8. For each f let N, denote the radical of o/, and let
N{" denote (N,_,)".

THeOREM 3.2.9. For any f, N|" is a two-sided ideal of ./, contained in
the radical N,.

Proof. It follows immediately from Lemma 3.2.7(a) that N} is a two-
sided ideal of .o/. Repeated use of Lemma 3.2.7(b) shows it is nilpotent. ||

Theorem 3.2.9 shows how to construct a piece of the radical of ./ from
the radical of </ _,. We call this piece of the radical, ¥ i1, the hereditary
component and we say that this component was inherited from & _,.
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In Section4 we show how to analyze the quotient ./N/" using the
semisimple quotient &, ,/N, ,.

3.3. Heredity for the Matrices Z,, (x).

Recall the matrices Z,, ,(x) defined in Section 1. The rows and columns
of these matrices are indexed by the set B,, , of labelled (m, k) partial
I-factors. So Z,, ,(x) can be considered to be a linear transformation of
the vector space W, , which has basis B,, ,. Let X,, , & W,, , denote the
kernel of Z,, ,(x).

Let f—2=m+ 2k.

DerFiniTION 3.3.1. Let pe B,,  and let (a, b) be a pair with I Sa<b<f.
Define p** to be the labelled (m, k + 1) partial 1-factor which has the same
edges, free points and free point labels as p but which has a new edge from
atob.

For example, if , = e BRI s then

6.9

Y= lo\om
andp wz

In these drawings the newly added edge is labelled with a star.
Extend this notation linearly. So if v=3,¢,p is in V,, , then

Ua.b=Z Cppa, b.
p

DerINITION 3.32. If % is a subspace of W,, . define #'" to be the
subspace of W, ., spanned by all v“” such that ve# and 1 <a<b</,

UV = v vel, 1 <a<b<f).

The main result of this section is

THEOREM 3.3.3. For all m, k we have K}, < K, .. We call K\, the
inherited component of the nullspace of Z,, ;. (x).

It is possible that Theorem 3.3.3 can be deduced using the description of
the radical of d}"_’z(k) and the results in Section 3.2. However, we give a
purely combinatorial proof because we feel that this method of proof may
shed light on the problem of determining the roots of the det(Z,(x)).
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Recall that o/{*,[k] denotes the quotient algebra

A, [k] = o (k) 2k + 1),

793

Let #,, , denote the subspace of .«/{*',[k] spanned by all diagrams for
which the bottom row, 6* has horizontal edges from m + (2i — 1) to m+ 2§
for i=1,2,.., k. It is easy to see that #,, , is a left ideal of .&/;*’,[k] and
is naturally isomorphic as a vector space to W, ,. For example an iso-

morphism « takes the vector « s~ e——e ¢ «in W, , to the diagram

‘ . J Dremmed®
€ Wi,
[ d L

Since .d}{’z[k] acts on %, , it acts (via a) on W, ,. Let - denote this

action. For example we have

and

{::_\?: PO ERRCREIEK:

LEMMA 3.34. Ler 8, be the diagram in o} ,[k] given by

Shateliad i B

Define z,, , to be the element of uq’_;{’ ,Lk] given by

zm‘k=(2kk!m!)"l< Y 0‘1*50*0)

oceSr.:

Then for ve W,, , we have

vak(x) U=Zm'k°v.

ne
—e
~——

Proof. Let T, , be the set of diagrams in g’,‘:“)z[k] which have the
same k horizontal lines in the top row and bottom row and which have the
property that each vertical line is incident to the same points in the top row

and bottom row. In terms of our previous notation,

Th ={6®56®id:5eB, ),
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where id denotes the identity permutation in S,,. An alternate description
of z,, 18
Zmik= 3. 4 (3.3.5)
e Tm

Return now to the proof of Lemma 3.3.4. It is enough to prove the
lemma in the case that v = p, is an element B,, ,. Let p, be another element
of B, .. We show that the coefficient of p, in z,, .~ p, equals the p, p,
entry of Z,, ((x).

Write p,=3® o0 where 64, , and o€S,. Define 4,=6®JI®id.
Suppose that 4-p, is a nonzero multiple of p, for 4€T,, .. Then the
horizontal lines on the top row of 4 must equal the edges of p,. But each
element of T, , is completely determined by the horizontal lines in its top
row. So if 4<p, is a multiple of p, then 4= 4,. So it suffices to prove that

Alop():(zm.k(x))m,yu P (3.3.6)

Case 1. In pyu p, there is a path joining two free points of p,. In this
case we have (Z, (x)}, ,,=0.

Let a=v,, vy, ..., vy, =b be a path in p, U p, joining the free points a and
b of p,. Then there is an edge of p, from v,; to vy, , for all i. Hence there
is an edge in the bottom row of 4, from v,, to v, , for all i. So the above
path is also a path in the union of p, with the bottom row of 4,. Thus
4,2 po=0 which proves (3.3.6) in this case.

Case 2. In p,upy all m paths have one endpoint in p, and one
endpoint in p,. This case uses similar sorts of arguments to those used in
Case 1. We leave details to the reader. |}

We now come to the crucial computation.

LEMMA 33.7. Let ve W, , and let (a, b) be a pair with 1 <a<b<f
Then

- b - X
“m k+1 op® =x((’-m.kOU)a h)

+ ¥ {((a,_b,u)+(b,a,u))*((V,:+%H:,)(v))"-b},

u#a b

where V', is the sum of all diagrams in T, , which have a vertical edge at v’
and H, is the sum of all diagrams in T,, , which have a horizontal edge at
u' where

u if u<a

’

Ww={u—1 if a<u<b

u—12 if u>b.
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Here the cycle (a, b, u) refers to the diagram for the permutation correspond-
ing to the 3-cycle (a, b, u).
Proof. We partition the set T, , ., into disjoint subsets
Tii=T ol wluT, wlwT, where
v=1{4€T, ., 4 has horizontal edges joining « and b}
T,={4€T, .., :4hasa vertical edge at a but not »}
T,={d€eT, . :4 hasa vertical edge at b but not a}
T.={4€T, ., 4 has vertical edges at both a and b}

To=Thesetof 4€7,, ,, which have horizontal edges joining a to u
and b to v where u <uv.

T,=Thesetof 4eT,, ,,, which have horizontal edges joining a to u
and b to v where u > 0.

We write z,, , | as
Z,,,‘k+,=ZV\.+ZU+Z,,+.':‘,,,+.’.'0+:1

where z, =%, 7 4.

We return now to the proof of the lemma. By linearity we may assume
that v=pe B,, ,. We calculate the contribution made to z,, ., °p* by
each summand z, - p**.

2o p?=x(z 10 p)"". (3.3.8)

This is clear since the diagrams in 7', consist of the diagrams in T, , but
with an extra edge inserted between a and & in both the top and bottom
rows:

Zeop= Y (@ bu)s (Vop)™"), (3.39)

uva b

To see (3.3.9) consider a diagram 4 € T, which has horizontal edges from
b to u. Let 4’ be the diagram in T,, , which is identical to 4 except that
the points a and b have been removed from each row and a vertical edge
has been inserted joining the uth point in the top row to the wth point in
the bottom row. We claim that

A= p® = (a, b, u)((4' > p)*). (3.3.10)

To see (3.3.10) consider what happens when we form the product 4 - p** by
superimposing p* on the bottom row of 4. Note that there is a path 2
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which originates at the ath point in the top row of 4, proceeds to the ath
point in the bottom row of 4, then goes to the »th point in the bottom row
of 4 (along p*"), and then on to the uth point in the bottom row of 4
(along 4). In the top row we see the originating point of # at a and an
edge from b to w.

. a : — | ~—— top row of &
N
Ao p?® = — — — ~—— bottom row of A
T — p3P
i z N 3 ) 4
a b u

remainder of ?

In (4'¢p)** there is a path 2’ originating at the (u)th point in the top
row and continuing on to the (u)th point in the bottom row. The crucial
observation is the remainder of the path #’ is the same as the remainder
of the path 2. So the path £ terminates with a point in the top row of 4
iff the path #’ terminates with a point in the top row of 4’. In that case
we have

Aop®=0 and A'op=0

so (3.3.10) holds.

Assume that 2 and #’ terminate with a free point of p labelled a. Then
the only differences in 40 p“* and (4'-p)“* concern the points a, b, and
u. What we see in each case is

ab @ S
Loy [ r it ~~ —
a b u
' a,b L — a
(A" o 2] { " ol B ¥ a |
a b u

Equation (3.3.10) follows immediately. Note that as 4 runs over T, we end
up with exactly the 4" which contribute to ¥, ., , V. and (3.3.9) follows
immediately.

By the same kinds of arguments we deduce that

zpoptt= Y (ba,u)x ((Viop)™?) (3.3.11)

u#tua b

(zo+2)op" =1 Y (abu)+(ba,u)*((H,op)*®). (3312)

TN
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This last equation comes from an equation
40p® =3((a, b, u)+ (b, a, v))((4' = p)**) (3.3.13)

where 4 is in Ty or T, 4" is A4 with a, b deleted and u joined to v in the
top and bottom.

Lastly note that z,,cp“”=0 because if 4€T,, then 4-p** ends up
with an edge from a to b in addition to the (k + 1) horizontal edges that
occur in the top row of 4. Lemma 3.3.7 follows from this observation and
Eqgs. (3.3.8), (3.39), (3.3.11), (3.3.12), and (3.3.13).

We can now return to the proof of Theorem 3.3.3. Let v be an element
of K, . Pick (a, b) with 1 <a<b<f We need to show that

a b

a b _
zm,k+lOU _0

We can compute z,, ., ,°v“" using Lemma 3.3.7. By our choice of v we
have z,, ,ov=0. Let ue {1, 2, .., f} with u not equal to a or h. Note that
V. is the sum of all diagrams in T,, , which have a vertical edge at u'.
Hence V', - v is the projection of z,, , - v onto the subspace of W,, , spanned
by all basis elements which have a free point at u'. Since z,, ,cv=0 it
follows that ¥V -v =0. Similarly H, v is the projection of z,, , - v onto the
subspace spanned by all basis elements in which «’ is not a free point. So
H.-v=0. From Lemma 3.3.7 we have z,, ,, ,cv*"=0 as desired.

4. APPLICATION TO & [*'(1)

In this section we use the above constructions to obtain information
about a certain homomorphic image of d}"“(l}. Assume x is fixed. As in
the previous section we denote .9[}" by /. Let N, , be the Jacobson
radical of .o/ _, and R=.o_,/N, ,. Here we consider o, _,< o, < .o}
by adding vertices with one or two vertical lines to the right of the
diagrams. Let M=/, /N, ,o . Note M is a left R module because
sy Np sy S () N, ) SNy 9, and so o, ,/N,_, acts
on M. Of course R is semisimple.

In order to apply the construction of &/(R, M, ¢) we need a map ¢ and
an involution on M. For each diagram 6 in o/ | let §° be the diagram
turned upside down. Note (N,_,o, ) =4 N, ,. Let "=, N, ,
and note M’ is a right R module.

In order to define a J-map from M ®y; M’ to R recall the map £ from
Section 1. Define first ¢: & | ®@g ;| = _, by e(u®v)=&(uv). If wis
in & _, and u in & _,, recall &(wu)=wé(u) and &uw)=&(u)w. Now if w
is in . _,, e(wu®v)=we(u®v) and e(u@vw)=e(u®@uv)w. If wis in
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N, 5, we(u®v) and e(u®v) w are in N, , and so ¢ can be defined from
MRgM - R

Recall (§(uv)) =&@w'u’) and so e(u®@v) =¢e(v'@u’'). Thus ¢ is a J-map
and we may form the algebra o/(R, M, ¢).

We now come to an important construction due to Wenal. Define ¢
mapping &, @, , % _; = (1) by y(u®v)=uE, v where

Sl

f-2 -1 f

Note that if w is in & ,, wE,=E,w and so y(uw®@v)=y(u@wv).
Therefore ¢ is defined on .« ®,, ,o ,. One can check that
Yt N, 2@ )< N/(‘” and Y(o, | @N, o) )& N;_]_, as N, ,E,is
in N/'" and N;" is an ideal in .«/(1). We may now define § on quotients
Y: M ®g M- (1)/N}". We show both  and y are isomorphisms.

THEOREM 4.1.  The map y above is an isomorphism from o, | ® ,, | S,
onto oZ{(1).

THEOREM 4.2. The map i above is an isomorphism from M'® x M onto
A (1)/N}".

Proof of Theorem 4.1. To simplify notation let B= ./, | and A = .o/ ,.
It is straightforward to check that E,.wE,=&w)E, for w in o ,. This
means

(b, @ b)) c, ®c,y)=bE(brc,)Dc,
and so

Y (b, ®@by)c, @) =y(b,&bc)®¢c,)
=b,&(b,c,) E,c,
=bE byc E, 0,
=Y(b;®b) Y(c,®¢)

Thus ¥ is a homomorphism.

It is shown in [W2] that /(1) is spanned by .o/, _,E, o ,. As ¢ is
clearly onto &7 | E, o |, y is onto /(1)

To show that y is 1 : 1 we show that each element b, ® b, can be put
into a standard form, using the tensor product relations and then that each
diagram in /(1) is obtained uniquely up to powers of x. This shows again
that y is onto and shows it is an isomorphism.
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We note as in Section 1 that a diagram, 6, in F,can be viewed as a triple
(4,,4,,0) where 4,, 4, are unlabelled partial 1-factors and ¢ is a
permutation in S,, where m is the number of free points in 4, and 4,. Here
4, has as lines the horizontal lines in the top of é and free points the nodes
in the top of § which are in vertical lines. The partial [-factor 4, is the
same as 4, except the bottom of d is used. The permutation ¢ describes the
vertical lines in 4. In particular we take o to be the permutation mapping
i to a(i) where the ith free point from the left of the top of J is joined to
the o(i)-th free point from the left of the bottom of 4. We denote 4, by
top(8) and 4, by bot(d). For convenience we denote by the “end” points
of 4,, 4,, or § the nodes on the right. Lines containing an end point are
end point lines. If A is an unlabelled partial 1-factor on f points, we denote
by h(4) the diagram corresponding to (4, 4, id) in F,. This is of course the
diagram whose top and bottom is 4 and whose vertical lines map each free
point on the top to the one immediately below it.

Suppose b, and b, are two diagrams in B. The first step is to use the
relations to obtain ¢, and ¢, for which b, ® b, = x"c, ® ¢, and for which
top(c,) and bot(c,) are almost the same. Let 4 be bot(b,), if the endpoint
of bot(b,) is isolated. If the end point is joined to the jth point, let 4 be
bot(h,) with this line removed. In this case the jth and end nodes are
isolated points. Notice b h(4)= x"b, where n, is the number of lines in 4.
For example,

Now
x"b, ®b,=b,h(A4)® b,
=b,®h(A4)b,.

Note that every horizontal line in bot(b,), is a horizontal line in
top(h(4) b,) except possibly an end point line if there is one.
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Now let 4’ be the partial I-factor determined by top(h(4)b,) again
deleting the end point line if there is one.

h(A') h(4) by = x"h(A4) b,,
where n, is the number of horizontal lines in 4'. Note that
xX"Eh @by =b(4")®h(4) b,

Let ¢, =b,h(4') and c,=h(4) b,. With this choice of x"b, ® b, =¢,® c,.
Note that bot(c,) and top(c,) have lines in the same places except for end
point lines.

The next step is to use permutations in 4, considered in B. In particular,

O ®c,=c,0®0 'c,.

The effect of such a ¢ is to permute the first f—2 nodes in bot(c,)
according to any permutation in Sym(f—2) and simultaneously permute
the first n — 2 nodes in top(c,) by the same permutation. We do this in such
a way that all of the lines except the end point lines in bot(c,) and top(c,)
are to the left. We then permute the free points in bot(c,) except for the
end point. If the end point is in a line we permute the other end to position
f—1 and arrange so the ith free point in bot(c,) is joined to the ith free
point in top(c,). Otherwise the end point is joined to a free point j of
top{c,). Permute the remaining free points in bot(c¢,) so that the ith free
point is joined to the ith free point of top(c,) after removing j.

This is the standard form for b, ® b,. We have shown x"b, ® b, =d,® d,
where d,, d, are as described. We wish to show that the diagram
e=b,E b, arises as a multiple of d, E,d, and for no other d,E,d; with
d{®d, in standard form. We distinguish the four possible cases for the
lines containing the end points of bot(d,) and top(d,):

1.

Yo e e
N [ —
« L TS T
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a0
SRS =
LTI T v
L s S
ISR -
LTS Tee

d, i
e L] L] L 4 L 4 .

These correspond to the following possibilities for the lines in e=d, E, d,
containing end points:

481/164/3-14
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4
.
Lo ~<
.
. o
2. e /—/
. .
. N
3. e
[ .\_"__/0
4. e \<
o -

We must show that given e, the choices of d, and 4, are unique.
Straightforward computations show that the four possibilities for the lines
containing the end points of e correspond to the configurations shown. The
variables for d, are top(d,), k, and line containing the end point of bot(d,)
if it is isolated where & is the number of non-end-point lines in bot(d,). The
variables for d, are bot(d,), k, the line containing the end point of top(d,),
and the permutation corresponding to the vertical lines.

We will do Case 1 in detail. The remaining ones are similar. In this
case k is the number of lines in top(e). The ; is determined by the line
containing the end point of bot(e). The line containing the end point of
top{e) determines the line containing the ( f—2) node in top(d,). The lines
in top(e) determine the lines in top(d,) and those in bot(e) determine the
lines in bot(d,). The permutation is determined by the permutation in the
representation of e as (top(e), bot(e), g). This shows d, and d, are unique.
It is clear any e of this type can be obtained in this way. The only
complication in the other types is working out how the horizontal lines
containing the end points arise.

Proof of Theorem 42. Let N be Rad(A4). It foliows from [Bour,
Sect. 3.3, Coro. to Prop.2 and Sect. 3.6 Coro.1 to Prop.6] that
B/BN® n BINB=B® ,B/(BN®,B+B®,NB). Recall M=NB and
M’ = NB. By the tensor product relations BN® ,B=B® ,NB (as N is
in A.) Clearly

W(BN® , B)=y(B®, NB) = BNE, B.

If risin N, rE,=r/"\"/ so rE, is in N{". Consequently y(BN® B)< N,

as N;" is an ideal. Also
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u v
—  ———
j Nt
u.v _
ab -
I ———

17

If ris in N=Rad & ,, this shows r; } is in BNE, B and shows

N,‘-”: BNE,B=y(BN® B).

Taking quotients gives the result.

To get more information from this construction we must do two things.
First we must identify the ideal N s in the radical of ./, Second, we must
compute the matrices (H,) in the characteristic sequence of the map ¢. We
work towards that in the next sections.

5. THE IDEMPOTENTS OF ./ |’

In order to analyse M’ ® p M we need to identify primitive idempotents
affording the irreducibles. We may know a primitive idempotent of
& °[k] indexing an irreducible u and wish to get a primitive idempotent
of o/ |*'(k) indexing the corresponding irreducible. This requires adding a
“tail” in o {*'(k + 1) to give such an idempotent.

To see how to do this we suppose 4 is a diagram in F, with & horizontal
lines in the top and bottom (ie., 4 € F,[k]). There are a certain number of
irreducible representations of & {*(k+1) labelled #, %, .., #. These
act on modules V, V,,..,V,, which are indeed modules for &\ as
A Nk + 1) is an ideal in &/ §"(0). In particular, 4 acts on each V; and this
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action is an endomorphism of V. As V, is irreducible, there is an element
1, in o F(k + 1) for which F(n,) acts the same on V, as 4 and F(n,) is
the zero action, [J, on V; for j#i. Define the tail of 4 by

H

T(d)y=—-73 1. (5.1)
i=1
Now 4+ T(4) acts on each ¥V, as [ and 4+ T(4)+ o/ (k+ 1) is the
same as 4 in o {"[k]. Of course T(4) is not unique but two different
choices differ by an element of the radical of .« [*)(k + 1). The property that
T(4) satisfies is as follows:

(4 + T(4)) I'e Rad( (k + 1)), (5.2)

Here I'e o/ {(k+1). To see this note F((4+ T(4)) ') =F(4+T(4))
F(I')=0 and so (4+T(4)) I is in the kernel of all the irreducible
representations of .o (k4 1) and so is in Rad .« {*’(k + 1). Conversely any
element T(4) in o/ *(k + 1) which satisfies (5.2) will serve as a tail of 4.

In order to see how to compute T(4) we suppose 4 = (4°)°4 and suppose
we can compute T(4’). Suppose I'=(1")54 with I'" in «{“(k). Now
(4" + TN (X)L is (4 +T(4)) pla, b, ¢!, d’) T')%. which is in
Rad(«/{*(k + 1)) by (5.2) and Theorem 3.2.9. This proves the following
lemma.

LEMMA 53, (T(4'))4=T({(A)%).

Suppose 4 is the identity in d_‘,‘”. Then T(A4)= —3 ¢; where ¢, acts as
the identity on V, and as [J on V,, j# i This means % (¢;) =, (identity).
If 4’ is any permutation

(A +ATAN =44+ T(A)) T
€ 4'(Rad ")

and so

T(4')=A'T(4).

LEMMA 54. If 4 is the identity in o and A' is any permutation,
T(4') = 4'T(4).

This shows that computations of 7(4) can be read from 7T(4) for
diagrams which are permutations with the appropriate number of vertical
lines.

The introduction of T(4) also provides a direct proof for a result in
[HWI1].
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LemMma 5.5. Rad(«/[k])=Rad((k))/Rad((k + 1)).

Proof. Choose ¥ c,4; in Rad o [k]), 4,=(4,+ )k + 1))/ (k+1),
d,e F;[k]. Then Y ¢, 4,43 ¢;T(4;) is an element in the kernel of all
irreducible representations of </ (k + 1) and the irreducible representatives
of &/ [k] and so of all irreducible representations of (k). In particular,
it is in Rad(s/(k)). This provides a map from Rad(«[k]) to
Rad(.«/(k))/Rad(s(k + 1)) which is onto. This proves the lemma. |

We introduced 7{4) in order to produce primitive idempotents for
o/ (k) given one for « ('[k]. Suppose that £ is a primitive idempotent for

“'[k] where &= e+4a¢“’(k+ 1). Consider E=c¢+ T(g). We know that
Z, (E) =0 for 1rreduc1bles F of of “’(k + 1). The remaining irreducibles of
o (k) have o {¥(k + 1) in their kernel and can be considered 1rreduc1bles
of o (k] As such they all represent E by O except the irreducible, %
mdexed by & for which % (¢) has rank 1.

This shows that were E to be an idempotent, it would be a primitive
idempotent indexing #. Furthermore % (E?)= #(E) for all irreducibles
of &/ (k) and E*’—E is in o/ (k+1) as (§)*=& Consequently E* is an
idempotent modulo Rad(.«/(k + 1}). By the lifting lemma for idempotents
[ANT, Th.9.3c] there is a choice of T(¢) for which ¢+ T(¢) is an
idempotent. This will be a primitive idempotent affording &.

6. CONNECTIONS BETWEEN H, AND Z (x)

Consider the problem of computing the matrices H, defined in Section 4.
This would involve finding a primitive idempotent 7 for the matrix ring in
d_“’z/N, » indexed by p, finding a basis for 1o/} | /IN, s/}, and then
computing £ on products of this basis. This is a formldable computation. In
this section we will show the amazing fact that the matrices H, are related
to the matrices Z (x) defined in Section 1.

6.1. If we apply the tower construction from Section 4 with o/},
semisimple we obtain matrices (H,), one for each partition u such that
|u) =f— 2l for some /> 1. The algebra M’ ® , M is semisimple iff all the H,
are non-degenerate and we have shown M’ ® ; M is isomorphic to M}"’(l)
in this case. In earlier work (see Section 1) these authors define matrices
Z,(x)=@®,Z,,(x) which are also defined for partitions u such that
{s| =f— 2l and which also have the property that ,d}x’(l) is semisimple iff
all the Z,(x) are non-degenerate. In this first section we will prove that
H,=Z (x) for all 4 when d}"'z is semisimple and will show that H, and
zZ (x) are related when &', is not semisimple.

The first difficulty we encounter proving that H, = Z,(x) when Jzi“’ is
semisimple is that the two matrices act on completely dlfferent spaces The
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rows and columns of H, are indexed by occurrences of the irreducible
«!Y’, module indexed by p in the left module «}*,. The rows and
columns of Z,(x) are indexed by the occurrences of the S, -irreducible
indexed by u in the space of (m, k) labelled partial 1-factors. Our first goal
is to identify the two spaces upon which these matrices act.

We assume throughout that x is a partition of m<(f—2)and f—2—m
is even. Define k= (f—2—m)/2. We begin by identifying a basis for the
space acted on by H, when .|, is semisimple and a spanning set when
4", is not semisimple.

DErFINITION 6.1.1. For o€ S, define X(o)e F, | by

(a) X(o) has vertical edges from ¢ in row 1 to a/ in row 2 for
1 <ig<m. X(o) also has a vertical edge from (f—1)in row 1 to (f—1) in
row 2.

(b) X(o) has horizontal edges from m+(2j—1) to m+2j for
j=1,2, ..,k in both the top row and the bottom row.

Extend this notation linearly to RS, ie., if 1=3,¢,0,1s in RS,, then
=Y ¢, X(a)).
{

For example, if f=9, m=3 and o =(1, 2, 3) then

DEFINITION 6.1.2. For each (m—1,k+ 1) (unlabelled) partial 1-factor
0, let Y(0) be the diagram in F, | satisfying:

(a) There are k+ 1 horizontal edges in the top row of 8. They join
the points (im— 1)+ (2i—t)and (m—1)+2ifori=1,2, .., k+ 1.

{b) The k + 1 horizontal edges in the bottom row of Y(J) are exactly
the edges of 6.

(c) There is a vertical edge from the jth point on the top row of Y(d)
to the jth free point of 4 on the bottom row of Y(4).

For example if m — 1=k + 1 =3 and

PEANLS N

Py Qe e
then Y(&):\\\ .
— N
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DeriNITION 6.1.3. For each (m+ 1, k) (unlabelled) partial 1-factor ¢
and each je {l1,2,.,m+ 1} define Z(3,j) to be the diagram in F, ,
satisfying:

(a) There are k horizontal edges in the top row of Z(4, j). They joint
the points (m+ 1)+ (2i—1)and (Im+ 1)+2ifor i=1,2, .., k.

{b) The k horizontal edges in the bottom row of Z(4, j) are exactly
the edges of o.

(c) There is a vertical edge from the (m + 1)}st point in the top row
to the jth free point of & in the bottom row. The other vertical edges join
the first m points in the top row to the other free points in ¢ in order. In
other words, the /th point in the top row is joined by a vertical edge to the
{th free point of § in the bottom row where

i l if I<jy
T+ if />].
For example, if j=3 and

6=cw@o

then

Note that the vertical edge joining the starred points is the one vertical
edge which is out of order.

At this point we have developed notation for a number of diagrams in
F, . We use these diagrams to build an indexing set for the rows and
columns of the matrix H,,.

DerFINITION 6.14. For e, | ., and re RS, define 4(J, r) to be
A(8, )= X(1) * Y(8).
For example if § = o _» ~ and = (1, 3)(2, 4) then

A(é",):{ St s T e ) }.{\Q L e 0——4}
Gl Orel  Bn® L L, s
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DeFINITION 6.1.5. For 6e€%B, ., je{l,2,..,m+1} and 1eRS,
define

B(4, j, 1)=X(t) * Z(9, j).
For example if j=3, t=(1,2,3,4)and d= + ¢« > YIRS

RN Gubatud RINNSSS N

~> \__}(/
In these definitions note that f— l=m—142(k+ 1), A(d,7) has k+ 1

horizontal lines in the top and bottom and B(4, j, t) has k horizontal lines
in the top and bottom.

LEMMA 6.1.6. Suppose that t,, .., 1, are linearly independent elements of
RS,,. Define sets A and B by

A={A((S, T[):[zl, 2, ...,p,éeﬂm‘l‘k+1}
B={B(6,j, 11):j=1, 2, ...,m+ 1,1= 1, 2, ..,,p,ée.@m+l‘k}.

Then AL B is a linearly independent set of elements in <, .

Proof. By considering horizontal lines in the bottom row it is enough
to show that

(i) {405, 1,):1=1,2,., p} is linearly independent for each
0€B,_ 1 1+, and

(ii) {B(3.j,t):{=1,2,.,p,j=1,2,.,m+ 1} is linearly independent
for each de &, ,, .

First fix 6e #,,_, (., and consider the set {A(d,1,):/=1,2,..,p}. By
the linear independence of the 7, it is enough to show that ¢ can be
recovered from A(J, ) for each g€ S,,. In A(J, o) there is an edge from
f~110 ¢ 'min the top which can be used to determine o~ 'm. Also there
is a vertical edge from the jth free point of J in the bottom row to the
(6 7'/)th point in the top row (for j=1, 2, .., m—1). These edges can be
used to recover the rest of ¢~ '. Hence ¢ can be determined from A(3, o)
so {A(8,1,):1=1,2, .., p} is linearly independent.

Next fix de4,,, . , and consider

{B(o,j,t,):j=12,..m+1,i=12, ., p}
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Again it is sufficient to show that j and o can be recovered from B(4, j, )
for all j, . In B(4, j, o) there is a vertical edge from f— 1 in the top row to
the jth free point of é in the bottom row. This vertical edge determines j.
Also there is a vertical edge from the ith point in the top row to the dith
free point of é in the bottom row where

) if oi<j
gi=< | . .
(oi}+1 if ai>].
So one can recover each value gi. This proves the lemma. ||

Let f, denote the dimension of the S,-irreducible indexed by u. Fix a
matrix ring decomposition of RS, and let r,, .., m; be the (1, 1), (1, 2), ..,
(1, f,) entries in the matrix ring indexed by u.

DerFINITION 6.1.7. Define S to be the set
S={A(6,n,):l= 1,2,...,f“,5€.93m-1,k+1}
U{BG,jm) =12 ni=12, ., m+1,0€B, ., .}

By Lemma 6.1.6, S is a set of linearly independent elements of <7 .
A straightforward computation shows that

X(n,) % £=x*2

for all XeS. So, if x#0, then the elements of § are contained in
X(n,) o7, Also note that

lslzlgmfl.k+llfu+';@m,(l_k’ (m+1)fu
- f—1 =1
=/ {< —1>(2k+1)”+( +1)(m+l)(2k_1)”}'

m m

It follows from the construction in [HW1] that (1/x*) X(n,) considered
in &/{,[k] is a primitive idempotent affording the irreducible indexed
by u. Let E=E(n,)= X(n,)+ T(X(n,)) be the x* multiple of a primitive
idempotent of ¥, (k) indexing the irreducible of &/ {¥,(k) indexed by u
(see Section 5). We have

(E)’=x*E

We need a spanning set for Eo/{”, mod N,_,/}* . In this section we
denote the image of elements I” in & ("', modulo (N, _,«/}",) by I'.

DEeFINITION 6.1.8. Define S to be the set ES.
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LEMMA 6.19. With notation as above, E</\) is spanned by S. If
N, ,=0, ES is a basis for E&\" . In particular dim M <S).

Proof. Recall for this that f—1=m~+ 1)+ 2(k—1), A, n,)e
o (k+1), and B(S, j, m))e .o | (k). .

As (E)’=x*F and Ee.«, ,(k) we need only consider the images EA for
diagrams in .o/}’ (k) (ie., at least &k horizontal lines in the top and
bottom).

Suppose first 4 is a diagram in & }" (kK + 2). We wish to show E4 is in
N,y . We know that if 4" is a diagram in .o }*,(k+1), E4" is in
N, , here considering E in .&/{*, in the usual way. (see Section 1). This
is because A’ is in the kernel of the irreducible indexed by u. Showing
EAis in N, ,«!" is equivalent to showing Edo is in N, ,o/!", for a
permutation ¢ and conversely. This means we can permute the bottom row
of 4 any way we wish. We now divide into two cases.

Case 1. The (f— 1)st top node of 4 is part of a vertical line. (6.1.10)

In this case permute the bottom row of 4 so that a vertical line joins the
(f—1)st top and bottom nodes. The resulting 4 considered in .o/ {*', is in
;' (k+2) and so E4 is in N, ,.o/;",. Note this argument works even
if 4e.o/;7 (k+1) for Case 1.

Case 2. The (f— 1)st top node js part of a horizontal line. (6.1.11)

Suppose the ( f— 1)st top node is joined to ¢ on the top. Pick a hornizon-
tal line on the bottom, say (a, b). Let 4, be A except the horizontal lines
(¢, f— 1) and (a, b) are replaced by vertical lines (¢, a) and (f— 1, b). Now
EA, is in N,-,z,d}:f’, by Case ! (see last sentence in Case!l if A is in
F,_[k+2]) Now let 4, be in .Q{',"’, with horizontal lines (a, ) on the
top and bottom and all other top nodes i joined to the bottom node i. Now
A4=4,4,and EA=E A 4, and E4isin N, ,o " also.

This shows we need only consider diagrams in which there are either &
or k + 1 horizontal lines in the top or bottom. By the remark at the end
of Case 1, if there are & + 1 horizontal lines we may assume the (f— 1)st
top node is part of a horizontal line. Note this is the situation for the
diagrams in S.

Suppose, then, that 4 is in F,[k + 1] and the (/— 1)st node on the top
is joined to the cth node on the top. If E4 were in ! (k+2),
EEA=x"EA would be in N,_,&/'" . Consequently we may assume that
EA has terms in F, [k+1] which means this is the case for X(n,) 4. In
particular, all diagrams appearing in X(n,) 4 have horizontal lines in the
top in the same positions as those of X(x,) and have horizontal lines in the
bottom in the same positions as those of 4. Each must have one remaining
line on the top. The line containing the ( /— 1)st top node for a permutation
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in §,, will be a vertical line depending on the focation of ¢ and the top of
4. Tt will be vertical for all permutations in S,,. In this case, applying E
again will give an element in N, ,.o/{*, by Case | above. Otherwise, it will
be a horizontal line joined to one of the first m top nodes. The remaining
first top m nodes must become vertical lines joined to points on the bottom
of 4 which are on vertical lines. For a given ¢ occuring in xn,,
X(o) A= A(d, 61) where § is the unlabelled partial 1-factor whose lines are
the horizontal lines in the bottom of 4. The permutation t can be obtained
considering X(e) 4. If in X{(e) 4, the top node b 1s joined to the top
(f—1)st, 1(m)=b. For 1 <i<m—1, the top ith node is joined to the jth
node of & where (j)=i Now X(e)d=A(d,7) and X(o)d=
(1/x*) X(g) X(e) A= A(S,01). In this case X(m,)d4=X(5 n 1) As =,
represents the (1,1) entry in the representation indexed by pu, 7t
represents an entry in the top row and so is a linear combination of
Ty, Rz, - Ty, Now X(my) 4 is a linear combination of A(J, ), .., A(, m;;)
and F4 minus the same linear combination of EA(d, n;), ..., EA(J, T, is in
M (k+2)and soin N, ,.o} .

In the final case, 4 is in £, |[k]. If E4 is in .o/ ,(k + 1), the argument
above with E-FE-A4 handles this case. We may assume then that some
terms in E4 are in F, _[k] and again the same is true in X(m,) 4. The
points in the top on vertical lines must be on vertical lines in X(n,) 4.
Arguing as above, X(rn,) 4 = B(d, ), m,t) where the (/- 1)st top node is
joined to the jth node on the bottom on a vertical line. The d is the partial
1-factor whose lines are the horizontal lines in the bottom of J. Again
this is a linear combination of B(d,j,n,) 1<i</f, and EA minus the
corresponding linear combination of EB(J, j, n,) is in N, .o/§ .

This shows E&/ (", is spanned by S. If o/ (", is semisimple N, ,=0 and
ES is linearly independent as S is linearly independent. This completes the
proof of Lemma 6.1.9.

At this point we define a matrix J#, which is closely related to the matrix
H, (in fact equal to H, when &/ }{‘2 is semisimple). We show that ., and

" .
Z,(x) are equal and H, is a quotient of them.

LEMMA 6.1.12. Let 2, and X, be elements of S. Then for some A,
e(FX |, (EL,) )= AE.

Proof. We know from Section 2 that E((EX,)* (EX,)") is a multiple
of E.

DeFINITION 6.1.13. Define an [§] by |S| matrix #, by saying that the
2, &, entry of J, is the multiple of E given by e(EX, (EZ,)'). In other
words,

EEL, (EZ,))=((H)s, ) E
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Before continuing we must recall exactly how the matrices Z,(x) were
defined. Recall that a labelled (m, k + 1) partial 1-factor is a partial 1-factor
where the m free points have been labelled with the numbers 1, 2, ..., m. The
set of labelled (m, k +1) partial 1-factors is denoted by B,, ,,,. In this
section we usually denote a labelled (m, k + 1) partial 1-factor by a pair
(5,06)€ B, 1 xS, The matrix Z,, , . ,(x) has rows and columns indexed
by B, .- The (8,,0,), (5,, 0,) entry is

X701 80 if o,=0,1(8,,8,)""

CAPRTE NP (6.1.14)

otherwise.

Let W, ,,, and #,, ,,, denote the R-vector spaces with bases B,, , .,
and 4, , ., respectively. Thus

Wm,k+l= ﬂ’/;n.k+l®RSm

and Z,, ,,,(x) represents a linear transformation of W, ,.,. The
symmetric group S, acts on W, ,,, via the left-regular representation on
the RS,, tensor component. The matrix Z,, ., ,(x) commutes with this
action thus Z,, , , ,(x) preserves the space

W, =%, 1@ RS,). (6.1.15)

The matrix Z,(x) is defined to be the restriction of Z,, , . ,(x) to W .

DerFINITION 6.1.16. Let ¥ be the span in &/}, of ES.

(a) For 6eB,, | ,,,, let 6, be the diagram obtained from & by
adding a new free point at the end (position /). Then

O(EA(S, 7)) =0,@m,

(b) For deB,, ., , and je{l,2,..,m+1} let §, be the diagram
obtained from J by adding a new point at the end (position /') and joining
this new point by a new edge to the jth free point of 4. Then

@(EB(d, j, m)))=0,®@m,.

It is straightforward to check that ¢ is a 1-1 map. By comparing dimen-
sions one finds that ¢ is an isomorphism from V' to W,. We now come to
a basic result.

THEOREM 6.1.17. @, =Z (x)o@.

Proof. For each pair 2, X, of elements of § we will compare the
2y, &, entry of &, to the (EZX), (EX,) entry of Z (x).
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Case 1. X, =A(6,,n,)and 2, = A(J,, n,) where ,,5,€B,, | ,,, and
r.se{l,2,..,f,}. In the following arguments we only need terms in
F;_,[k] for our computations and so we do not need to compute
§(EX,, (EX,)’) but rather &X(rn,) X,, (X(n,) £,))=&ZX,, £,). Note that

E(A(d,, m, ) * (A(d,, 1)) =X(r,) *x &(Y(d,) * Y(4,)) *x X(n,). (6.1.18)

The product Y(d,) * Y(J,) can be formed using the following picture:

N

61
(6.1.19)

{ X _ & __F Q62

Some of the following computations are most easily done by means of
pictures. So we need to devise a bit of notation. If ¢ is a permutation in S,

then
o |

is used to signify the diagram in F, representing ¢. This notation is
incorporated into larger pictures. For example, the picture

O g

Oy o

denotes the diagram which has ¢ in its first / columns followed by horizon-
tal edges from /+ 1 to /+ 2 and from /+ 3 to /+ 4 in each row. We extend
this notation linearly. So if t=3%, ¢,0 € RS, then

E denotes Zc,,Z!.

a

By inspection of (6.1.19) we have
g St Do

64,6
V(b)) + V(b = (x’( : ”) - (6.1.20)

B Peowng

From (6.1.20}) it follows that

(VG50 + ¥(8)) = <x7(61'62))

ot et 2t I " (6.1.21)
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For a, € §,, and 6€ S,, |, we have

B S U

S

Qe Goorr Gy
=]
s -2 D Sreren
*
Dpend® Do Breeeev®
- [ ]
Poereng Crrenly Dorre)

Oreere ey Sl
1
A
Poooeng S Sl
Derrreed P oy
-

where in the last line o€ S,, | is extended to a permutation in S,, by
having it fix m. Combining this with (6.1.21) we have

X(m,)E(Y(0,) * Y(3,)') X(n,)' =
(6.1.22)

¥(61.63)
xRl cadg (x‘r(61,6:.)ﬂ'1
a3 Purrrgy

where ¢, and d, are the coefficients of « and § in n, and =, respectively.

We know that the sum of terms in F, ,[k] in (6.1.22) is a multiple of
the sum of terms in F, ,[k] in X(=m,). To find out what multiple we can
look at a particular diagram, namely,

Soeerg P
Recall that the coefficient of the identity in 7, is 1. From (6.1.22) we have

(H#,)5,. 5, 18 (x™® %)) times the coefficient of the identity
permutation in n,1(d,, d,) 7.. (6.1.23)
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An equivalent formulation of (6.1.23) is
(H) g, 0= (7121000 <Z ozdﬁ) (6.1.24)
x f

where the sum on «, 8 is over pairs satisfying at(d,, d,) = .
Next consider (Z,(x)) As o, and J, are in B,, |, ., we have

PTEAIRIL
P(2)=(3,)o®m,
P(2,)=(82)o®m,,
where (9d,), is obtained from §, by adding a new free point at the end. Thus
1((31)o, (32)g) =1(84, J5), (6.1.25)

where 1(d,, d,) is considered to be an element of RS, via the usual
embedding of RS,, , in RS, So

(Z, (XN pir) oz = X082 Z c,dy (6.1.26)
x p
where the sum on the right is over pairs a, f§ satisfying at((d,)q, (d5)0)=F.
Combining (6.1.24), (6.1.25), and (6.1.26), we have
('}ﬁ)z..x; = (Z,,(-\'))qu.). o)

Case 2. X, = A(6,n,) and 2, = B(n,j,n,) where d€F,_, .,
neF, . je{l,2,.,m+1}and r,se{l,2,.,f,} In this case we have

E(A(d, 7)) * Bln, j, m,)) = X(m,) « &(Y(6) x Z(n, j)') * X(m,)".

As above we need to examine the structure of Y(8) * Z(#,j)' to determine
its image under & To compute that product we draw

m-1
[ \‘\“\‘ _
Y(6)* Z(n, j) = . (6.1.27)
J
===
m+41

Note that Z(n,j) has k horizontal edges per row and Y(d) has k + 1
horizontal edges per row. So Y(J) * Z(n,j) has at least k + 1 horizontal
edges per row.
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Subcase 1. For some pair (u,v) with 1<u<v<m we have a
horizontal edge between points »# and v in the bottom row of
Y(8)* Z(n, ). So & Y(8) * Z(n, j) )= x">"4, where 4 looks like

P
4= I
M L e L s

We expand X(m,)* &(Y() * Z(n, ) ) * X(n,) as ¥, yc,dyx"* "a 4B
where again ¢, and d; are the coefficients of « and § in n, and n,. Each
term has a horizontal edge in the bottom joining 8~ '(u) to §~'(v). None
of these terms appear with non zero coefficient in X(m,). As ¢(2, ® X,) is

a multiple of x(=,), the multiple must be 0 and so
(#)s,. 5,=0. (6.1.28)

Next consider 6, and 7,:

l [) () 0 1K) b0

The edge between u and v in 4 comes about because in d U n there is a
path between u’ and v’ where ¥’ and v’ are the vertices of n joined to v and
v. As this path does not intersect j in #, this is also a path between these
vertices in 6, 1. This shows that

(Z,(X)) gz, oz =0 (6.1.29)
This case is now complete by (6.1.28) and (6.1.29).

Subcase 2. There are no horizontal edges between pairs (u, v) with
1 <u<v<min the bottom row of Y(8) * Z(n, j)'. As Y(6) * Z(n, j) has as
many horizontal edges on the bottom as on the top, there must be a
horizontal edge from m+1 to / for some [/ with 1</<m. Now
E(Y ()= Z(n,Jj)') is of the form

{(¥(6) » 20, 3)') = x7EM) ( : ]) (6.1.30)
4 m<+1

There are m—1 vertical lines between 1,2,..,m—1 on the top and
{1,2,..,1—1,1+1, .., m} which gives a 1-1 map d between these sets say
from the points on the bottom to {1, 2, ..,m~ 1} on the top. Extend this
map to a permutation in S,, by defining a(/)=m.
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Again let ¢, dj be the coeflicients of « and f in n, and =, respectively for
o, fin §,,. Expanding X(n,) * & Y(6) * Z(n,j)') * X(n,)’ we obtain

X(m,) E(Y(6) * Z(n,))') X(n,)

=x" Y e dy X(2) 8(Y(8) * Z(n, j)) X(B~').  (6.1.31)
1.[’.

For fixed a, f we have

Do Brnewl? Qoo
a
Oreeexl Smrma Gr—
= x¥6m & ]
Ul
Droe® Gl By
B-l
Qe Peerro Baxeeel®
6 Sy G S
- X-Y( m { 003.1 }
Lo s 3 Prmg

Considering terms in F, ,[k] only we know X{=,} & ¥(8) * Z(n, )} X(x,)
is (#,)z, 5, X(n,). As the coefficient of the identity in X(r,) is 1,

(), 5, =x""" ¥ c,d, (6.1.32)
x, fe Sy
26 = f

481:164/3-15
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We next consider (Z,(x)),z,). w2, Ve have

8
8 [ ] 2
i /ﬂ.\‘
no ( ) L ]
[ n m

Note that 7(8, n) =7(d,, 1) and that there is a path in 6 Un between the
Jjth and the /th free points in n. This path yields a path in d, U5, from the
mth free point of &, to the /th free point in y,. With this observation it is
easy to see

(8o, o) = 0. (6.1.33)
Let o, 8 bein S,,. The (6,®a, n,® f) entry of Z,, ,(x) is

%0 no) if  ao(i)=p(i) forall i

Z P =
(Zn N son e {0 otherwise.

This means

(Z,(N) piz)). pizn = X700 0} Z c.dp (6.1.34)
x, fes,
a0 = fi

Case 2 is now complete by (6.1.32) and (6.1.34).
Case 3. X,=B(b,j,n,)and X,=B(n, [, n,). As above we have

&(B(d, ), ) * B(n, I, m,)) = X(n,) &(Z(, j) » Z(n, 1)) X(x,)

The diagrams here are

m m+1

e o - L TR s D o ]
[ & o ] 0 ) &
j
Z(3,j)* Z(n, 1) = . (6.1.35)
C ) 2 ) D) | ]

This is also divided into subcases.

Subcase 1. For some u, v with 1 <u<v<m there is a horizontal
edge joining u to v in either the top or the bottom row of Z(4, j) x Z(n, [}
In this case (K#,);, 5, =0=(Z,(x)),,) o(r, using the same argument as in
Subcase 1 of Case 2.
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Subcase 2. The vertices m+ 1 on the top and bottom of Z(J, /) *
Z(n, 1) are joined by horizontal lines to vertices which must be less than
m+ 1 (see (6.1.35)). In particular suppose m+ 1 on the top is joined to r and
m+ 1 on the bottom is joined to s where | <r, s <m. The diagram is now

f m+1
o o No /a2l s e . s
2(6,3) » 2(n, &) = X7 { ?V }
e o .- r Y e ST T DY
) s m+1

where T is a 1-1 map from {1,2, ..., m}\{s} to {1,2,..,m}\{r}. Extend ¥
to a permutation t by defining (s)=r.
If « and B are in S,, we have

X(@)2(2(84) » 2n0)'JX(8)'= X761 : ” ]

Py Bl E e 2
g1
Sy E -] S
PO R
= x7(6"’) urﬁ“

Again let ¢,, dg be the coefficients of « and f§ in 7, and n,. As in Case 2,
()5, s, is the coefficient of the identity in X{(r,) &(Z(3, j) * Z(n, 1)) X(n;).
This is

(), o =x"" ¥ c.dy. (6.1.36)

% Bes,
at=f

Now consider 3, and 7,:

2 C e S —
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Note that y(d,, 7o) = (9, 7). Because we have horizontal edges from m + 1
to r in the top row and from m+1 to s in the bottom row of
Z(4,j) = Z(n, 1), the following paths are present in é U #:

1. a path from the jth free point of d to the rth free point of § if r <
and the (r+ 1)st free point of J if r>j.

2. a path from the /th free point of y to the sth free point of n if s </
and to the (s+ 1)st free point of n if s> /.
Now in 8, n, there is a path from the sth {ree point of 5, to the rth free
point of ;. It follows that

(30, o) =T. (6.1.37)

The condition for the (6,®a, n,® f) entry of Z (x) to be nonzero is
that §=ar. This gives

(Z A iz ozn =X Y eody,. (6.1.38)
S Bes,
xt=ff
Now
() z, 5, = (Z (X)) iz, 0122 (6.1.39)

follows from (6.1.34) and (6.1.38). This completes Subcase 2.

Subcase 3. The vertices m+ 1 on the top and bottom are joined by
vertical lines to vertices which again must be less than m + 1 (see (6.1.35)).
In particular suppose m + 1 on the top is joined to s on the bottom and
m+ 1 on the bottom is joined to r on the top. The diagram is now

—1

This subcase can now be completed in exactly the same way as
Subcase 2.

(z6.) » 2n0)') = stm{

$ m+41

This completes all parts of Theorem 6.1.17.

6.2. More about ¢

In this subsection we are going to prove another important property of
the isomorhism ¢: V-—-n, W, ., ,. Recall from Section23 that X,
denotes the kernel of the map Z,, ,(x) and that K}, denotes the subspace
of W, ., obtained from K, , via the inheritance construction. In
Section 3.3 we showed that K{}), is contained in the kernel of Z,, ., ,(x).
The main result of this section is
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THEOREM 6.2.1. ¢ '(m,K!V)SEN, (.

Proof. Let n be an element of K, , and let (i,j) be a pair with
1<i<j<f We write ¢ 'n,n” in the form E *u v where ue N, , and
veo [ . Write

h= Z C6,0(6®0)’
(8, 0)

where the sum is over pairs (J, o) consisting of an unlabelled (m, k) partial
I-factor 4 and a permutation ¢ in S,,. Define r(n)e .o/ (', by

rin)= 3 ¢5,(0,®5®0)
(8, o)

where 3, is the (unlabelled) (m, k) partial 1-factor with free points
1,2,..,m and edges from m+(2/—1) to m+(2l) for I=1,2, .., k.
Pictorially we have

() = 3 s { < T }
( L ]

Since ne K, ,, r(n)isin N,_,.

It is convenient here to define y on the linearly independent set
A(d,0)u B(S,0) 68, by y(A(d,6)=8,R0a, Y(B(S,j, 06))=0d,x0 (see
(6.1.16)) and extend 7y linearly. Clearly y and ¢ are connected by
P(E(A(S, m;))) =7(A(d, n;)) and @(E(B(9, j, n;))) =7(B(9, j, m,)).

Case 1. j</f In this case the following Claim proves our result.

CLaM. ¢ '(mn")=x"¥Exr(n)x Iy, which will hold if 7 (m,n")=
X(my) * rin) * I'; where

[N NG

Proof of the Claim. By linearity of y it is enough to show that
' (0®0) ) =x"*X(n)* (5,Q6R0c) * r,
for all n,o€e S, and all e 4, ,. Equivalently we need to show that

7w - (®id))=x"*X(w) * (6,®5®id) + T, (6.2.2)
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for all we S, and all § € #,, , where id denotes the identity permutation in
S,,. To see this we split into two subcases.

Subcase 1. Suppose that the last point of § (i.e., the (f—2)nd point)
is a free point. Let 87 denote the unlabelled (m — 1, k + 1) partial 1-factor
obtained from 67 by removing the f'th point.

By the definition of 7 we have

y - (®id)") = e e (6.2.3)
. S‘}}‘ B

]

Observe that the diagram on the right-hand side of (6.2.3) can be factored
as

7-1(u e id)u') — \\ \_\ ]
b — ) h ) e, ] g

1 A\ XX

This proves the claim in Subcase 1.

Subcase 2. Suppose the last point of d is not a free point. Say the last
point of § is adjacent to the /th point. Let 67 be the (m + 1, k) (unlabelled)
partial 1-factor obtained from §Y by removing the point f and the edge
from f to I From the definition of ¢ we have

D E ] Qe
A
7"(u ) id)”) = .
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The diagram on the right-hand side of the above equation can be factored

as
7 (0 (0®id))=x ¢ — e I
& - -6

DD NN

=x"*X(w)* (0,®6®id) * I';

This proves the claim in Subcase 2 and completes the proof of the Theorem
in Case 1.

Case 2. j=/f. In this case the following Claim proves our result.

CramM. vy~ Ymn")= X(m,) r(n) 2, where

RN

Proof of the Claim. As in Case 1 it is enough to show that
Y Hw- (6®id)’ ) =x *X(w)* (5,®IRid) * Q2,.

for all e S,,, 6€B,, .. Let 3" be obtained from 67 by removing the point
f and the line from i to . Then

7w (®id)") =

*®
\ N ST T T
e ) A ) A ) J'—-F
i

It is straightforward to check that the diagram on the righ-hand side has
the factorization
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o (B 8id)T)= x \\\ Hjl

N

=x*X(w)+ (5g @ 6®id)»Q .

This completes the proof of Theorem 6.2.1. |

7. THE STRUCTURE OF THE RADICAL OF .9/;:"’

We can now determine fairly precise information about the structure of
the radical N, in terms of the matrices Z {x).

7.1. A Fiftration on N,

Let u be a partition of m and let f be a positive integer with f—m =
2(k+ 1) even. Recall that K/''[u4] denotes the part of the nullspace of

Z ,(x) which is inherited from K,_,[u] Let Z“(x) denote the induced
acuon of ZAx) on myW, ,,\/K;""[u]. According to the results in
Section 6, Z (r) is equal to the matrix H, in the characteristic sequence
for e. Let P,[u] and Q[ p] denote the nullspace and range of Z,,(x)-
Denote the radical N, of &\ by N/*. Denote by N[ u] the u piece of
the radical of d}“’[k].

By the construction in this paper we have

NOul= P, [p1® Q[ p]) @ (Q,[#1® P [ u])
S(PLpl®PLu])®N 1] (7.1.1)

DEFINITION 7.1.2. Define ideals N/*“[u], N/ ®[u] and M'V[p] as
follows:

(A) (i=0) Relerring to the decomposition in {7.1.1) we have

NEOPLul=(PLpul®Q,[u])® (P [ul1®P [ u])® N[ 1]
NOOLpl=(Q, [ u]1®P L)@ (P LpI®P L)@ N[ 1]
MOTul= (P [pu]®P,[u])@ N[ p]
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(B) (i>0)
NP ELu)=(NS P ap™
N[ )= (N5 LaD
MLl = (MR,
(C) Also we define N" for i1 by N7 =(N;,'")".

The inclusions amongst the ideals N/"“'[u], N/"*'[u], M['[u] are
shown in Fig. 1.
The next theorem explains multiplication in N, in terms of Fig. 1.

THEOREM 7.1.3.  For each i we have
(a) NAOLpINFPLul=M"u]
(b) The other eight products,
N L] NP4 N ELH) ML a)
NEOpINS Ol NP O NSOTe] NPTl My u]
ML) N 2'Lu) MPPLul Ny MOCul My [ u]
are all contained in N;'* [ u].

Proof. For i=0 these results follow from the tower construction. For
i> 0 the results follow (by induction on i) from Lemma 3.2.2. |

This theorem has some interesting corollaries.

COROLLARY 7.14.  For each i we have N}’[u1* < N+ V[ u].

It is not known whether equality occurs in Corollary 7.1.4 for all i
and u. In every case the authors have tried there has been equality.

COROLLARY 7.1.5. Let [ be the number of integers i such that P, ,,[ u]
is nonempty. Then

(N, L] =0,
In particular, if s denotes the integer part of 3f/2 then
NPT =0

7.2. The Case x= —2

To end this paper we look at the case x= —2. We will work out the
dimensions of the N{*“'[ 1], N} ®'[ 4] and M"[ u] for small values of f.
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(0)

(1)

(2)

In addition we will compute the dimensions of the irreducible modules V,,
of the semisimple quotients <7}~ *)/N,. The information is presented in the
following way. We tabulate the information first according to the value of
f- For each value of f we then consider each partition p with f— | u| even.
For each such pu we represent the filtration of N, [x] with an inclusion
diagram. Beside each component of the filtration we given the dimension
of the corresponding piece in the associated graded module. For example,

the diagram

HANLON AND WALES

N NP
N e
MOy
4 AN
NPl Nl
AN S
M Dy
9 NP
AN e
MP(y)
N

FIGURE 1
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NP 4] NER4]
dim =2 dim =2
M[4]
dim=1
N{V([¢]
dim=20

means that the dimension of N{>“[¢)/M\"[4] is 2, the dimension of
NORIS/MO[¢] is 2 and the dimension of MO [¢]/N{V[¢] is L.

Finally, we give the dimension of the irreducibie (.sa{',:"’/N,»)-module V.,
indexed by u:

f=1 N[1]=0
dim V, =1

f=2 u=2 N,[2]=0

dim V,=1

p=1° Ny[17]1=0

dim V]:=1

p=¢ N.[4]=0

dim V, =1

dim V,=1

p=21 N,[2171=0

dim V,, =2

p=1’ N;[1°]=0

dim V13=1

=1 dim(N{"[1])=5

dim(N{V[1])=0
dim V, =2
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N;O'L'[I] N;O'Rl[l]
dim =2 dim =2
M[1]

dim =1
N'[1]=0

f=4  u=4 Ny[4]1=0
dim V,=1
p=131 N,[31]1=0
dim ¥, =3
p=2° Ny[2°]=0
dim V, =2
p=213 N.[212]=0
dim V2,z=3
p=1* N,1*]=0
dim V|4=1
=2 N2]=0
dim V,=6
p=12 dim(N{®[12])=27
N{U[1?]=0
dim V.=3
N‘(‘O.Li[12] Nio'Rl[l‘?J
dim=9 dim=9
M‘:O)[l?_]
dim=9
N{[12]=0

p=¢ NOTI=N{"[4]
dim(N{"[$])=5
dim V,=2
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Ny OLg] Ni-P4]
dim=2 dim=2
AN /

M'[4)

dim = 1
NP[g]=0.

We end with the Bratelli diagram for the tower of algebras .o/~ (see
Fig. 2). Each irreducible is denoted by a partition. Beside each partmon is
the degree of the corresponding irreducible.

AN
i 8. m1

//\/\

\

N 2

l\/ \\\

f=4 ¢ 2 meé l 533 B? gufi o1

f=2 [

FiG. 2. The Bratelli diagram for the tower .o/ ~2.
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