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We study theoretically the kinetics of the diffusion-limited reaction A+A-+O in the steady state. We consider the effect of an 
external source which adds correlated pairs of particles. We show that in dimensions below 2 and in the low-density limit spatial 
self-organization of reactants occurs and is controlled by the correlation in the source term. At higher densities there is a cross- 
over to a regime similar to the random landing case, exhibiting a non-classical order of reaction. 

In recent years, there has been a great deal of work showing the anomalous behavior of diffusion-limited 
reaction kinetics in confined media and/or in fractal structures [ 1,2]. In the steady state it was shown that for 
a medium with a spectral dimension d,< 2 (including fractal sets as well as Euclidean spaces), a mesoscopic 
scale of self-organization is generated and leads to anomalous rate laws. This self-organization is directly linked 
to topological properties of the random walk in these media. In particular, theoretical treatments [ 3,s 1, com- 
puter simulations [ 6,7 ] and experiments [ 8,9 ] have shown non-classical kinetics for the one-species, A + A-+ 0 
and A +A+A, diffusion-limited annihilation and fusion in the steady state. For a medium of spectral dimension 
d,< 2, the effective order of the reaction is found to be X= 1+2/d, instead of the classical result X=2 for a 
bimolecular reaction. However, most of the investigations on binary diffusion-limited reactions assume that 
particles land randomly on a lattice, which may not be correct in some real chemical systems. For example, two 
atoms may land at adjacent sites as a result of a dissociative adsorption of diatomic molecules, and solitons and 
antisolitons may be created in pairs on a polymer (e.g. trans-polyacetylene) [ lo]. 

Some theoretical approaches have considered correlations in the external particle source. Racz [ 31 derived 
the rate law of A+ A-+0 steady state reactions in one-dimensional systems for the case in which particles are 
produced in “geminate” pairs at the nearest-neighbor lattice sites. The reaction order is found to be 2. Li and 
Kopelman [ 111 have studied the self-organization aspect of this problem in 1D for arbitrary correlation lengths 
using computer simulations. A good deal of work has been done on source correlation for the A + A+O, A+ A+ A 
[9,12-161, A+B-+O [ 14,181 batch reactions, as well as A+B+O steadystatereactions [ 17,19,20,22]. In par- 
ticular, in the case of A+B+O, the importance of the source term structure and the influence of correlation 
between the landing species was carefully studied [ 20-221. Here we follow the same theoretical scheme we 
developed in a previous work [ 41. We give a general treatment of the influence of correlations in the source 
term for the A+ A case in the steady state limit. We also compare results with recent simulations [ 11 I. 

We consider an external source creating particles in pairs which land on the substrate separated by a fixed 
distance il and with a rate of arrival R/2. Of course, in a real situation, the actual number of particles landing on 
the substrate and the distribution of distances 1 would depend on the detailed interactions between the pairs, 
the substrate and the other particles. To treat all possible differences in the details of the sources (vertical anni- 
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hilation, random sequential adsorption, etc. ), we would have to consider a wide variety of different correlation 
rules for the source term. However, we are here interested in the low-density limit; thus we can avoid problems 
of jamming and higher correlation effects due to random sequential adsorption which may indeed take place at 
higher densities [ 41. In this limit, the detailed structure of the source term does not play a fundamental role as 
long as a typical correlation length is present. In fact, for all the specific sources we considered we are led to the 
same rate equation, and all the differences are absorbed into an effective rate of arrival Q (which is equal, in the 
steady state, to the bimolecular reaction rate). This simplification was also emphasized in ref. [4] for random 
landing of particles. Note that the A+ A+0 case is different from the A + B-0 case where the exact definition 
of the source is crucial even in the low-density limit. 

Our theoretical approach and notations follow ref. [4]. We note that all the contributions to the kinetics 
should be identical to the random landing case except, of course, for the source term. Ifp is the average density 
and f (r) is the two-particle density correlation function, we have the Smoluchowski boundary condition [ 231, 

D is the diffusion constant, C, and a are respectively the reaction surface and the radius of a particle A. Neglect- 
ing higher order correlations in the source, we have an effective source term Q=R( 1 - VP)~, where v is an ex- 
cluded volume of the order of ad. If we apply dimensional analysis we find Sf (r) 1% I r=a+ =p2/A, where A is a 
typical length scale picturing the microscopic organization of reactants. Note that mean-field classical kinetic 
approach always takes n to be of the order of a microscopic size a. Thus eq. ( 1) can be put into the form 

The contribution to the equation of motion of the correlation function, f ( r), of two sites separated by a distance 
r can be split into two terms. First, suppose that a particle occupies one of the sites and a member of the pair 
lands on the other (empty) one. Thus, we have a contribution S, to the equation of motion which is on the 
average 

S, =2R[p-vf(r)] . (3a) 

The second source term S2 takes into account the case where a pair lands on two unoccupied sites. In the contin- 
uum limit we obtain 

S,=R[l-2vp-v2f(r)] %, 
I 

(3b) 

where 8, is the delta function and C, is the surface of the sphere of radius 1. For the other terms, namely, 
diffusion and two- and three-particle correlation contributions, we use the forms already derived in ref. [ 41. Let 
us recall that we take into account higher moments of multi-particle correlations coming from the BBKY expan- 
sion [24] by replacing the exact contribution of the three-particle correlation function by an effective term 
which is taken to be - 2ocf (r). It implies an effective constant cy that is calculated using a consistency condition 
( 1 /I’) J drf (r) =p2 and the boundary condition (2). In this approximation, we have an easy interpretation for 
(Y, i.e. cr-’ =p/R, corresponding to an average life-time for a particle in the field of the others. Finally, we obtain 
in steady state the equation 

2DV2f(r)- yf(r)+2Rp- gLa+ ~~5,._~=0. 
n 1 

This is the same equation as found in ref. [ 41 for a random source, except for the delta function located at r=;i. 
It is a continuum approximation not suited to deal with exact geminate landing, i.e. with ,?=a, as is done in 
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computer simulations and in lattice calculations. In this case, our theory leads to a divergent reaction rate. Using 
the transformationf( r) =p2 [ 1 -g(r) ] and the length scale 

- 

(5) 

we obtain the differential equation 

‘Y(r) e A_, d, J. V2g(r) - - = 
5* 

2 -y+y. ( 2DP n A > 
(6) 

A Fourier transform of eq. (6) gives 

.., Q Q)(w)l~a-Wq)/~~ 
gq- 2Dp* q*+<-* ’ 

(7) 

where 0( xq) is the Fourier transform of a,_,. Now, we now derive the rate equations in Euclidean dimensions 

d=l,2and3. 
In d= 1 we have C,=2 and @(xq)/C,=cos qx, then 

’ ’ mdr g(r)= -- 
2Dp2 2x s 

cosaq-coslq e_iqr 
q*+p * 

(8) 
-cc 

We obtain, after integration, 

g(r) = ~{exp[(a-r)lrl+exp[-_(a+r)/Tl -exp[-Iii-rI/rl+exp[-(a+r)lrl}. (9) 

In the limit a -SC r, we expand eq. (9) and use the boundary condition g(a) = 1. We obtain a reaction law which 

is consistent with eq. ( 1). We find 

4Dp* 

‘= 5[ 1 -exp( -J/C)] * 
(10) 

Thus we obtain a scale of organization A which corresponds to an average depletion size around each particle: 

A=<[ 1 -exp( -n/C)] . (11) 

The correlation function g(r) is 

g(r) = 1 -cosh(rlT) exp[ - U-r)/8 
1-exp(-l/O 

exp( -r/Q, fora<r<l, 

g(r)= 
1 -cosW/C) expt _r,rl 

1 -exp( -n/t) 
, for r>l . (12) 

For A<< r, we have the depletion scale ,4=n and we obtain a classical reaction rate with an order of reaction 
X= 2. Eq. (5) shows that this situation is likely to happen at lower densities. For geminate landing, correspond- 
ing to I= a, we do not any longer have a divergence of the reaction rate, and we obtain the result of Racz [ 31 for 
the rate law up to a constant factor. For I XB r, we have the depletion scale /i = r and we obtain a reaction rate 
with the order of reaction X= 3, the same as found in the theory of the random landing case [ 41. Note that this 
constant is different from the result of the exact calculation by Racz [ 3 1. 

Our theoretical result compares well with the outcome of computer simulations on a line [ 111 for different 
values of ;1. The validity of eq. ( 11) was especially checked by Li and Kopelman [ 111 and this equation could 
fit the computed values up to a resealing of /1 by a factor 1.2. 
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In d=2 we haveC,=2xa and @(xq)/,&:,=J,(xq) whereJo is a Bessel function, 

Q l- g(r)= -- 
47tDp2 (27~)~ s qdqJo(aq)-Jo(iq)“df?exp(-iqrcos8), 

q2+t-2 s 
--co 0 

we obtain after evaluation of this double integral: 

g(r)= $$p [~0(dW0(rltl --l0(UtW0(r/t) I, for r>A, 

(13) 

(14) 

where 1,(z) and Ko( z) are Bessel functions. From the condition g(a) = 1 and in the limit a/<<< 1, we extract a 
rate law compatible with eq. ( 1) : 

4nDp2 
‘= Co +ln(2r/a) -Ko(6/r) ’ 

where Co= !P( 1) =0.557... The correlation function g(r) is then 

g(r) = K0(r/5) -~0(r10KoW5) 
C0+ln(Wa) -Ko(U43 ’ 

for adr<A, 

1 --Io(ur) 
g(r) = Co +ln(2r,a) _Ko(n,r) K0trlTL for rd. 

(15) 

(16) 

For a -SC ,I CK t, we have A= In (A/a) and we obtain a classical reaction rate with an order of reaction X= 2. For 
1~ c, we obtain the depletion scale /1= Co + In (t/a), which is the result of the random landing case, and there 
is no simple power reaction law. As in d= 1 we have, at a fixed ;1, a cross-over between the low density limit, 
where we observe a self-organization at a scale 2, and the higher density limit, where we recover the result of 

random landing. This cross-over is observable when L is larger than the macroscopic size a. 
Ind=3wehaveZ0=47ca2,Q(q.u)=4nsin(qx)/qxand 

g(r)= -- q2 dq sin(w) la- sin (A41 lb 
q’+p 

dylexp( -iqrccsyl) 
--m --II 

(17) 

Then we obtain 

g(r)= ~f{exp[-(r-a)/~]-exp[-(r+a)/~l-(a/l)o~~(-Ir-~llC)-e~p~-(r+~)/~l~. (18) 

Using the boundary condition g( a) = 1 and in the limit <> a we obtain 

8rDa 
Q= 1 - (a/A) exp( -A/<) P2 . (19) 

Thus the organization length ,4 is microscopic, i.e. of the order of a. Explicitly, we get 

n=a[l-(a/l)exp(-i1/5)]. (20) 

In the low-density limit case, we have a classical rate law with a slight deviation from the classical length scale: 
n = a ( 1 -a/A ). In fact it is a reaction enhancement due to the presence of reactive pairs in a close proximity. 

In summary, we have shown in a simple theoretical calculation, that in a dimension lower than two and in the 
very-low-density limit, a spatial self-organization of reactants is present and is controlled by the correlation in 
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the source term. At higher densities there is a cross-over to a regime similar to a random landing exhibiting a 
non-classical order of reaction. This cross-over is determined by comparing the correlation scale 1 with the mean 
diffusion length of a particle in the medium before elimination by reaction. 
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